Knowledge

Lubell–Yamamoto–Meshalkin inequality

Source 📝

432: 192: 522: 51:. It is named for the initials of three of its discoverers. To include the initials of all four discoverers, it is sometimes referred to as the 299: 119: 206: 589: 443: 293:
then one would be a subset of the other. Therefore, the number of permutations that can be generated by this procedure is
546: 708: 693: 622:
Meshalkin, L. D. (1963), "Generalization of Sperner's theorem on the number of subsets of a finite set",
703: 698: 63: 541: 573: 662: 631: 598: 555: 229:! of them. But secondly, one can generate a permutation (i.e., an order) of the elements of 62:
of sets, and has many applications in combinatorics. In particular, it can be used to prove
676: 643: 612: 569: 672: 639: 608: 565: 32: 603: 687: 577: 59: 17: 210: 20: 667: 653:
Yamamoto, Koichi (1954), "Logarithmic order of free distributive lattice",
427:{\displaystyle \sum _{S\in A}|S|!(n-|S|)!=\sum _{k=0}^{n}a_{k}k!(n-k)!.} 560: 635: 437:
Since this number is at most the total number of all permutations,
187:{\displaystyle \sum _{k=0}^{n}{\frac {a_{k}}{n \choose k}}\leq 1.} 285:. Each permutation may only be associated with a single set in 217:
in two different ways. First, by counting all permutations of
273:)! permutations, and in each of them the image of the first 289:, for if two prefixes of a permutation both formed sets in 587:
Lubell, D. (1966), "A short proof of Sperner's lemma",
446: 302: 205:
proves the Lubell–Yamamoto–Meshalkin inequality by a
122: 517:{\displaystyle \sum _{k=0}^{n}a_{k}k!(n-k)!\leq n!.} 516: 426: 186: 66:. Its name is also used for similar inequalities. 547:Acta Mathematica Academiae Scientiarum Hungaricae 171: 158: 31:, is an inequality on the sizes of sets in a 8: 655:Journal of the Mathematical Society of Japan 624:Theory of Probability and Its Applications 666: 602: 559: 527:Finally dividing the above inequality by 472: 462: 451: 445: 391: 381: 370: 352: 344: 327: 319: 307: 301: 170: 157: 150: 144: 138: 127: 121: 44: 58:This inequality belongs to the field of 48: 36: 241:and choosing a map that sends {1, … , | 202: 40: 225:} directly, one finds that there are 7: 25:Lubell–Yamamoto–Meshalkin inequality 162: 105:denote the number of sets of size 14: 544:(1965), "On generalized graphs", 590:Journal of Combinatorial Theory 261:is associated in this way with 496: 484: 415: 403: 357: 353: 345: 335: 328: 320: 94:is a subset of another set in 1: 604:10.1016/S0021-9800(66)80035-2 27:, more commonly known as the 725: 86:be a family of subsets of 207:double counting argument 70:Statement of the theorem 531:! leads to the result. 221:identified with {1, …, 209:in which he counts the 518: 467: 428: 386: 188: 143: 668:10.2969/jmsj/00630343 519: 447: 429: 366: 197: 189: 123: 444: 300: 120: 90:such that no set in 269: −  233:by selecting a set 561:10.1007/BF01904851 514: 424: 318: 184: 82:-element set, let 303: 176: 169: 64:Sperner's theorem 716: 709:Families of sets 679: 670: 661:(3–4): 343–353, 646: 615: 606: 580: 563: 554:(3–4): 447–452, 523: 521: 520: 515: 477: 476: 466: 461: 433: 431: 430: 425: 396: 395: 385: 380: 356: 348: 331: 323: 317: 193: 191: 190: 185: 177: 175: 174: 161: 155: 154: 145: 142: 137: 45:Meshalkin (1963) 724: 723: 719: 718: 717: 715: 714: 713: 684: 683: 652: 636:10.1137/1108023 621: 586: 540: 537: 468: 442: 441: 387: 298: 297: 200: 156: 146: 118: 117: 103: 72: 53:YBLM inequality 49:Yamamoto (1954) 37:Bollobás (1965) 12: 11: 5: 722: 720: 712: 711: 706: 701: 696: 686: 685: 682: 681: 649: 648: 630:(2): 203–204, 618: 617: 583: 582: 536: 533: 525: 524: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 475: 471: 465: 460: 457: 454: 450: 435: 434: 423: 420: 417: 414: 411: 408: 405: 402: 399: 394: 390: 384: 379: 376: 373: 369: 365: 362: 359: 355: 351: 347: 343: 340: 337: 334: 330: 326: 322: 316: 313: 310: 306: 253:| =  199: 198:Lubell's proof 196: 195: 194: 183: 180: 173: 168: 165: 160: 153: 149: 141: 136: 133: 130: 126: 101: 71: 68: 33:Sperner family 29:LYM inequality 13: 10: 9: 6: 4: 3: 2: 721: 710: 707: 705: 702: 700: 697: 695: 694:Combinatorics 692: 691: 689: 678: 674: 669: 664: 660: 656: 651: 650: 645: 641: 637: 633: 629: 625: 620: 619: 614: 610: 605: 600: 596: 592: 591: 585: 584: 579: 575: 571: 567: 562: 557: 553: 549: 548: 543: 539: 538: 534: 532: 530: 511: 508: 505: 502: 499: 493: 490: 487: 481: 478: 473: 469: 463: 458: 455: 452: 448: 440: 439: 438: 421: 418: 412: 409: 406: 400: 397: 392: 388: 382: 377: 374: 371: 367: 363: 360: 349: 341: 338: 332: 324: 314: 311: 308: 304: 296: 295: 294: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 203:Lubell (1966) 181: 178: 166: 163: 151: 147: 139: 134: 131: 128: 124: 116: 115: 114: 112: 108: 104: 97: 93: 89: 85: 81: 77: 69: 67: 65: 61: 60:combinatorics 56: 54: 50: 46: 42: 41:Lubell (1966) 38: 34: 30: 26: 22: 19: 18:combinatorial 704:Order theory 699:Inequalities 658: 654: 627: 623: 594: 588: 551: 545: 542:Bollobás, B. 528: 526: 436: 290: 286: 282: 278: 277:elements of 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 211:permutations 201: 110: 106: 99: 95: 91: 87: 83: 79: 75: 73: 57: 52: 35:, proved by 28: 24: 15: 281:is exactly 21:mathematics 688:Categories 597:(2): 299, 535:References 257:, the set 98:, and let 578:122892253 503:≤ 491:− 449:∑ 410:− 368:∑ 342:− 312:∈ 305:∑ 179:≤ 125:∑ 677:0067086 644:0150049 613:0194348 570:0183653 245:| } to 113:. Then 47:, and 675:  642:  611:  576:  568:  249:. If | 78:be an 23:, the 574:S2CID 74:Let 663:doi 632:doi 599:doi 556:doi 237:in 213:of 109:in 16:In 690:: 673:MR 671:, 657:, 640:MR 638:, 626:, 609:MR 607:, 593:, 572:, 566:MR 564:, 552:16 550:, 265:!( 182:1. 55:. 43:, 39:, 680:. 665:: 659:6 647:. 634:: 628:8 616:. 601:: 595:1 581:. 558:: 529:n 512:. 509:! 506:n 500:! 497:) 494:k 488:n 485:( 482:! 479:k 474:k 470:a 464:n 459:0 456:= 453:k 422:. 419:! 416:) 413:k 407:n 404:( 401:! 398:k 393:k 389:a 383:n 378:0 375:= 372:k 364:= 361:! 358:) 354:| 350:S 346:| 339:n 336:( 333:! 329:| 325:S 321:| 315:A 309:S 291:A 287:A 283:S 279:U 275:k 271:k 267:n 263:k 259:S 255:k 251:S 247:S 243:S 239:A 235:S 231:U 227:n 223:n 219:U 215:U 172:) 167:k 164:n 159:( 152:k 148:a 140:n 135:0 132:= 129:k 111:A 107:k 102:k 100:a 96:A 92:A 88:U 84:A 80:n 76:U

Index

combinatorial
mathematics
Sperner family
Bollobás (1965)
Lubell (1966)
Meshalkin (1963)
Yamamoto (1954)
combinatorics
Sperner's theorem
Lubell (1966)
double counting argument
permutations
Bollobás, B.
Acta Mathematica Academiae Scientiarum Hungaricae
doi
10.1007/BF01904851
MR
0183653
S2CID
122892253
Journal of Combinatorial Theory
doi
10.1016/S0021-9800(66)80035-2
MR
0194348
doi
10.1137/1108023
MR
0150049
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.