Knowledge (XXG)

Koopmans' theorem

Source šŸ“

93:
exchange-correlation approximation employed. The LUMO energy shows little correlation with the electron affinity with typical approximations. The error in the DFT counterpart of Koopmans' theorem is a result of the approximation employed for the exchange correlation energy functional so that, unlike in HF theory, there is the possibility of improved results with the development of better approximations.
308:
was stated that Koopmans theorem can only be applied for removing the unpaired electron. Later, the validity of Koopmansā€™ theorem for ROHF was revisited and several procedures for obtaining meaningful orbital energies were reported. The spin up (alpha) and spin down (beta) orbital energies do not necessarily have to be the same.
506:
Unlike the approximate status of Koopmans' theorem in Hartree Fock theory (because of the neglect of orbital relaxation), in the exact KS mapping the theorem is exact, including the effect of orbital relaxation. A sketchy proof of this exact relation goes in three stages. First, for any finite system
101:
While Koopmans' theorem was originally stated for calculating ionization energies from restricted (closed-shell) Hartreeā€“Fock wavefunctions, the term has since taken on a more generalized meaning as a way of using orbital energies to calculate energy changes due to changes in the number of electrons
307:
Koopmans' theorem is also applicable to open-shell systems, however, orbital energies (eigenvalues of Roothaan equations) should be corrected, as was shown in the 1970s. Despite this early work, application of Koopmans theorem to open-shell systems continued to  cause  confusion, e.g., it
110:
Koopmansā€™ theorem applies to the removal of an electron from any occupied molecular orbital to form a positive ion. Removal of the electron from different occupied molecular orbitals leads to the ion in different electronic states. The lowest of these states is the ground state and this often, but
667:. Next, as a corollary (since the physically interacting system has the same density as the KS system), both must have the same ionization energy. Finally, since the KS potential is zero at infinity, the ionization energy of the KS system is, by definition, the negative of its HOMO energy, i.e., 710:
A tuning procedure is able to "impose" Koopmans' theorem on DFT approximations, thereby improving many of its related predictions in actual applications. In approximate DFTs one can estimate to high degree of accuracy the deviance from Koopmans' theorem using the concept of energy curvature. It
1048:
electron system. When correlated wavefunctions are used, Dyson orbitals include correlation and orbital relaxation effects.  Dyson orbitals contain all information about the initial and final states of the system needed to compute experimentally observable quantities, such as total and
291:
Calculations of electron affinities using this statement of Koopmans' theorem have been criticized on the grounds that virtual (unoccupied) orbitals do not have well-founded physical interpretations, and that their orbital energies are very sensitive to the choice of basis set used in the
92:
energies, although both the derivation and the precise statement differ from that of Koopmans' theorem. Ionization energies calculated from DFT orbital energies are usually poorer than those of Koopmans' theorem, with errors much larger than two electron volts possible depending on the
706:
While these are exact statements in the formalism of DFT, the use of approximate exchange-correlation potentials makes the calculated energies approximate and often the orbital energies are very different from the corresponding ionization energies (even by several eV!).
241:. The corresponding ionization energies are 539.7, 32.2, 18.5, 14.7 and 12.6 eV. As explained above, the deviations are due to the effects of orbital relaxation as well as differences in electron correlation energy between the molecular and the various ionized states. 776:
The concept of molecular orbitals and a Koopmans-like picture of ionization or electron attachment processes can be extended to correlated many-body wavefunctions by introducing Dyson orbitals. Dyson orbitals are defined as the generalized overlap between an
502:
electron system but then the exact KS potential jumps by a constant known as the "derivative discontinuity". It can be argued that the vertical electron affinity is equal exactly to the negative of the sum of the LUMO energy and the derivative discontinuity.
997: 665: 2168: 766: 49:
approximation). Ionization energies calculated this way are in qualitative agreement with experiment ā€“ the first ionization energy of small molecules is often calculated with an error of less than
563: 855: 1179:
Hamel, Sebastien; Duffy, Patrick; Casida, Mark E.; Salahub, Dennis R. (2002). "Kohnā€“Sham orbitals and orbital energies: fictitious constructs but good approximations all the same".
2545: 1856:
Perdew, John P.; Parr, Robert G.; Levy, Mel; Balduz, Jr., Jose L. (1982). "Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy".
568: 701: 467: 389: 496: 418: 206:), and so on. In this case the order of the ion electronic states corresponds to the order of the orbital energies. Excited-state ionization energies can be measured by 1046: 77:
calculations suggest that in many cases, but not all, the energetic corrections due to relaxation effects nearly cancel the corrections due to electron correlation.
847: 821: 1996:
Almbladh, C. -O.; von Barth, U. (1985). "Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues".
1020: 795: 525: 438: 362: 342: 2320:
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi (2012). "Curvature and frontier orbital energies in density functional theory".
2373:
Andrejkovics, I; Nagy, Ɓ (1998). "Excitation energies in density functional theory: Comparison of several methods for the H2O, N2, CO and C2H4 molecules".
1608:
Plakhutin, B. N.; Gorelik, E. V.; Breslavskaya, N. N. (2006). "Koopmans' theorem in the ROHF method: Canonical form for the Hartree-Fock Hamiltonian".
2226:
Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). "Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method".
1704:
Plakhutin, Boris N.; Davidson, Ernest R. (2009). "Koopmans' Theorem in the Restricted Open-Shell Hartreeāˆ’Fock Method. 1. A Variational Approachā€ ".
1493:
Sauer, Joachim; Jung, Christoph (1975). "Konsequenzen des Koopmansschen Theorems in den Restricted Hartree Fock Methoden fĆ¼r open-shell-Systeme".
2080:
Levy, Mel; Perdew, John P; Sahni, Viraht (1984). "Exact differential equation for the density and ionization energy of a many-particle system".
207: 1592: 1477: 1444: 1383: 1266: 1241: 1216: 299:
Comparisons with experiment and higher-quality calculations show that electron affinities predicted in this manner are generally quite poor.
248:
in contrast, the order of orbital energies is not identical to the order of ionization energies. Near-Hartreeā€“Fock calculations with a large
391:. More generally, this relation is true even when the KS system describes a zero-temperature ensemble with non-integer number of electrons 2408:
Perdew, John P; Levy, Mel (1983). "Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities".
2552: 714: 260:
bonding orbital. In this case the deviation is attributed primarily to the difference in correlation energy between the two orbitals.
1656:"Koopmans's theorem in the restricted open-shell Hartreeā€“Fock method. II. The second canonical set for orbitals and orbital energies" 1114: 276:) of the respective systems. However, Koopmans' original paper makes no claim with regard to the significance of eigenvalues of the 2585: 66:, referring to the validity of representing the entire many-body wavefunction using the Hartreeā€“Fock wavefunction, i.e. a single 1065:
Koopmans, Tjalling (1934). "Ɯber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms".
2590: 296:
the molecule of interest will appear, and care must be taken not to use these orbitals for estimating electron affinities.
1320:
Zhang, Gang; Musgrave, Charles B. (2007). "Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations".
2563: 1141:
Politzer, Peter; Abu-Awwad, Fakher (1998). "A comparative analysis of Hartreeā€“Fock and Kohnā€“Sham orbital energies".
324:) very similar in spirit to that of Hartree-Fock theory. The theorem equates the first (vertical) ionization energy 2580: 256:
bonding orbital is the HOMO. However the lowest ionization energy corresponds to removal of an electron from the 3Ļƒ
2119: 317: 81: 1961:
Kleinman, Leonard (1997). "Reply to "Comment on 'Significance of the highest occupied Kohn-Sham eigenvalue' "".
992:{\displaystyle \phi ^{d}(1)={\sqrt {N}}\int \Psi _{I}^{N}(1,\dots ,n)\Psi _{F}^{N-1}(2,\dots ,n)\,d2\dots dn\;.} 30:
of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (
1100: 530: 111:
not always, arises from removal of the electron from the HOMO. The other states are excited electronic states.
1683: 42: 23: 1891:
Perdew, John P.; Levy, Mel (1997). "Comment on "Significance of the highest occupied Kohnā€“Sham eigenvalue"".
292:
calculation. As the basis set becomes more complete; more and more "molecular" orbitals that are not really
2189:
Baer, R.; Livshits, E.; Salzner, U. (2010). ""Tuned" Range-separated hybrids in density functional theory".
1747:
Glaesemann, Kurt R.; Schmidt, Michael W. (2010). "On the Ordering of Orbital Energies in High-Spin ROHFā€ ".
660:{\textstyle n(\mathbf {r} )\to \exp \left(-2{\sqrt {{\frac {2m_{\rm {e}}}{\hbar }}I}}|\mathbf {r} |\right)} 284:. Nevertheless, it is straightforward to generalize the original statement of Koopmans' to calculate the 249: 58:
wavefunction. The two main sources of error are orbital relaxation, which refers to the changes in the
670: 2417: 2382: 2245: 2134: 2089: 2052: 2005: 1970: 1935: 1900: 1865: 1809: 1756: 1713: 1667: 1617: 1541: 1408: 1329: 1294: 1074: 1002:
Hartree-Fock canonical orbitals are Dyson orbitals computed for the Hartree-Fock wavefunction of the
70:
composed of orbitals that are the eigenfunctions of the corresponding self-consistent Fock operator.
63: 54:. Therefore, the validity of Koopmans' theorem is intimately tied to the accuracy of the underlying 443: 367: 1469: 45:
if it is assumed that the orbitals of the ion are identical to those of the neutral molecule (the
2355: 2329: 2281:"Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals" 2269: 2235: 1833: 1799: 1651: 1510: 1353: 1158: 151: 67: 472: 394: 2523: 2515: 2474: 2466: 2347: 2302: 2261: 2216: 2160: 2021: 1825: 1772: 1729: 1633: 1588: 1584: 1557: 1473: 1440: 1379: 1345: 1262: 1237: 1212: 1120: 1110: 285: 269: 85: 35: 27: 1790:
Tsuchimochi, Takashi; Scuseria, Gustavo E. (2010). "Communication: ROHF theory made simple".
55: 2505: 2456: 2425: 2390: 2339: 2292: 2253: 2206: 2198: 2150: 2142: 2097: 2060: 2013: 1978: 1943: 1908: 1873: 1817: 1764: 1721: 1675: 1625: 1576: 1549: 1502: 1461: 1416: 1337: 1302: 1188: 1150: 1082: 1025: 2202: 1462: 826: 800: 2421: 2386: 2249: 2138: 2093: 2056: 2009: 1974: 1939: 1904: 1869: 1813: 1760: 1717: 1671: 1621: 1545: 1412: 1333: 1298: 1078: 1926:
Kleinman, Leonard (1997). "Significance of the highest occupied Kohn-Sham eigenvalue".
1005: 780: 510: 423: 347: 327: 2394: 2065: 2040: 1192: 1086: 217:
O, the near-Hartreeā€“Fock orbital energies (with sign changed) of these orbitals are 1a
2574: 1577: 1529: 59: 51: 2359: 2273: 1837: 1514: 1162: 2257: 1357: 238: 62:
and Hartreeā€“Fock orbitals when changing the number of electrons in the system, and
2429: 1877: 277: 1982: 1947: 1912: 268:
It is sometimes claimed that Koopmans' theorem also allows the calculation of
2519: 2470: 2101: 2017: 1561: 1306: 1124: 89: 74: 2527: 2478: 2351: 2306: 2265: 2220: 2164: 1829: 1776: 1733: 1637: 1349: 320:(KS-DFT) admits its own version of Koopmans' theorem (sometimes called the 2025: 1257:
Hehre, Warren J.; Radom, Leo; Schleyer, Paul v.R.; Pople, John A. (1986).
1154: 1104: 2211: 2155: 1506: 2510: 2493: 2461: 2444: 2343: 2297: 2280: 2146: 1821: 1768: 1725: 1679: 1629: 1420: 1341: 1285:
Janak, J. F (1978). "Proof that āˆ‚Eāˆ‚ni=Īµin density-functional theory".
1553: 498:
electrons the infinitesimal excess charge enters the KS LUMO of the
1655: 2494:"Dyson-orbital concepts for description of electrons in molecules" 2334: 2240: 1804: 1399:
Duke, Brian J.; O'Leary, Brian (1995). "Non-Koopmans' Molecules".
761:{\textstyle {\frac {\partial E}{\partial n_{i}}}=\varepsilon _{i}} 73:
Empirical comparisons with experimental values and higher-quality
1143:
Theoretical Chemistry Accounts: Theory, Computation, and Modeling
1528:
Sauer, J.; Jung, Ch.; JaffƩ, H. H.; Singerman, J. (1978-07-01).
281: 273: 31: 2279:
Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012).
2041:"Relationship of Kohnā€“Sham eigenvalues to excitation energies" 364:
electrons to the negative of the corresponding KS HOMO energy
1049:
differential photoionization/phtodetachment cross sections.
272:
as the energy of the lowest unoccupied molecular orbitals (
849:
electron wave function of an electron-attached system):
41:
Koopmans' theorem is exact in the context of restricted
158:
HOMO corresponds to the ionization energy to form the H
1181:
Journal of Electron Spectroscopy and Related Phenomena
717: 571: 1028: 1008: 858: 829: 803: 783: 673: 533: 513: 475: 446: 426: 397: 370: 350: 330: 1022:-electron system and Koopmans approximation of the 1040: 1014: 991: 841: 815: 789: 760: 695: 659: 557: 519: 490: 461: 432: 412: 383: 356: 336: 114:For example, the electronic configuration of the H 823:electron wave function of the ionized system (or 711:provides excitation energies to zeroth-order and 565:asymptotic form of the density, which decays as 1232:Michl, Josef; Bonačić-KouteckĆ½, Vlasta (1990). 1207:Szabo, A.; Ostlund, N. S. (1982). "Chapter 3". 2039:Savin, A; Umrigar, C.J; Gonze, Xavier (1998). 80:A similar theorem (Janak's theorem) exists in 1579:Electron correlations in molecules and solids 154:. From Koopmansā€™ theorem the energy of the 1b 8: 1378:(4th ed.). Prentice-Hall. p. 475. 1234:Electronic Aspects of Organic Photochemistry 1851: 1849: 1847: 772:Orbital picture within many-body formalisms 2285:Journal of Chemical Theory and Computation 1136: 1134: 985: 186:refers to the ion in the excited state (1a 2509: 2460: 2333: 2322:The Journal of Physical Chemistry Letters 2296: 2239: 2210: 2154: 2113: 2111: 2064: 1803: 1369: 1367: 1027: 1007: 969: 936: 931: 900: 895: 881: 863: 857: 828: 802: 797:-electron molecular wavefunction and the 782: 752: 736: 718: 716: 678: 672: 647: 642: 637: 619: 618: 608: 606: 578: 570: 558:{\displaystyle |\mathbf {r} |\to \infty } 544: 539: 534: 532: 512: 474: 445: 425: 396: 375: 369: 349: 329: 182:). The energy of the second-highest MO 3a 1530:"Orbital energies in open shell systems" 312:Counterpart in density functional theory 2546:"Lecture on Koopmans' Theorem Chem 531" 2445:"From orbitals to observables and back" 1464:Introduction to Computational Chemistry 1174: 1172: 1057: 627: 2203:10.1146/annurev.physchem.012809.103321 280:other than that corresponding to the 38:, who published this result in 1934. 7: 1280: 1278: 2191:Annual Review of Physical Chemistry 1749:The Journal of Physical Chemistry A 1706:The Journal of Physical Chemistry A 1322:The Journal of Physical Chemistry A 1109:. Dover Publications. p. 128. 106:Ground-state and excited-state ions 84:(DFT) for relating the exact first 1435:Szabo, A.; Ostlund, N. S. (1982). 1259:Ab initio molecular orbital theory 928: 892: 729: 721: 620: 552: 14: 696:{\displaystyle \epsilon _{H}=-I} 643: 579: 540: 2498:The Journal of Chemical Physics 2449:The Journal of Chemical Physics 2171:from the original on 2021-01-14 2127:The Journal of Chemical Physics 1792:The Journal of Chemical Physics 1686:from the original on 2021-01-14 1660:The Journal of Chemical Physics 1610:The Journal of Chemical Physics 1534:The Journal of Chemical Physics 34:). This theorem is named after 2443:Krylov, Anna I. (2020-08-24). 2258:10.1103/PhysRevLett.105.266802 2118:Salzner, U.; Baer, R. (2009). 1654:; Plakhutin, Boris N. (2010). 966: 948: 924: 906: 875: 869: 648: 638: 586: 583: 575: 549: 545: 535: 453: 1: 2566:. The Nobel Foundation. 1975. 2395:10.1016/S0009-2614(98)01075-6 2066:10.1016/S0009-2614(98)00316-9 1401:Journal of Chemical Education 1193:10.1016/S0368-2048(02)00032-4 1087:10.1016/S0031-8914(34)90011-2 462:{\displaystyle \delta N\to 0} 384:{\displaystyle \epsilon _{H}} 162:O ion in its ground state (1a 88:and electron affinity to the 150:are orbital labels based on 22:states that in closed-shell 16:Theorem in quantum mechanics 2492:Ortiz, J. V. (2020-08-18). 2430:10.1103/PhysRevLett.51.1884 2120:"Koopmans' springs to life" 1878:10.1103/PhysRevLett.49.1691 1103:; Ostlund, Neil S. (1996). 2607: 491:{\displaystyle N+\delta N} 413:{\displaystyle N-\delta N} 208:photoelectron spectroscopy 86:vertical ionization energy 2564:"Koopmans' autobiography" 1983:10.1103/PhysRevB.56.16029 1948:10.1103/PhysRevB.56.12042 1913:10.1103/PhysRevB.56.16021 318:density functional theory 82:density functional theory 2375:Chemical Physics Letters 2102:10.1103/PhysRevA.30.2745 2045:Chemical Physics Letters 2018:10.1103/PhysRevB.31.3231 1437:Modern Quantum Chemistry 1307:10.1103/PhysRevB.18.7165 1209:Modern Quantum Chemistry 1106:Modern quantum chemistry 2586:Computational chemistry 2410:Physical Review Letters 2228:Physical Review Letters 1858:Physical Review Letters 264:For electron affinities 138:), where the symbols a 1460:Jensen, Frank (1990). 1374:Levine, I. N. (1991). 1042: 1041:{\displaystyle N\pm 1} 1016: 993: 843: 817: 791: 762: 697: 661: 559: 521: 492: 463: 434: 414: 385: 358: 338: 303:For open-shell systems 2591:Theoretical chemistry 1583:. Springer. pp.  1575:Fulde, Peter (1995). 1261:. Wiley. p. 24. 1236:. Wiley. p. 35. 1155:10.1007/s002140050307 1043: 1017: 994: 844: 818: 792: 763: 698: 662: 560: 522: 493: 464: 435: 415: 386: 359: 339: 322:DFT-Koopmans' theorem 1026: 1006: 856: 827: 801: 781: 715: 671: 569: 531: 511: 473: 444: 424: 395: 368: 348: 328: 252:indicate that the 1Ļ€ 64:electron correlation 2422:1983PhRvL..51.1884P 2387:1998CPL...296..489A 2250:2010PhRvL.105z6802S 2139:2009JChPh.131w1101S 2094:1984PhRvA..30.2745L 2057:1998CPL...288..391S 2010:1985PhRvB..31.3231A 1975:1997PhRvB..5616029K 1940:1997PhRvB..5612042K 1905:1997PhRvB..5616021P 1899:(24): 16021ā€“16028. 1870:1982PhRvL..49.1691P 1814:2010JChPh.133n1102T 1761:2010JPCA..114.8772G 1718:2009JPCA..11312386P 1712:(45): 12386ā€“12395. 1672:2010JChPh.132r4110D 1652:Davidson, Ernest R. 1622:2006JChPh.125t4110P 1546:1978JChPh..69..495S 1413:1995JChEd..72..501D 1334:2007JPCA..111.1554Z 1299:1978PhRvB..18.7165J 1079:1934Phy.....1..104K 947: 905: 842:{\displaystyle N+1} 816:{\displaystyle N-1} 469:. When considering 270:electron affinities 43:Hartreeā€“Fock theory 24:Hartreeā€“Fock theory 1507:10.1007/BF01135884 1468:. Wiley. pp.  1433:See, for example, 1205:See, for example, 1038: 1012: 989: 927: 891: 839: 813: 787: 758: 693: 657: 555: 517: 488: 459: 430: 410: 381: 354: 334: 152:molecular symmetry 68:Slater determinant 2581:Quantum chemistry 2511:10.1063/5.0016472 2462:10.1063/5.0018597 2344:10.1021/jz3015937 2298:10.1021/ct2009363 2147:10.1063/1.3269030 2082:Physical Review A 1998:Physical Review B 1963:Physical Review B 1928:Physical Review B 1893:Physical Review B 1864:(23): 1691ā€“1694. 1822:10.1063/1.3503173 1769:10.1021/jp101758y 1755:(33): 8772ā€“8777. 1726:10.1021/jp9002593 1680:10.1063/1.3418615 1630:10.1063/1.2393223 1594:978-3-540-59364-5 1495:Theor. Chim. Acta 1479:978-0-471-98425-2 1446:978-0-02-949710-4 1421:10.1021/ed072p501 1385:978-0-7923-1421-9 1376:Quantum Chemistry 1342:10.1021/jp061633o 1293:(12): 7165ā€“7168. 1287:Physical Review B 1268:978-0-471-81241-8 1243:978-0-471-89626-5 1218:978-0-02-949710-4 1015:{\displaystyle N} 886: 790:{\displaystyle N} 743: 635: 630: 520:{\displaystyle I} 433:{\displaystyle N} 357:{\displaystyle N} 337:{\displaystyle I} 286:electron affinity 118:O molecule is (1a 36:Tjalling Koopmans 28:ionization energy 20:Koopmans' theorem 2598: 2567: 2559: 2557: 2551:. Archived from 2550: 2532: 2531: 2513: 2489: 2483: 2482: 2464: 2440: 2434: 2433: 2405: 2399: 2398: 2370: 2364: 2363: 2337: 2317: 2311: 2310: 2300: 2277: 2243: 2224: 2214: 2186: 2180: 2179: 2177: 2176: 2158: 2133:(23): 231101ā€“4. 2124: 2115: 2106: 2105: 2077: 2071: 2070: 2068: 2036: 2030: 2029: 2004:(6): 3231ā€“3244. 1993: 1987: 1986: 1958: 1952: 1951: 1923: 1917: 1916: 1888: 1882: 1881: 1853: 1842: 1841: 1807: 1787: 1781: 1780: 1744: 1738: 1737: 1701: 1695: 1694: 1692: 1691: 1648: 1642: 1641: 1605: 1599: 1598: 1582: 1572: 1566: 1565: 1554:10.1063/1.436380 1525: 1519: 1518: 1490: 1484: 1483: 1467: 1457: 1451: 1450: 1431: 1425: 1424: 1396: 1390: 1389: 1371: 1362: 1361: 1328:(8): 1554ā€“1561. 1317: 1311: 1310: 1282: 1273: 1272: 1254: 1248: 1247: 1229: 1223: 1222: 1203: 1197: 1196: 1187:(2ā€“3): 345ā€“363. 1176: 1167: 1166: 1138: 1129: 1128: 1097: 1091: 1090: 1073:(1ā€“6): 104ā€“113. 1062: 1047: 1045: 1044: 1039: 1021: 1019: 1018: 1013: 998: 996: 995: 990: 946: 935: 904: 899: 887: 882: 868: 867: 848: 846: 845: 840: 822: 820: 819: 814: 796: 794: 793: 788: 767: 765: 764: 759: 757: 756: 744: 742: 741: 740: 727: 719: 702: 700: 699: 694: 683: 682: 666: 664: 663: 658: 656: 652: 651: 646: 641: 636: 631: 626: 625: 624: 623: 609: 607: 582: 564: 562: 561: 556: 548: 543: 538: 526: 524: 523: 518: 497: 495: 494: 489: 468: 466: 465: 460: 439: 437: 436: 431: 419: 417: 416: 411: 390: 388: 387: 382: 380: 379: 363: 361: 360: 355: 344:of a system of 343: 341: 340: 335: 26:(HF), the first 2606: 2605: 2601: 2600: 2599: 2597: 2596: 2595: 2571: 2570: 2562: 2555: 2548: 2543: 2540: 2535: 2491: 2490: 2486: 2442: 2441: 2437: 2407: 2406: 2402: 2372: 2371: 2367: 2319: 2318: 2314: 2278: 2225: 2188: 2187: 2183: 2174: 2172: 2122: 2117: 2116: 2109: 2079: 2078: 2074: 2038: 2037: 2033: 1995: 1994: 1990: 1960: 1959: 1955: 1925: 1924: 1920: 1890: 1889: 1885: 1855: 1854: 1845: 1789: 1788: 1784: 1746: 1745: 1741: 1703: 1702: 1698: 1689: 1687: 1650: 1649: 1645: 1607: 1606: 1602: 1595: 1574: 1573: 1569: 1527: 1526: 1522: 1492: 1491: 1487: 1480: 1459: 1458: 1454: 1447: 1439:. p. 127. 1434: 1432: 1428: 1398: 1397: 1393: 1386: 1373: 1372: 1365: 1319: 1318: 1314: 1284: 1283: 1276: 1269: 1256: 1255: 1251: 1244: 1231: 1230: 1226: 1219: 1206: 1204: 1200: 1178: 1177: 1170: 1140: 1139: 1132: 1117: 1099: 1098: 1094: 1064: 1063: 1059: 1055: 1024: 1023: 1004: 1003: 859: 854: 853: 825: 824: 799: 798: 779: 778: 774: 748: 732: 728: 720: 713: 712: 674: 669: 668: 614: 610: 599: 595: 567: 566: 529: 528: 527:determines the 509: 508: 471: 470: 442: 441: 422: 421: 393: 392: 371: 366: 365: 346: 345: 326: 325: 316:Kohnā€“Sham (KS) 314: 305: 288:in this sense. 266: 259: 255: 247: 236: 232: 228: 224: 220: 216: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 149: 145: 141: 137: 133: 129: 125: 121: 117: 108: 99: 97:Generalizations 17: 12: 11: 5: 2604: 2602: 2594: 2593: 2588: 2583: 2573: 2572: 2569: 2568: 2560: 2558:on 2005-09-30. 2544:Bowman, Joel. 2539: 2538:External links 2536: 2534: 2533: 2484: 2435: 2400: 2365: 2328:(24): 3740ā€“4. 2312: 2291:(5): 1515ā€“31. 2234:(26): 266802. 2181: 2107: 2072: 2031: 1988: 1953: 1918: 1883: 1843: 1798:(14): 141102. 1782: 1739: 1696: 1666:(18): 184110. 1643: 1616:(20): 204110. 1600: 1593: 1567: 1540:(1): 495ā€“496. 1520: 1501:(2): 129ā€“141. 1485: 1478: 1452: 1445: 1426: 1391: 1384: 1363: 1312: 1274: 1267: 1249: 1242: 1224: 1217: 1198: 1168: 1130: 1115: 1092: 1056: 1054: 1051: 1037: 1034: 1031: 1011: 1000: 999: 988: 984: 981: 978: 975: 972: 968: 965: 962: 959: 956: 953: 950: 945: 942: 939: 934: 930: 926: 923: 920: 917: 914: 911: 908: 903: 898: 894: 890: 885: 880: 877: 874: 871: 866: 862: 838: 835: 832: 812: 809: 806: 786: 773: 770: 755: 751: 747: 739: 735: 731: 726: 723: 692: 689: 686: 681: 677: 655: 650: 645: 640: 634: 629: 622: 617: 613: 605: 602: 598: 594: 591: 588: 585: 581: 577: 574: 554: 551: 547: 542: 537: 516: 487: 484: 481: 478: 458: 455: 452: 449: 429: 409: 406: 403: 400: 378: 374: 353: 333: 313: 310: 304: 301: 265: 262: 257: 253: 245: 234: 230: 226: 222: 218: 214: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 147: 143: 139: 135: 131: 127: 123: 119: 115: 107: 104: 98: 95: 52:electron volts 47:frozen orbital 15: 13: 10: 9: 6: 4: 3: 2: 2603: 2592: 2589: 2587: 2584: 2582: 2579: 2578: 2576: 2565: 2561: 2554: 2547: 2542: 2541: 2537: 2529: 2525: 2521: 2517: 2512: 2507: 2504:(7): 070902. 2503: 2499: 2495: 2488: 2485: 2480: 2476: 2472: 2468: 2463: 2458: 2455:(8): 080901. 2454: 2450: 2446: 2439: 2436: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2401: 2396: 2392: 2388: 2384: 2380: 2376: 2369: 2366: 2361: 2357: 2353: 2349: 2345: 2341: 2336: 2331: 2327: 2323: 2316: 2313: 2308: 2304: 2299: 2294: 2290: 2286: 2282: 2275: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2242: 2237: 2233: 2229: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2192: 2185: 2182: 2170: 2166: 2162: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2114: 2112: 2108: 2103: 2099: 2095: 2091: 2087: 2083: 2076: 2073: 2067: 2062: 2058: 2054: 2050: 2046: 2042: 2035: 2032: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1992: 1989: 1984: 1980: 1976: 1972: 1969:(24): 16029. 1968: 1964: 1957: 1954: 1949: 1945: 1941: 1937: 1934:(19): 12042. 1933: 1929: 1922: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1850: 1848: 1844: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1806: 1801: 1797: 1793: 1786: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1740: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1697: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1647: 1644: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1604: 1601: 1596: 1590: 1586: 1581: 1580: 1571: 1568: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1524: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1489: 1486: 1481: 1475: 1471: 1466: 1465: 1456: 1453: 1448: 1442: 1438: 1430: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1392: 1387: 1381: 1377: 1370: 1368: 1364: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1279: 1275: 1270: 1264: 1260: 1253: 1250: 1245: 1239: 1235: 1228: 1225: 1220: 1214: 1210: 1202: 1199: 1194: 1190: 1186: 1182: 1175: 1173: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1135: 1131: 1126: 1122: 1118: 1116:0-486-69186-1 1112: 1108: 1107: 1102: 1101:Szabo, Attila 1096: 1093: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1058: 1052: 1050: 1035: 1032: 1029: 1009: 986: 982: 979: 976: 973: 970: 963: 960: 957: 954: 951: 943: 940: 937: 932: 921: 918: 915: 912: 909: 901: 896: 888: 883: 878: 872: 864: 860: 852: 851: 850: 836: 833: 830: 810: 807: 804: 784: 771: 769: 753: 749: 745: 737: 733: 724: 708: 704: 690: 687: 684: 679: 675: 653: 632: 615: 611: 603: 600: 596: 592: 589: 572: 514: 504: 501: 485: 482: 479: 476: 456: 450: 447: 427: 407: 404: 401: 398: 376: 372: 351: 331: 323: 319: 311: 309: 302: 300: 297: 295: 289: 287: 283: 279: 278:Fock operator 275: 271: 263: 261: 251: 242: 240: 211: 209: 153: 112: 105: 103: 102:in a system. 96: 94: 91: 90:HOMO and LUMO 87: 83: 78: 76: 71: 69: 65: 61: 60:Fock operator 57: 53: 48: 44: 39: 37: 33: 29: 25: 21: 2553:the original 2501: 2497: 2487: 2452: 2448: 2438: 2416:(20): 1884. 2413: 2409: 2403: 2381:(5ā€“6): 489. 2378: 2374: 2368: 2325: 2321: 2315: 2288: 2284: 2231: 2227: 2194: 2190: 2184: 2173:. Retrieved 2130: 2126: 2085: 2081: 2075: 2051:(2ā€“4): 391. 2048: 2044: 2034: 2001: 1997: 1991: 1966: 1962: 1956: 1931: 1927: 1921: 1896: 1892: 1886: 1861: 1857: 1795: 1791: 1785: 1752: 1748: 1742: 1709: 1705: 1699: 1688:. Retrieved 1663: 1659: 1646: 1613: 1609: 1603: 1578: 1570: 1537: 1533: 1523: 1498: 1494: 1488: 1463: 1455: 1436: 1429: 1404: 1400: 1394: 1375: 1325: 1321: 1315: 1290: 1286: 1258: 1252: 1233: 1227: 1208: 1201: 1184: 1180: 1149:(2): 83ā€“87. 1146: 1142: 1105: 1095: 1070: 1066: 1060: 1001: 775: 709: 705: 505: 499: 420:for integer 321: 315: 306: 298: 293: 290: 267: 243: 212: 113: 109: 100: 79: 72: 56:Hartreeā€“Fock 46: 40: 19: 18: 2212:11693/22326 2156:11693/11792 2088:(5): 2745. 233:15.9 and 1b 2575:Categories 2197:: 85ā€“109. 2175:2019-09-24 1690:2018-04-29 1407:(6): 501. 1053:References 2520:0021-9606 2471:0021-9606 2335:1208.1496 2241:1006.5420 1805:1008.1607 1562:0021-9606 1033:± 977:… 958:… 941:− 929:Ψ 916:… 893:Ψ 889:∫ 861:ϕ 808:− 750:ε 730:∂ 722:∂ 688:− 676:ϵ 628:ℏ 601:− 593:⁡ 587:→ 553:∞ 550:→ 483:δ 454:→ 448:δ 405:δ 402:− 373:ϵ 250:basis set 221:559.5, 2a 75:ab initio 50:two  2528:32828082 2479:32872858 2360:22495102 2352:26291104 2307:26593646 2274:42592180 2266:21231698 2221:20055678 2169:Archived 2165:20025305 1838:31648260 1830:20949979 1777:20443582 1734:19459641 1684:Archived 1638:17144693 1515:92462090 1350:17279730 1163:96583645 1125:34357385 229:19.5, 3a 2418:Bibcode 2383:Bibcode 2246:Bibcode 2135:Bibcode 2090:Bibcode 2053:Bibcode 2026:9936207 2006:Bibcode 1971:Bibcode 1936:Bibcode 1901:Bibcode 1866:Bibcode 1810:Bibcode 1757:Bibcode 1714:Bibcode 1668:Bibcode 1618:Bibcode 1542:Bibcode 1409:Bibcode 1358:1516019 1330:Bibcode 1295:Bibcode 1075:Bibcode 1067:Physica 225:36.7 1b 2526:  2518:  2477:  2469:  2358:  2350:  2305:  2272:  2264:  2219:  2163:  2024:  1836:  1828:  1775:  1732:  1636:  1591:  1560:  1513:  1476:  1443:  1382:  1356:  1348:  1265:  1240:  1215:  1161:  1123:  1113:  2556:(PDF) 2549:(PDF) 2356:S2CID 2330:arXiv 2270:S2CID 2236:arXiv 2123:(PDF) 1834:S2CID 1800:arXiv 1587:ā€“26. 1511:S2CID 1472:ā€“65. 1354:S2CID 1159:S2CID 244:For N 237:13.8 213:For H 202:) (1b 198:) (3a 194:) (1b 190:) (2a 178:) (1b 174:) (3a 170:) (1b 166:) (2a 146:and b 134:) (1b 130:) (3a 126:) (1b 122:) (2a 2524:PMID 2516:ISSN 2475:PMID 2467:ISSN 2348:PMID 2303:PMID 2262:PMID 2217:PMID 2161:PMID 2022:PMID 1826:PMID 1773:PMID 1730:PMID 1634:PMID 1589:ISBN 1558:ISSN 1474:ISBN 1441:ISBN 1380:ISBN 1346:PMID 1263:ISBN 1238:ISBN 1213:ISBN 1121:OCLC 1111:ISBN 440:and 282:HOMO 274:LUMO 32:HOMO 2506:doi 2502:153 2457:doi 2453:153 2426:doi 2391:doi 2379:296 2340:doi 2293:doi 2254:doi 2232:105 2207:hdl 2199:doi 2151:hdl 2143:doi 2131:131 2098:doi 2061:doi 2049:288 2014:doi 1979:doi 1944:doi 1909:doi 1874:doi 1818:doi 1796:133 1765:doi 1753:114 1722:doi 1710:113 1676:doi 1664:132 1626:doi 1614:125 1550:doi 1503:doi 1417:doi 1338:doi 1326:111 1303:doi 1189:doi 1185:123 1151:doi 1083:doi 590:exp 142:, b 2577:: 2522:. 2514:. 2500:. 2496:. 2473:. 2465:. 2451:. 2447:. 2424:. 2414:51 2412:. 2389:. 2377:. 2354:. 2346:. 2338:. 2324:. 2301:. 2287:. 2283:. 2268:. 2260:. 2252:. 2244:. 2230:. 2215:. 2205:. 2195:61 2193:. 2167:. 2159:. 2149:. 2141:. 2129:. 2125:. 2110:^ 2096:. 2086:30 2084:. 2059:. 2047:. 2043:. 2020:. 2012:. 2002:31 2000:. 1977:. 1967:56 1965:. 1942:. 1932:56 1930:. 1907:. 1897:56 1895:. 1872:. 1862:49 1860:. 1846:^ 1832:. 1824:. 1816:. 1808:. 1794:. 1771:. 1763:. 1751:. 1728:. 1720:. 1708:. 1682:. 1674:. 1662:. 1658:. 1632:. 1624:. 1612:. 1585:25 1556:. 1548:. 1538:69 1536:. 1532:. 1509:. 1499:40 1497:. 1470:64 1415:. 1405:72 1403:. 1366:^ 1352:. 1344:. 1336:. 1324:. 1301:. 1291:18 1289:. 1277:^ 1211:. 1183:. 1171:^ 1157:. 1147:99 1145:. 1133:^ 1119:. 1081:. 1069:. 768:. 703:. 294:on 239:eV 210:. 2530:. 2508:: 2481:. 2459:: 2432:. 2428:: 2420:: 2397:. 2393:: 2385:: 2362:. 2342:: 2332:: 2326:3 2309:. 2295:: 2289:8 2276:. 2256:: 2248:: 2238:: 2223:. 2209:: 2201:: 2178:. 2153:: 2145:: 2137:: 2104:. 2100:: 2092:: 2069:. 2063:: 2055:: 2028:. 2016:: 2008:: 1985:. 1981:: 1973:: 1950:. 1946:: 1938:: 1915:. 1911:: 1903:: 1880:. 1876:: 1868:: 1840:. 1820:: 1812:: 1802:: 1779:. 1767:: 1759:: 1736:. 1724:: 1716:: 1693:. 1678:: 1670:: 1640:. 1628:: 1620:: 1597:. 1564:. 1552:: 1544:: 1517:. 1505:: 1482:. 1449:. 1423:. 1419:: 1411:: 1388:. 1360:. 1340:: 1332:: 1309:. 1305:: 1297:: 1271:. 1246:. 1221:. 1195:. 1191:: 1165:. 1153:: 1127:. 1089:. 1085:: 1077:: 1071:1 1036:1 1030:N 1010:N 987:. 983:n 980:d 974:2 971:d 967:) 964:n 961:, 955:, 952:2 949:( 944:1 938:N 933:F 925:) 922:n 919:, 913:, 910:1 907:( 902:N 897:I 884:N 879:= 876:) 873:1 870:( 865:d 837:1 834:+ 831:N 811:1 805:N 785:N 754:i 746:= 738:i 734:n 725:E 691:I 685:= 680:H 654:) 649:| 644:r 639:| 633:I 621:e 616:m 612:2 604:2 597:( 584:) 580:r 576:( 573:n 546:| 541:r 536:| 515:I 500:N 486:N 480:+ 477:N 457:0 451:N 428:N 408:N 399:N 377:H 352:N 332:I 258:g 254:u 246:2 235:1 231:1 227:2 223:1 219:1 215:2 204:1 200:1 196:2 192:1 188:1 184:1 180:1 176:1 172:2 168:1 164:1 160:2 156:1 148:1 144:2 140:1 136:1 132:1 128:2 124:1 120:1 116:2

Index

Hartreeā€“Fock theory
ionization energy
HOMO
Tjalling Koopmans
Hartreeā€“Fock theory
electron volts
Hartreeā€“Fock
Fock operator
electron correlation
Slater determinant
ab initio
density functional theory
vertical ionization energy
HOMO and LUMO
molecular symmetry
photoelectron spectroscopy
eV
basis set
electron affinities
LUMO
Fock operator
HOMO
electron affinity
density functional theory
Bibcode
1934Phy.....1..104K
doi
10.1016/S0031-8914(34)90011-2
Szabo, Attila
Modern quantum chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘