Knowledge (XXG)

Kotzig's theorem

Source 📝

17: 71:
More generally, every planar graph of minimum degree at least three either has an edge of total degree at most 12, or at least 60 edges that (like the edges in the triakis icosahedron) connect vertices of degrees 3 and 10. If all triangular faces of a polyhedron are vertex-disjoint, there exists an
168:
have edges with unbounded total degree. However, for planar graphs with vertices of degree lower than three, variants of the theorem have been proven, showing that either there is an edge of bounded total degree or some other special kind of subgraph.
166: 127: 427: 326: 372:
Cole, Richard; Kowalik, Łukasz; Škrekovski, Riste (2007), "A generalization of Kotzig's theorem and its application",
64:
has two adjacent faces with a total of at most 13 sides. It was named and popularized in the west in the 1970s by
88: 33: 256:
Borodin, O. V. (1990), "A generalization of Kotzig's theorem and prescribed edge coloring of planar graphs",
298:
Borodin, Oleg V. (1992), "An extension of Kotzig's theorem on the minimum weight of edges in 3-polytopes",
422: 381: 45: 386: 77: 49: 21: 281: 72:
edge with smaller total degree, at most eight. Generalizations of the theorem are also known for
65: 132: 93: 61: 391: 345: 335: 265: 41: 403: 359: 311: 277: 243: 221: 199: 399: 355: 307: 273: 239: 217: 195: 73: 57: 234:
Grünbaum, Branko (1976), "New views on some old questions of combinatorial geometry",
416: 285: 84: 53: 29: 16: 350: 24:, a polyhedron in which every edge has endpoints with total degree at least 13 186:
Kotzig, Anton (1955), "Contribution to the theory of Eulerian polyhedra",
340: 269: 236:
Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I
395: 52:, where no edge has smaller total degree. The result is named after 15: 216:, MAA Studies in Mathematics, vol. 12, pp. 201–224, 238:, Atti dei Convegni Lincei, vol. 17, pp. 451–468, 135: 96: 324:Zaks, Joseph (1983), "Extending Kotzig's theorem", 160: 121: 212:Grünbaum, Branko (1975), "Polytopal graphs", 8: 44:has an edge whose two endpoints have total 385: 349: 339: 140: 134: 101: 95: 83:The theorem cannot be generalized to all 178: 7: 374:SIAM Journal on Discrete Mathematics 48:at most 13. An extreme case is the 56:, who published it in 1955 in the 14: 214:Studies in graph theory, Part II 1: 327:Israel Journal of Mathematics 188:Matematicko-Fyzikálny Časopis 40:is the statement that every 444: 76:onto surfaces with higher 161:{\displaystyle K_{2,n-2}} 122:{\displaystyle K_{1,n-1}} 89:complete bipartite graphs 428:Theorems in graph theory 36:, areas of mathematics, 34:polyhedral combinatorics 258:Matematicheskie Zametki 162: 123: 25: 163: 124: 19: 133: 94: 300:Mathematica Slovaca 50:triakis icosahedron 22:triakis icosahedron 351:10338.dmlcz/127504 341:10.1007/BF02804013 270:10.1007/BF01240258 158: 119: 26: 396:10.1137/050646196 264:(6): 22–28, 160, 62:convex polyhedron 435: 407: 406: 389: 369: 363: 362: 353: 343: 321: 315: 314: 295: 289: 288: 253: 247: 246: 231: 225: 224: 209: 203: 202: 183: 167: 165: 164: 159: 157: 156: 128: 126: 125: 120: 118: 117: 74:graph embeddings 60:form that every 42:polyhedral graph 38:Kotzig's theorem 443: 442: 438: 437: 436: 434: 433: 432: 413: 412: 411: 410: 387:10.1.1.227.3878 371: 370: 366: 323: 322: 318: 297: 296: 292: 255: 254: 250: 233: 232: 228: 211: 210: 206: 185: 184: 180: 175: 136: 131: 130: 97: 92: 91: 66:Branko Grünbaum 12: 11: 5: 441: 439: 431: 430: 425: 415: 414: 409: 408: 364: 334:(4): 281–296, 316: 306:(4): 385–389, 290: 248: 226: 204: 177: 176: 174: 171: 155: 152: 149: 146: 143: 139: 116: 113: 110: 107: 104: 100: 13: 10: 9: 6: 4: 3: 2: 440: 429: 426: 424: 423:Planar graphs 421: 420: 418: 405: 401: 397: 393: 388: 383: 380:(1): 93–106, 379: 375: 368: 365: 361: 357: 352: 347: 342: 337: 333: 329: 328: 320: 317: 313: 309: 305: 301: 294: 291: 287: 283: 279: 275: 271: 267: 263: 259: 252: 249: 245: 241: 237: 230: 227: 223: 219: 215: 208: 205: 201: 197: 193: 189: 182: 179: 172: 170: 153: 150: 147: 144: 141: 137: 114: 111: 108: 105: 102: 98: 90: 86: 85:planar graphs 81: 79: 75: 69: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 23: 18: 377: 373: 367: 331: 325: 319: 303: 299: 293: 261: 257: 251: 235: 229: 213: 207: 191: 187: 181: 82: 70: 54:Anton Kotzig 37: 30:graph theory 27: 194:: 101–113, 417:Categories 173:References 382:CiteSeerX 286:120940639 151:− 112:− 87:, as the 404:2299697 360:0720304 312:1195032 278:1102617 244:0470861 222:0406868 200:0074837 402:  384:  358:  310:  284:  276:  242:  220:  198:  46:degree 282:S2CID 78:genus 129:and 58:dual 32:and 20:The 392:doi 346:hdl 336:doi 266:doi 28:In 419:: 400:MR 398:, 390:, 378:21 376:, 356:MR 354:, 344:, 332:45 330:, 308:MR 304:42 302:, 280:, 274:MR 272:, 262:48 260:, 240:MR 218:MR 196:MR 190:, 80:. 68:. 394:: 348:: 338:: 268:: 192:5 154:2 148:n 145:, 142:2 138:K 115:1 109:n 106:, 103:1 99:K

Index


triakis icosahedron
graph theory
polyhedral combinatorics
polyhedral graph
degree
triakis icosahedron
Anton Kotzig
dual
convex polyhedron
Branko Grünbaum
graph embeddings
genus
planar graphs
complete bipartite graphs
MR
0074837
MR
0406868
MR
0470861
doi
10.1007/BF01240258
MR
1102617
S2CID
120940639
MR
1195032
Israel Journal of Mathematics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.