Knowledge (XXG)

Kozai mechanism

Source šŸ“

1442: 885: 817: 1196: 822:
For many systems, a satisfactory description is found already at the lowest, quadrupole order in the perturbative expansion. The octupole term becomes dominant in certain regimes and is responsible for a long-term variation in the amplitude of the Lidovā€“Kozai oscillations.
1838:
Lidov, Mikhail L. (1961). "Š­Š²Š¾Š»ŃŽŃ†Šøя Š¾Ń€Š±Šøт ŠøсŠŗусстŠ²ŠµŠ½Š½Ń‹Ń… сŠæутŠ½ŠøŠŗŠ¾Š² ŠæŠ¾Š“ Š²Š¾Š·Š“ŠµŠ¹ŃŃ‚Š²ŠøŠµŠ¼ Š³Ń€Š°Š²ŠøтŠ°Ń†ŠøŠ¾Š½Š½Ń‹Ń… Š²Š¾Š·Š¼ŃƒŃ‰ŠµŠ½ŠøŠ¹ Š²Š½ŠµŃˆŠ½Šøх тŠµŠ»" [The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies].
117:. The citations of the papers by Kozai and Lidov have risen sharply in the 21st century. As of 2017, the mechanism is among the most studied astrophysical phenomena. It was pointed out in 2019 by Takashi Ito and Katsuhito Ohtsuka that the Swedish astronomer 536: 1147: 835:
effect, that is, it occurs on timescales much longer compared to the orbital periods of the inner and the outer binary. In order to simplify the problem and make it more tractable computationally, the hierarchical three-body Hamiltonian can be
1007: 677: 1437:{\displaystyle T_{\mathrm {Kozai} }=2\pi \,{\frac {\,{\sqrt {G\,M\;}}\,}{G\,m_{2}}}\,{\frac {\,a_{2}^{3}\,}{a^{3/2}}}\left(1-e_{2}^{2}\right)^{3/2}={\frac {\,P_{2}^{2}\,}{P}}\,\left(1-e_{2}^{2}\right)^{3/2}} 1605:
as the first example of an artificial satellite undergoing Lidovā€“Kozai oscillations. Launched in 1959 into a highly inclined, eccentric, geocentric orbit, it was the first mission to photograph the
394:
The dynamics of a system composed of three bodies system acting under their mutual gravitational attraction is complex. In general, the behaviour of a three-body system over long periods of time is
900:: the component of the secondary's orbital angular momentum parallel to the angular momentum of the primary / perturber orbit. This conserved quantity can be expressed in terms of the secondary's 364:
The coordinate pairs are usually chosen in such a way as to simplify the calculations involved in solving a particular problem. One set of canonical coordinates can be changed to another by a
1549:
If the orbit of a planet's moon is highly inclined to the planet's orbit, the eccentricity of the moon's orbit will increase until, at closest approach, the moon is destroyed by tidal forces.
2451: 1021:
means that orbital eccentricity can be "traded for" inclination. Thus, near-circular, highly inclined orbits can become very eccentric. Since increasing eccentricity while keeping the
439: 1064: 2947: 1689:
discovered the effect while analyzing the orbits of artificial and natural satellites of planets. Originally published in Russian, the result was translated into English in 1962.
669: 635: 601: 429:
to write the Hamiltonian of a hierarchical three-body system as a sum of two terms responsible for the isolated evolution of the inner and the outer binary, and a third term
166: 2276:
Katz, Boaz; Dong, Subo; Malhotra, Renu (2011). "Long-Term Cycling of Kozai-Lidov Cycles: Extreme Eccentricities and Inclinations Excited by a Distant Eccentric Perturber".
1559:. Recently, the Hill-stability radius has been found as a function of satellite inclination, also explains the non-uniform distribution of irregular satellite inclinations. 355: 840:, that is, averaged over the rapidly varying mean anomalies of the two orbits. Through this process, the problem is reduced to that of two interacting massive wire loops. 279: 559: 1700:
was among the 1961 conference participants. Kozai published the same result in a widely read English-language journal in 1962, using the result to analyze orbits of
1613:. (2016) a different mechanism must have driven the decay of the probe's orbit since the Lidovā€“Kozai oscillations would have been thwarted by effects of the Earth's 238: 204: 1708:. Since Lidov was the first to publish, many authors use the term Lidovā€“Kozai mechanism. Others, however, name it as the Kozaiā€“Lidov or just the Kozai mechanism. 309: 1555:
The growing eccentricity will result in a collision with a regular moon, the planet, or alternatively, the growing apocenter may push the satellite outside the
54:, or some combination of Kozai, Lidovā€“Kozai, Kozaiā€“Lidov or von Zeipel-Kozai-Lidov effect, oscillations, cycles, or resonance. This effect causes the orbit's 70:. The process occurs on timescales much longer than the orbital periods. It can drive an initially near-circular orbit to arbitrarily high eccentricity, and 1851:
Lidov, Mikhail L. (1962). "The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies".
920: 417:
triple systems, that is systems in which one of the bodies, called the "perturber", is located far from the other two, which are said to comprise the
2877:
Naoz, Smadar; Farr, Will M.; Lithwick, Yoram; Rasio, Frederic A.; Teyssandier, Jean (2011). "Hot Jupiters from secular planetā€“planet interactions".
569:
rapidly, the qualitative behaviour of a hierarchical three-body system is determined by the initial terms in the expansion, referred to as the
3135: 2362: 2000: 1748: 812:{\displaystyle {\mathcal {H}}_{\rm {pert}}={\mathcal {H}}_{\rm {quad}}+{\mathcal {H}}_{\rm {oct}}+{\mathcal {H}}_{\rm {hex}}+O(\alpha ^{5}).} 1696:
held in Moscow on 20ā€“25 November 1961. His paper was first published in a Russian-language journal in 1961. The Japanese astronomer
1463:
is mass; variables with subscript "2" refer to the outer (perturber) orbit and variables lacking subscripts refer to the inner orbit;
376:, which relate time derivatives of the coordinates to partial derivatives of the Hamiltonian with respect to the conjugate momenta. 3010:
Blaes, Omer; Lee, Man Hoi; Socrates, Aristotle (2002). "The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes".
3202: 2085:
Li, Gongjie; Naoz, Smadar; Holman, Matt; Loeb, Abraham (2014). "Chaos in the Test Particle Eccentric Kozai-Lidov Mechanism".
1499: 75: 207: 1882:
Lidov, Mikhail L. (20ā€“25 November 1961). "On approximate analysis of the evolution of orbits of artificial satellites".
2688:
Fabrycky, Daniel; Tremaine, Scott (2007). "Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction".
2352: 1853: 853:
The simplest treatment of the von Zeipel-Lidovā€“Kozai mechanism assumes that one of the inner binary's components, the
1886:. Problems of Motion of Artificial Celestial Bodies. Moscow, USSR: Academy of Sciences of the USSR (published 1963). 3207: 1731:
Shevchenko, Ivan I. (2017). "The Lidov-Kozai effect ā€“ applications in exoplanet research and dynamical astronomy".
865:
and the distant perturber. These assumptions are valid, for instance, in the case of an artificial satellite in a
1472: 531:{\displaystyle {\mathcal {H}}={\mathcal {H}}_{\rm {in}}+{\mathcal {H}}_{\rm {out}}+{\mathcal {H}}_{\rm {pert}}.} 3212: 1902: 1142:{\displaystyle i_{\mathrm {crit} }=\arccos \left({\sqrt {{\frac {3}{5}}\,}}\,\right)\approx 39.2^{\mathsf {o}}} 365: 2447:"Extreme trans-Neptunian objects and the Kozai mechanism: Signalling the presence of trans-Plutonian planets" 1570:
A number of moons have been found to be in the Lidovā€“Kozai resonance with their planet, including Jupiter's
1498:) is the same, but depends on how "far" the orbit is from the fixed-point orbit, becoming very long for the 398:, including even small uncertainties in determining the initial conditions, and rounding-errors in computer 177: 1678: 1516: 565:
of the inner and the outer binary and hence small in a hierarchical system. Since the perturbative series
118: 86: 55: 1609:. It burned in the Earth's atmosphere after completing eleven revolutions. However, according to Gkolias 644: 610: 576: 1642: 1495: 169: 135: 1900:
Kozai, Yoshihide (1962). "Secular perturbations of asteroids with high inclination and eccentricity".
3171: 3084: 3029: 2969: 2896: 2835: 2772: 2707: 2644: 2593: 2552: 2511: 2470: 2409: 2295: 2234: 2176: 2104: 2035: 1963: 1911: 1862: 1791: 1606: 901: 94: 63: 1161:
less than this critical value, there is a one-parameter family of orbital solutions having the same
147: 2388:"Generalized Hill-Stability Criteria for Hierarchical Three-Body Systems at Arbitrary Inclinations" 1542:
The Lidovā€“Kozai mechanism places restrictions on the orbits possible within a system. For example:
1531:
occurs when the body is farthest from the equatorial plane. This effect is part of the reason that
1476: 426: 389: 369: 314: 82: 31: 406:
cannot be solved analytically for an indefinite amount of time, except in special cases. Instead,
3053: 3019: 2985: 2959: 2928: 2886: 2859: 2825: 2798: 2762: 2731: 2697: 2670: 2634: 2460: 2399: 2327: 2285: 2258: 2224: 2166: 2128: 2094: 2067: 2025: 1953: 1815: 1781: 897: 874: 430: 403: 385: 211: 90: 3162:
Grebnikov, E. A. (1962). "Conference on General and Applied Problems of Theoretical Astronomy".
3179: 3141: 3131: 3100: 3045: 2920: 2912: 2851: 2790: 2723: 2662: 2427: 2368: 2358: 2319: 2311: 2250: 2194: 2120: 2059: 2051: 1996: 1807: 1754: 1744: 1666: 1662: 1475:
satellites period of half a (sidereal) day, the Kozai timescale is a little over 4 years; for
566: 407: 358: 243: 98: 3073:"Sur l'application des sĆ©ries de M. Lindstedt Ć  l'Ć©tude du mouvement des comĆØtes pĆ©riodiques" 544: 27:
Dynamical phenomenon affecting the orbit of a binary system perturbed by a distant third body
3123: 3092: 3037: 2977: 2973: 2904: 2843: 2780: 2715: 2652: 2601: 2560: 2519: 2478: 2417: 2303: 2242: 2238: 2184: 2153:
Naoz, Smadar; Farr, Will M.; Lithwick, Yoram; Rasio, Frederic A.; Teyssandier, Jean (2013).
2112: 2043: 1971: 1919: 1870: 1866: 1799: 1736: 1034: 896:
Under these approximations, the orbit-averaged equations of motion for the secondary have a
889: 861:ā€“ an idealized point-like object with negligible mass compared to the other two bodies, the 2816:
Lithwick, Yoram; Naoz, Smadar (2011). "The eccentric Kozai mechanism for a test particle".
216: 182: 1697: 1587: 866: 562: 106: 3118:
Nakamura, Tsuko; Orchiston, Wayne, eds. (2017). "The emergence of astrophysics in Asia".
1182:
is independent of the masses involved, which only set the timescale of the oscillations.
288: 3175: 3088: 3033: 2900: 2839: 2776: 2711: 2648: 2597: 2556: 2515: 2474: 2413: 2299: 2246: 2180: 2108: 2047: 2039: 1967: 1915: 1795: 2565: 2540: 1626: 1575: 1022: 399: 2657: 2622: 2606: 2581: 1884:
Proceedings of the Conference on General and Practical Topics of Theoretical Astronomy
3196: 2863: 2847: 2785: 2750: 2348: 2262: 2132: 2116: 1874: 1819: 1686: 1637:
exoplanets orbiting their stars on tight orbits. The high eccentricity of the planet
1583: 1579: 858: 105:
while analyzing the orbits of artificial and natural satellites of planets. In 1962,
102: 39: 17: 3057: 2989: 2802: 2735: 2674: 2331: 2071: 42:
perturbed by a distant third body under certain conditions. It is also known as the
2932: 2307: 1658: 1571: 395: 2981: 1976: 1941: 1654: 1630: 1595: 1564: 1556: 1002:{\displaystyle L_{\mathrm {z} }={\sqrt {1-e^{2}\;}}\,\cos i=\mathrm {constant} } 908: 173: 67: 2524: 2499: 2357:. Princeton Series in Astrophysics. Princeton, NJ: Princeton University Press. 140:
In Hamiltonian mechanics, a physical system is specified by a function, called
3127: 2621:
Gkolias, Ioannis; Daquin, JƩrƓme; Gachet, Fabien; Rosengren, Aaron J. (2016).
2215:
Naoz, Smadar (2016). "The Eccentric Kozai-Lidov Effect and Its Applications".
1772:
Tremaine, Scott; Yavetz, Tomer D. (2014). "Why do Earth satellites stay up?".
1740: 1638: 1614: 1591: 121:
had also studied this mechanism in 1909, and his name is sometimes now added.
3183: 3145: 3104: 3096: 3049: 2916: 2855: 2794: 2727: 2666: 2431: 2372: 2315: 2254: 2198: 2124: 2055: 1811: 1758: 2483: 2446: 2422: 2387: 1634: 1524: 1026: 59: 2924: 2323: 2189: 2154: 2063: 2386:
Grishin, Evgeni; Perets, Hagai B.; Zenati, Yossef; Michaely, Erez (2017).
1567:, a hypothetical planet orbiting the Sun far beyond the orbit of Neptune. 81:
The effect has been found to be an important factor shaping the orbits of
3024: 1701: 1528: 110: 2908: 421:. The perturber and the centre of mass of the inner binary comprise the 1705: 1536: 1030: 878: 114: 1803: 1692:
Lidov first presented his work on artificial satellite orbits at the
1602: 3072: 1058:, a "fixed-point" orbit appears, with constant inclination given by 396:
enormously sensitive to any slight changes in the initial conditions
3041: 2719: 2639: 2404: 2229: 2030: 1958: 1923: 1694:
Conference on General and Applied Problems of Theoretical Astronomy
2964: 2891: 2830: 2767: 2702: 2580:
Brozović, Marina; Jacobson, Robert A.; Sheppard, Scott S. (2011).
2465: 2290: 2171: 2099: 1786: 1532: 884: 883: 1677:
The effect was first described in 1909 by the Swedish astronomer
2751:"High-inclination planets and asteroids in multistellar systems" 1468: 870: 410:
are used for forecast-times limited by the available precision.
2445:
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raul (2014).
1780:(8). American Association of Physics Teachers (AAPT): 769ā€“777. 1502:
orbit that separates librating orbits from oscillating orbits.
357:
pairs required to describe a given system is the number of its
2016:
Musielak, Z.E.; Quarles, B. (2014). "The three-body problem".
541:
The coupling term is then expanded in the orders of parameter
765: 740: 712: 684: 503: 478: 456: 445: 153: 109:
published this same result in application to the orbits of
2948:"Spin-orbit misalignment in the HD 80606 planetary system" 2452:
Monthly Notices of the Royal Astronomical Society: Letters
1735:. Vol. 441. Cham: Springer International Publishing. 1625:
The von Zeipel-Lidovā€“Kozai mechanism, in combination with
1190:
The basic timescale associated with Kozai oscillations is
1653:
The mechanism is thought to affect the growth of central
425:. Such systems are often studied by using the methods of 372:
for the system are obtained from the Hamiltonian through
62:, which in turn leads to a periodic exchange between its 1049:
is lower than a certain value. At the critical value of
1995:. Cambridge, UK; New York: Cambridge University Press. 1833: 1831: 1829: 311:
for the von Zeipel-Kozaiā€“Lidov effect). The number of
2155:"Secular dynamics in hierarchical three-body systems" 1661:. It also drives the evolution of certain classes of 1199: 1067: 1025:
constant reduces the distance between the objects at
923: 680: 647: 613: 579: 547: 442: 317: 291: 246: 219: 185: 150: 1535:
is dynamically protected from close encounters with
1527:about either 90Ā° or 270Ā°, which is to say that its 1471:'s period of 27.3 days, eccentricity 0.055 and the 402:arithmetic. The practical consequence is that, the 38:is a dynamical phenomenon affecting the orbit of a 1935: 1933: 1482:The period of oscillation of all three variables ( 1436: 1178:. Remarkably, the degree of possible variation in 1141: 1001: 811: 663: 629: 595: 553: 530: 349: 303: 273: 232: 198: 160: 3157: 3155: 2755:Monthly Notices of the Royal Astronomical Society 2392:Monthly Notices of the Royal Astronomical Society 2159:Monthly Notices of the Royal Astronomical Society 1942:"The Lidov-Kozai Oscillation and Hugo von Zeipel" 1726: 1724: 1722: 1720: 74:an initially moderately inclined orbit between a 2148: 2146: 2144: 2142: 1681:in his work on the motion of periodic comets in 1515:The von Zeipel-Lidovā€“Kozai mechanism causes the 1029:, this mechanism can cause comets (perturbed by 2761:(4). Oxford University Press (OUP): 1721ā€“1726. 2623:"From Order to Chaos in Earth Satellite Orbits" 2343: 2341: 2165:(3). Oxford University Press (OUP): 2155ā€“2171. 1563:The mechanism has been invoked in searches for 2500:"The Orbits of Jupiter's irregular satellites" 2498:Brozović, Marina; Jacobson, Robert A. (2017). 1467:is the mass of the primary. For example, with 2398:(1). Oxford University Press (OUP): 276ā€“285. 1645:system is likely due to the Kozai mechanism. 1601:Some sources identify the Soviet space probe 8: 2541:"The orbits of the outer Uranian satellites" 2210: 2208: 1946:Monographs on Environment, Earth and Planets 1895: 1893: 1040:Lidovā€“Kozai oscillations will be present if 3122:. Cham: Springer International Publishing. 2217:Annual Review of Astronomy and Astrophysics 914:relative to the plane of the outer binary: 176:. The canonical coordinates consist of the 2582:"The orbits of Neptune's outer satellites" 1247: 957: 413:The Lidovā€“Kozai mechanism is a feature of 3023: 2963: 2890: 2829: 2784: 2766: 2701: 2656: 2638: 2633:(5). American Astronomical Society: 119. 2605: 2564: 2523: 2482: 2464: 2421: 2403: 2354:Dynamics and Evolution of Galactic Nuclei 2289: 2284:(18). American Physical Society: 181101. 2228: 2188: 2170: 2098: 2029: 1975: 1957: 1940:Ito, Takashi; Ohtsuka, Katsuhito (2019). 1785: 1424: 1420: 1409: 1404: 1387: 1380: 1374: 1369: 1364: 1361: 1348: 1344: 1333: 1328: 1300: 1296: 1290: 1284: 1279: 1274: 1271: 1270: 1261: 1256: 1250: 1243: 1238: 1237: 1234: 1233: 1205: 1204: 1198: 1132: 1131: 1118: 1115: 1105: 1103: 1073: 1072: 1066: 973: 960: 951: 939: 929: 928: 922: 797: 771: 770: 764: 763: 746: 745: 739: 738: 718: 717: 711: 710: 690: 689: 683: 682: 679: 655: 646: 621: 612: 587: 578: 546: 509: 508: 502: 501: 484: 483: 477: 476: 462: 461: 455: 454: 444: 443: 441: 338: 325: 316: 290: 245: 224: 218: 190: 184: 152: 151: 149: 1716: 1685:. In 1961, the Soviet space scientist 2539:Brozović, M.; Jacobson, R. A. (2009). 1733:Astrophysics and Space Science Library 1170:but different amounts of variation in 1133: 7: 1879:(translation of Lidov's 1961 paper) 3120:Historical & Cultural Astronomy 2749:Verrier, P.E.; Evans, N.W. (2009). 2247:10.1146/annurev-astro-081915-023315 664:{\displaystyle \propto \alpha ^{4}} 630:{\displaystyle \propto \alpha ^{3}} 596:{\displaystyle \propto \alpha ^{2}} 2885:(7346). Springer Nature: 187ā€“189. 1218: 1215: 1212: 1209: 1206: 1083: 1080: 1077: 1074: 995: 992: 989: 986: 983: 980: 977: 974: 930: 778: 775: 772: 753: 750: 747: 728: 725: 722: 719: 700: 697: 694: 691: 519: 516: 513: 510: 491: 488: 485: 466: 463: 25: 2786:10.1111/j.1365-2966.2009.14446.x 1665:and may play a role in enabling 76:prograde and a retrograde motion 60:oscillate about a constant value 3071:von Zeipel, H. (1 March 1910). 831:The Lidovā€“Kozai mechanism is a 2308:10.1103/PhysRevLett.107.181101 2223:(1). Annual Reviews: 441ā€“489. 2018:Reports on Progress in Physics 1451:indicates the semimajor axis, 803: 790: 561:, defined as the ratio of the 374:Hamilton's canonical equations 344: 318: 161:{\displaystyle {\mathcal {H}}} 101:. It was described in 1961 by 1: 2048:10.1088/0034-4885/77/6/065901 2024:(6). IOP Publishing: 065901. 350:{\displaystyle (x_{k},p_{k})} 97:. It hypothetically promotes 2952:Astronomy & Astrophysics 2566:10.1088/0004-6256/137/4/3834 1977:10.6084/m9.figshare.19620609 1875:10.1016/0032-0633(62)90129-0 1841:Iskusstvennye Sputniki Zemli 2982:10.1051/0004-6361/200912463 2658:10.3847/0004-6256/152/5/119 2607:10.1088/0004-6256/141/4/135 1854:Planetary and Space Science 1774:American Journal of Physics 3229: 2946:PONT; et al. (2009). 2848:10.1088/0004-637x/742/2/94 2117:10.1088/0004-637x/791/2/86 1506:Astrophysical implications 383: 133: 3128:10.1007/978-3-319-62082-4 3077:Astronomische Nachrichten 3012:The Astrophysical Journal 2824:(2). IOP Publishing: 94. 2818:The Astrophysical Journal 2690:The Astrophysical Journal 2093:(2). IOP Publishing: 86. 2087:The Astrophysical Journal 1741:10.1007/978-3-319-43522-0 1683:Astronomische Nachrichten 1473:Global Positioning System 869:that is perturbed by the 844:Overview of the mechanism 3097:10.1002/asna.19091832202 2627:The Astronomical Journal 2586:The Astronomical Journal 2545:The Astronomical Journal 2525:10.3847/1538-3881/aa5e4d 2504:The Astronomical Journal 1991:Valtonen, M. J. (2005). 1903:The Astronomical Journal 1552:For irregular satellites 366:canonical transformation 274:{\displaystyle k=1,...N} 2974:2009A&A...502..695P 2278:Physical Review Letters 2239:2016ARA&A..54..441N 1867:1962P&SS....9..719L 1673:History and development 1546:For a regular satellite 554:{\displaystyle \alpha } 178:generalized coordinates 87:trans-Neptunian objects 1993:The Three-Body Problem 1952:(1). Terrapub: 1-113. 1517:argument of pericenter 1438: 1143: 1003: 893: 813: 665: 631: 597: 555: 532: 380:The three-body problem 351: 305: 285:bodies in the system ( 275: 234: 200: 162: 119:Edvard Hugo von Zeipel 56:argument of pericenter 44:von Zeipel-Kozai-Lidov 3203:Orbital perturbations 2484:10.1093/mnrasl/slu084 2423:10.1093/mnras/stw3096 1629:, is able to produce 1496:argument of periapsis 1494:ā€“ the last being the 1479:it is twice shorter. 1439: 1144: 1004: 887: 877:that is perturbed by 827:Secular approximation 814: 666: 632: 598: 556: 533: 352: 306: 276: 235: 233:{\displaystyle p_{k}} 201: 199:{\displaystyle x_{k}} 170:canonical coordinates 163: 136:Hamiltonian mechanics 130:Hamiltonian mechanics 95:multiple star systems 52:Kozaiā€“Lidov mechanism 48:Lidovā€“Kozai mechanism 18:Kozai-Lidov mechanism 2190:10.1093/mnras/stt302 1607:far side of the Moon 1477:geostationary orbits 1459:is eccentricity and 1197: 1065: 921: 678: 645: 611: 577: 545: 440: 315: 289: 244: 217: 183: 148: 83:irregular satellites 3176:1962SvA.....6..440G 3089:1910AN....183..345V 3034:2002ApJ...578..775B 2909:10.1038/nature10076 2901:2011Natur.473..187N 2840:2011ApJ...742...94L 2777:2009MNRAS.394.1721V 2712:2007ApJ...669.1298F 2649:2016AJ....152..119G 2598:2011AJ....141..135B 2557:2009AJ....137.3834B 2516:2017AJ....153..147B 2475:2014MNRAS.443L..59D 2414:2017MNRAS.466..276G 2300:2011PhRvL.107r1101K 2181:2013MNRAS.431.2155N 2109:2014ApJ...791...86L 2040:2014RPPh...77f5901M 1968:2019MEEP....7....1I 1916:1962AJ.....67..591K 1796:2014AmJPh..82..769T 1455:is orbital period, 1414: 1379: 1338: 1289: 849:Test particle limit 427:perturbation theory 390:Perturbation theory 370:equations of motion 304:{\displaystyle N=3} 208:configuration space 32:celestial mechanics 1667:black hole mergers 1663:binary black holes 1621:Extrasolar planets 1434: 1400: 1365: 1324: 1275: 1139: 999: 898:conserved quantity 894: 875:short-period comet 809: 661: 627: 593: 551: 528: 404:three-body problem 386:Three-body problem 359:degrees of freedom 347: 301: 271: 230: 196: 158: 99:black hole mergers 91:extrasolar planets 3208:Orbital resonance 3137:978-3-319-62080-0 2364:978-0-691-12101-7 2002:978-0-521-85224-1 1804:10.1119/1.4874853 1750:978-3-319-43520-6 1385: 1310: 1268: 1248: 1116: 1113: 958: 408:numerical methods 212:conjugate momenta 16:(Redirected from 3220: 3188: 3187: 3164:Soviet Astronomy 3159: 3150: 3149: 3115: 3109: 3108: 3068: 3062: 3061: 3027: 3025:astro-ph/0203370 3007: 3001: 3000: 2998: 2996: 2967: 2943: 2937: 2936: 2894: 2874: 2868: 2867: 2833: 2813: 2807: 2806: 2788: 2770: 2746: 2740: 2739: 2705: 2696:(2): 1298ā€“1315. 2685: 2679: 2678: 2660: 2642: 2618: 2612: 2611: 2609: 2577: 2571: 2570: 2568: 2551:(4): 3834ā€“3842. 2536: 2530: 2529: 2527: 2495: 2489: 2488: 2486: 2468: 2442: 2436: 2435: 2425: 2407: 2383: 2377: 2376: 2345: 2336: 2335: 2293: 2273: 2267: 2266: 2232: 2212: 2203: 2202: 2192: 2174: 2150: 2137: 2136: 2102: 2082: 2076: 2075: 2033: 2013: 2007: 2006: 1988: 1982: 1981: 1979: 1961: 1937: 1928: 1927: 1897: 1888: 1887: 1878: 1848: 1835: 1824: 1823: 1789: 1769: 1763: 1762: 1728: 1590:, and Neptune's 1522: 1493: 1489: 1485: 1466: 1462: 1458: 1454: 1450: 1443: 1441: 1440: 1435: 1433: 1432: 1428: 1419: 1415: 1413: 1408: 1386: 1381: 1378: 1373: 1362: 1357: 1356: 1352: 1343: 1339: 1337: 1332: 1311: 1309: 1308: 1304: 1291: 1288: 1283: 1272: 1269: 1267: 1266: 1265: 1251: 1249: 1239: 1235: 1223: 1222: 1221: 1181: 1177: 1173: 1168: 1164: 1159: 1155: 1148: 1146: 1145: 1140: 1138: 1137: 1136: 1123: 1119: 1117: 1114: 1106: 1104: 1088: 1087: 1086: 1056: 1052: 1047: 1043: 1019: 1015: 1012:Conservation of 1008: 1006: 1005: 1000: 998: 959: 956: 955: 940: 935: 934: 933: 913: 906: 890:orbital elements 818: 816: 815: 810: 802: 801: 783: 782: 781: 769: 768: 758: 757: 756: 744: 743: 733: 732: 731: 716: 715: 705: 704: 703: 688: 687: 670: 668: 667: 662: 660: 659: 636: 634: 633: 628: 626: 625: 602: 600: 599: 594: 592: 591: 560: 558: 557: 552: 537: 535: 534: 529: 524: 523: 522: 507: 506: 496: 495: 494: 482: 481: 471: 470: 469: 460: 459: 449: 448: 433:the two orbits, 356: 354: 353: 348: 343: 342: 330: 329: 310: 308: 307: 302: 284: 280: 278: 277: 272: 239: 237: 236: 231: 229: 228: 205: 203: 202: 197: 195: 194: 167: 165: 164: 159: 157: 156: 85:of the planets, 21: 3228: 3227: 3223: 3222: 3221: 3219: 3218: 3217: 3213:Kozai mechanism 3193: 3192: 3191: 3161: 3160: 3153: 3138: 3117: 3116: 3112: 3083:(22): 345ā€“418. 3070: 3069: 3065: 3009: 3008: 3004: 2994: 2992: 2945: 2944: 2940: 2876: 2875: 2871: 2815: 2814: 2810: 2748: 2747: 2743: 2687: 2686: 2682: 2620: 2619: 2615: 2579: 2578: 2574: 2538: 2537: 2533: 2497: 2496: 2492: 2444: 2443: 2439: 2385: 2384: 2380: 2365: 2347: 2346: 2339: 2275: 2274: 2270: 2214: 2213: 2206: 2152: 2151: 2140: 2084: 2083: 2079: 2015: 2014: 2010: 2003: 1990: 1989: 1985: 1939: 1938: 1931: 1899: 1898: 1891: 1881: 1880: 1861:(10): 719ā€“759. 1850: 1849: 1837: 1836: 1827: 1771: 1770: 1766: 1751: 1730: 1729: 1718: 1714: 1698:Yoshihide Kozai 1679:Hugo von Zeipel 1675: 1651: 1623: 1520: 1513: 1508: 1491: 1487: 1483: 1464: 1460: 1456: 1452: 1448: 1393: 1389: 1388: 1363: 1317: 1313: 1312: 1292: 1273: 1257: 1252: 1236: 1200: 1195: 1194: 1188: 1179: 1175: 1171: 1169: 1166: 1162: 1160: 1157: 1153: 1127: 1102: 1098: 1068: 1063: 1062: 1057: 1054: 1050: 1048: 1045: 1041: 1020: 1017: 1013: 947: 924: 919: 918: 911: 904: 867:low Earth orbit 851: 846: 829: 793: 762: 737: 709: 681: 676: 675: 671:) order terms, 651: 643: 642: 617: 609: 608: 583: 575: 574: 563:semi-major axes 543: 542: 500: 475: 453: 438: 437: 392: 384:Main articles: 382: 334: 321: 313: 312: 287: 286: 282: 242: 241: 220: 215: 214: 186: 181: 180: 146: 145: 138: 132: 127: 107:Yoshihide Kozai 36:Kozai mechanism 28: 23: 22: 15: 12: 11: 5: 3226: 3224: 3216: 3215: 3210: 3205: 3195: 3194: 3190: 3189: 3151: 3136: 3110: 3063: 3042:10.1086/342655 3018:(2): 775ā€“786. 3002: 2958:(2): 695ā€“703. 2938: 2869: 2808: 2741: 2720:10.1086/521702 2680: 2613: 2572: 2531: 2490: 2459:(1): L59ā€“L63. 2437: 2378: 2363: 2349:Merritt, David 2337: 2268: 2204: 2138: 2077: 2008: 2001: 1983: 1929: 1924:10.1086/108790 1889: 1843:(in Russian). 1825: 1764: 1749: 1715: 1713: 1710: 1674: 1671: 1650: 1647: 1643:HD 80606/80607 1627:tidal friction 1622: 1619: 1561: 1560: 1553: 1550: 1547: 1512: 1509: 1507: 1504: 1445: 1444: 1431: 1427: 1423: 1418: 1412: 1407: 1403: 1399: 1396: 1392: 1384: 1377: 1372: 1368: 1360: 1355: 1351: 1347: 1342: 1336: 1331: 1327: 1323: 1320: 1316: 1307: 1303: 1299: 1295: 1287: 1282: 1278: 1264: 1260: 1255: 1246: 1242: 1232: 1229: 1226: 1220: 1217: 1214: 1211: 1208: 1203: 1187: 1184: 1165: 1156: 1152:For values of 1150: 1149: 1135: 1130: 1126: 1122: 1112: 1109: 1101: 1097: 1094: 1091: 1085: 1082: 1079: 1076: 1071: 1053: 1044: 1023:semimajor axis 1016: 1010: 1009: 997: 994: 991: 988: 985: 982: 979: 976: 972: 969: 966: 963: 954: 950: 946: 943: 938: 932: 927: 888:The Keplerian 850: 847: 845: 842: 828: 825: 820: 819: 808: 805: 800: 796: 792: 789: 786: 780: 777: 774: 767: 761: 755: 752: 749: 742: 736: 730: 727: 724: 721: 714: 708: 702: 699: 696: 693: 686: 658: 654: 650: 624: 620: 616: 590: 586: 582: 550: 539: 538: 527: 521: 518: 515: 512: 505: 499: 493: 490: 487: 480: 474: 468: 465: 458: 452: 447: 400:floating point 381: 378: 346: 341: 337: 333: 328: 324: 320: 300: 297: 294: 270: 267: 264: 261: 258: 255: 252: 249: 227: 223: 193: 189: 155: 134:Main article: 131: 128: 126: 123: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3225: 3214: 3211: 3209: 3206: 3204: 3201: 3200: 3198: 3185: 3181: 3177: 3173: 3169: 3165: 3158: 3156: 3152: 3147: 3143: 3139: 3133: 3129: 3125: 3121: 3114: 3111: 3106: 3102: 3098: 3094: 3090: 3086: 3082: 3078: 3074: 3067: 3064: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3031: 3026: 3021: 3017: 3013: 3006: 3003: 2991: 2987: 2983: 2979: 2975: 2971: 2966: 2961: 2957: 2953: 2949: 2942: 2939: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2893: 2888: 2884: 2880: 2873: 2870: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2832: 2827: 2823: 2819: 2812: 2809: 2804: 2800: 2796: 2792: 2787: 2782: 2778: 2774: 2769: 2764: 2760: 2756: 2752: 2745: 2742: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2704: 2699: 2695: 2691: 2684: 2681: 2676: 2672: 2668: 2664: 2659: 2654: 2650: 2646: 2641: 2636: 2632: 2628: 2624: 2617: 2614: 2608: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2573: 2567: 2562: 2558: 2554: 2550: 2546: 2542: 2535: 2532: 2526: 2521: 2517: 2513: 2509: 2505: 2501: 2494: 2491: 2485: 2480: 2476: 2472: 2467: 2462: 2458: 2454: 2453: 2448: 2441: 2438: 2433: 2429: 2424: 2419: 2415: 2411: 2406: 2401: 2397: 2393: 2389: 2382: 2379: 2374: 2370: 2366: 2360: 2356: 2355: 2350: 2344: 2342: 2338: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2292: 2287: 2283: 2279: 2272: 2269: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2231: 2226: 2222: 2218: 2211: 2209: 2205: 2200: 2196: 2191: 2186: 2182: 2178: 2173: 2168: 2164: 2160: 2156: 2149: 2147: 2145: 2143: 2139: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2101: 2096: 2092: 2088: 2081: 2078: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2032: 2027: 2023: 2019: 2012: 2009: 2004: 1998: 1994: 1987: 1984: 1978: 1973: 1969: 1965: 1960: 1955: 1951: 1947: 1943: 1936: 1934: 1930: 1925: 1921: 1917: 1913: 1909: 1905: 1904: 1896: 1894: 1890: 1885: 1876: 1872: 1868: 1864: 1860: 1856: 1855: 1846: 1842: 1834: 1832: 1830: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1788: 1783: 1779: 1775: 1768: 1765: 1760: 1756: 1752: 1746: 1742: 1738: 1734: 1727: 1725: 1723: 1721: 1717: 1711: 1709: 1707: 1704:perturbed by 1703: 1699: 1695: 1690: 1688: 1687:Mikhail Lidov 1684: 1680: 1672: 1670: 1668: 1664: 1660: 1659:star clusters 1656: 1648: 1646: 1644: 1640: 1636: 1632: 1628: 1620: 1618: 1616: 1612: 1608: 1604: 1599: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1568: 1566: 1558: 1554: 1551: 1548: 1545: 1544: 1543: 1540: 1538: 1534: 1530: 1526: 1518: 1510: 1505: 1503: 1501: 1497: 1480: 1478: 1474: 1470: 1429: 1425: 1421: 1416: 1410: 1405: 1401: 1397: 1394: 1390: 1382: 1375: 1370: 1366: 1358: 1353: 1349: 1345: 1340: 1334: 1329: 1325: 1321: 1318: 1314: 1305: 1301: 1297: 1293: 1285: 1280: 1276: 1262: 1258: 1253: 1244: 1240: 1230: 1227: 1224: 1201: 1193: 1192: 1191: 1185: 1183: 1128: 1124: 1120: 1110: 1107: 1099: 1095: 1092: 1089: 1069: 1061: 1060: 1059: 1038: 1036: 1032: 1028: 1024: 970: 967: 964: 961: 952: 948: 944: 941: 936: 925: 917: 916: 915: 910: 903: 899: 891: 886: 882: 880: 876: 872: 868: 864: 860: 859:test particle 856: 848: 843: 841: 839: 834: 826: 824: 806: 798: 794: 787: 784: 759: 734: 706: 674: 673: 672: 656: 652: 648: 640: 622: 618: 614: 606: 588: 584: 580: 572: 568: 564: 548: 525: 497: 472: 450: 436: 435: 434: 432: 428: 424: 420: 416: 411: 409: 405: 401: 397: 391: 387: 379: 377: 375: 371: 367: 362: 360: 339: 335: 331: 326: 322: 298: 295: 292: 268: 265: 262: 259: 256: 253: 250: 247: 225: 221: 213: 209: 191: 187: 179: 175: 171: 143: 137: 129: 124: 122: 120: 116: 113:perturbed by 112: 108: 104: 103:Mikhail Lidov 100: 96: 92: 88: 84: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:binary system 37: 33: 19: 3167: 3163: 3119: 3113: 3080: 3076: 3066: 3015: 3011: 3005: 2993:. Retrieved 2955: 2951: 2941: 2882: 2878: 2872: 2821: 2817: 2811: 2758: 2754: 2744: 2693: 2689: 2683: 2630: 2626: 2616: 2589: 2585: 2575: 2548: 2544: 2534: 2507: 2503: 2493: 2456: 2450: 2440: 2395: 2391: 2381: 2353: 2281: 2277: 2271: 2220: 2216: 2162: 2158: 2090: 2086: 2080: 2021: 2017: 2011: 1992: 1986: 1949: 1945: 1907: 1901: 1883: 1858: 1852: 1844: 1840: 1777: 1773: 1767: 1732: 1693: 1691: 1682: 1676: 1652: 1633:, which are 1631:Hot Jupiters 1624: 1610: 1600: 1569: 1562: 1541: 1514: 1511:Solar System 1481: 1446: 1189: 1151: 1039: 1033:) to become 1011: 902:eccentricity 895: 862: 854: 852: 837: 832: 830: 821: 639:hexadecapole 638: 604: 570: 540: 423:outer binary 422: 419:inner binary 418: 415:hierarchical 414: 412: 393: 373: 363: 144:and denoted 141: 139: 80: 71: 64:eccentricity 51: 47: 43: 35: 29: 1655:black holes 1649:Black holes 1586:, Uranus's 1578:, Saturn's 1565:Planet Nine 1557:Hill sphere 909:inclination 838:secularised 174:phase space 142:Hamiltonian 68:inclination 3197:Categories 2995:7 February 2640:1606.04180 2592:(4): 135. 2510:(4): 147. 2405:1609.05912 2230:1601.07175 2031:1508.02312 1959:1911.03984 1712:References 1639:HD 80606 b 1615:oblateness 1500:separatrix 1035:sungrazing 571:quadrupole 281:, for the 210:and their 125:Background 3184:0038-5301 3146:2509-310X 3105:0004-6337 3050:0004-637X 2965:0906.5605 2917:0028-0836 2892:1011.2501 2864:118625109 2856:0004-637X 2831:1106.3329 2795:0035-8711 2768:0812.4528 2728:0004-637X 2703:0705.4285 2667:1538-3881 2466:1406.0715 2432:1365-2966 2373:863632625 2316:0031-9007 2291:1106.3340 2263:119214240 2255:0066-4146 2199:1365-2966 2172:1107.2414 2133:118866046 2125:1538-4357 2100:1405.0494 2056:0034-4885 1820:119298013 1812:0002-9505 1787:1309.5244 1759:0067-0057 1702:asteroids 1657:in dense 1635:gas giant 1398:− 1322:− 1231:π 1186:Timescale 1125:≈ 1096:⁡ 1027:periapsis 965:⁡ 945:− 855:secondary 795:α 653:α 649:∝ 619:α 615:∝ 585:α 581:∝ 567:converges 549:α 111:asteroids 3058:14120610 2990:55219971 2925:21562558 2803:18302413 2736:12159532 2675:55672308 2351:(2013). 2332:18317896 2324:22107620 2072:38140668 2064:24913140 1588:Margaret 1529:periapse 605:octupole 431:coupling 3172:Bibcode 3170:: 440. 3085:Bibcode 3030:Bibcode 2970:Bibcode 2933:4424942 2897:Bibcode 2836:Bibcode 2773:Bibcode 2708:Bibcode 2645:Bibcode 2594:Bibcode 2553:Bibcode 2512:Bibcode 2471:Bibcode 2410:Bibcode 2296:Bibcode 2235:Bibcode 2177:Bibcode 2105:Bibcode 2036:Bibcode 1964:Bibcode 1912:Bibcode 1910:: 591. 1863:Bibcode 1847:: 5ā€“45. 1792:Bibcode 1706:Jupiter 1641:in the 1576:Euporie 1537:Neptune 1525:librate 1031:Jupiter 879:Jupiter 873:, or a 863:primary 857:, is a 833:secular 115:Jupiter 3182:  3144:  3134:  3103:  3056:  3048:  2988:  2931:  2923:  2915:  2879:Nature 2862:  2854:  2801:  2793:  2734:  2726:  2673:  2665:  2430:  2371:  2361:  2330:  2322:  2314:  2261:  2253:  2197:  2131:  2123:  2070:  2062:  2054:  1999:  1818:  1810:  1757:  1747:  1611:et al. 1603:Luna 3 1584:Ijiraq 1580:Kiviuq 1447:where 1093:arccos 637:) and 368:. The 240:, for 93:, and 34:, the 3054:S2CID 3020:arXiv 2986:S2CID 2960:arXiv 2929:S2CID 2887:arXiv 2860:S2CID 2826:arXiv 2799:S2CID 2763:arXiv 2732:S2CID 2698:arXiv 2671:S2CID 2635:arXiv 2461:arXiv 2400:arXiv 2328:S2CID 2286:arXiv 2259:S2CID 2225:arXiv 2167:arXiv 2129:S2CID 2095:arXiv 2068:S2CID 2026:arXiv 1954:arXiv 1816:S2CID 1782:arXiv 1572:Carpo 1533:Pluto 1523:) to 168:, of 3180:ISSN 3142:ISSN 3132:ISBN 3101:ISSN 3046:ISSN 2997:2013 2921:PMID 2913:ISSN 2852:ISSN 2791:ISSN 2724:ISSN 2663:ISSN 2428:ISSN 2369:OCLC 2359:ISBN 2320:PMID 2312:ISSN 2251:ISSN 2195:ISSN 2121:ISSN 2060:PMID 2052:ISSN 1997:ISBN 1808:ISSN 1755:ISSN 1745:ISBN 1596:Neso 1594:and 1582:and 1574:and 1469:Moon 1129:39.2 907:and 871:Moon 388:and 72:flip 66:and 3124:doi 3093:doi 3081:183 3038:doi 3016:578 2978:doi 2956:502 2905:doi 2883:473 2844:doi 2822:742 2781:doi 2759:394 2716:doi 2694:669 2653:doi 2631:152 2602:doi 2590:141 2561:doi 2549:137 2520:doi 2508:153 2479:doi 2457:443 2418:doi 2396:466 2304:doi 2282:107 2243:doi 2185:doi 2163:431 2113:doi 2091:791 2044:doi 1972:doi 1920:doi 1871:doi 1800:doi 1737:doi 1592:Sao 1174:or 962:cos 603:), 206:in 172:in 58:to 30:In 3199:: 3178:. 3166:. 3154:^ 3140:. 3130:. 3099:. 3091:. 3079:. 3075:. 3052:. 3044:. 3036:. 3028:. 3014:. 2984:. 2976:. 2968:. 2954:. 2950:. 2927:. 2919:. 2911:. 2903:. 2895:. 2881:. 2858:. 2850:. 2842:. 2834:. 2820:. 2797:. 2789:. 2779:. 2771:. 2757:. 2753:. 2730:. 2722:. 2714:. 2706:. 2692:. 2669:. 2661:. 2651:. 2643:. 2629:. 2625:. 2600:. 2588:. 2584:. 2559:. 2547:. 2543:. 2518:. 2506:. 2502:. 2477:. 2469:. 2455:. 2449:. 2426:. 2416:. 2408:. 2394:. 2390:. 2367:. 2340:^ 2326:. 2318:. 2310:. 2302:. 2294:. 2280:. 2257:. 2249:. 2241:. 2233:. 2221:54 2219:. 2207:^ 2193:. 2183:. 2175:. 2161:. 2157:. 2141:^ 2127:. 2119:. 2111:. 2103:. 2089:. 2066:. 2058:. 2050:. 2042:. 2034:. 2022:77 2020:. 1970:. 1962:. 1948:. 1944:. 1932:^ 1918:. 1908:67 1906:. 1892:^ 1869:. 1857:. 1828:^ 1814:. 1806:. 1798:. 1790:. 1778:82 1776:. 1753:. 1743:. 1719:^ 1669:. 1617:. 1598:. 1539:. 1490:, 1486:, 1037:. 881:. 361:. 89:, 78:. 50:, 46:, 3186:. 3174:: 3168:6 3148:. 3126:: 3107:. 3095:: 3087:: 3060:. 3040:: 3032:: 3022:: 2999:. 2980:: 2972:: 2962:: 2935:. 2907:: 2899:: 2889:: 2866:. 2846:: 2838:: 2828:: 2805:. 2783:: 2775:: 2765:: 2738:. 2718:: 2710:: 2700:: 2677:. 2655:: 2647:: 2637:: 2610:. 2604:: 2596:: 2569:. 2563:: 2555:: 2528:. 2522:: 2514:: 2487:. 2481:: 2473:: 2463:: 2434:. 2420:: 2412:: 2402:: 2375:. 2334:. 2306:: 2298:: 2288:: 2265:. 2245:: 2237:: 2227:: 2201:. 2187:: 2179:: 2169:: 2135:. 2115:: 2107:: 2097:: 2074:. 2046:: 2038:: 2028:: 2005:. 1980:. 1974:: 1966:: 1956:: 1950:7 1926:. 1922:: 1914:: 1877:. 1873:: 1865:: 1859:9 1845:8 1822:. 1802:: 1794:: 1784:: 1761:. 1739:: 1521:Ļ‰ 1519:( 1492:Ļ‰ 1488:i 1484:e 1465:M 1461:m 1457:e 1453:P 1449:a 1430:2 1426:/ 1422:3 1417:) 1411:2 1406:2 1402:e 1395:1 1391:( 1383:P 1376:2 1371:2 1367:P 1359:= 1354:2 1350:/ 1346:3 1341:) 1335:2 1330:2 1326:e 1319:1 1315:( 1306:2 1302:/ 1298:3 1294:a 1286:3 1281:2 1277:a 1263:2 1259:m 1254:G 1245:M 1241:G 1228:2 1225:= 1219:i 1216:a 1213:z 1210:o 1207:K 1202:T 1180:i 1176:i 1172:e 1167:z 1163:L 1158:z 1154:L 1134:o 1121:) 1111:5 1108:3 1100:( 1090:= 1084:t 1081:i 1078:r 1075:c 1070:i 1055:z 1051:L 1046:z 1042:L 1018:z 1014:L 996:t 993:n 990:a 987:t 984:s 981:n 978:o 975:c 971:= 968:i 953:2 949:e 942:1 937:= 931:z 926:L 912:i 905:e 892:. 807:. 804:) 799:5 791:( 788:O 785:+ 779:x 776:e 773:h 766:H 760:+ 754:t 751:c 748:o 741:H 735:+ 729:d 726:a 723:u 720:q 713:H 707:= 701:t 698:r 695:e 692:p 685:H 657:4 641:( 623:3 607:( 589:2 573:( 526:. 520:t 517:r 514:e 511:p 504:H 498:+ 492:t 489:u 486:o 479:H 473:+ 467:n 464:i 457:H 451:= 446:H 345:) 340:k 336:p 332:, 327:k 323:x 319:( 299:3 296:= 293:N 283:N 269:N 266:. 263:. 260:. 257:, 254:1 251:= 248:k 226:k 222:p 192:k 188:x 154:H 20:)

Index

Kozai-Lidov mechanism
celestial mechanics
binary system
argument of pericenter
oscillate about a constant value
eccentricity
inclination
prograde and a retrograde motion
irregular satellites
trans-Neptunian objects
extrasolar planets
multiple star systems
black hole mergers
Mikhail Lidov
Yoshihide Kozai
asteroids
Jupiter
Edvard Hugo von Zeipel
Hamiltonian mechanics
canonical coordinates
phase space
generalized coordinates
configuration space
conjugate momenta
degrees of freedom
canonical transformation
equations of motion
Three-body problem
Perturbation theory
enormously sensitive to any slight changes in the initial conditions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘