Knowledge (XXG)

Lunar orbit

Source 📝

355: 321: 399: 305: 410: 440: 27: 282: 1884: 681:
correct the orbit, most satellites released into low lunar orbits (under about 60 miles or 100 km) will eventually crash into the Moon. ... a number of 'frozen orbits' where a spacecraft can stay in a low lunar orbit indefinitely. They occur at four inclinations: 27°, 50°, 76°, and 86° — the last one being nearly over the lunar poles. The orbit of the relatively long-lived
168:) beneath the lunar surface caused by large impacting bodies at some remote time in the past. These anomalies are large enough to cause a lunar orbit to change significantly over the course of several days. They can cause a plumb bob to hang about a third of a degree off vertical, pointing toward the mascon, and increase the force of gravity by one-half percent. The 544:(LM) landed. The combined CSM/LM would first enter an elliptical orbit, nominally 170 nautical miles (310 km; 200 mi) by 60 nautical miles (110 km; 69 mi), which was then changed to a circular parking orbit of about 60 nautical miles (110 km; 69 mi). Orbital periods vary according to the sum of 519:
of 102.1 nautical miles (189.1 km; 117.5 mi). Then the orbit was circularized at around 170 nautical miles (310 km; 200 mi) to obtain suitable imagery. Five such spacecraft were launched over a period of thirteen months, all of which successfully mapped the Moon, primarily for the
172:
first manned landing mission employed the first attempt to correct for the perturbation effect (the frozen orbits were not known at that time). The parking orbit was "circularized" at 66 nautical miles (122 km; 76 mi) by 54 nautical miles (100 km; 62 mi), which was expected to
680:
Lunar mascons make most low lunar orbits unstable ... As a satellite passes 50 or 60 miles overhead, the mascons pull it forward, back, left, right, or down, the exact direction and magnitude of the tugging depends on the satellite's trajectory. Absent any periodic boosts from onboard rockets to
177:
with the CSM. But the effect was overestimated by a factor of two; at rendezvous, the orbit was calculated to be 63.2 nautical miles (117.0 km; 72.7 mi) by 56.8 nautical miles (105.2 km; 65.4 mi).
218:, and successfully completed its mission after one and a half years. PFS-2 was placed in a particularly unstable orbital inclination of 11°, and lasted only 35 days in orbit before crashing into the lunar surface. 930: 245:
extends to a radius of 60,000 km (37,000 mi), the gravity of Earth intervenes enough to make lunar orbits unstable at a distance of 690 km (430 mi).
689:
had an inclination of 28°, which turned out to be close to the inclination of one of the frozen orbits—but poor PFS-2 was cursed with an inclination of only 11°.
926: 702:
Konopliv, A. S.; Asmar, S. W.; Carranza, E.; Sjogren, W. L.; Yuan, D. N. (2001-03-01). "Recent Gravity Models as a Result of the Lunar Prospector Mission".
876: 767: 983: 467:, on January 4, 1959. It passed within 6,000 kilometres (3,200 nmi; 3,700 mi) of the Moon's surface, but did not achieve lunar orbit. 354: 1761: 634: 344: 1821: 1042: 413: 429: 125:) is an orbit below 100 km (62 mi) altitude. These have a period of about 2 hours. They are of particular interest in the 552:, and for the CSM were about two hours. The LM began its landing sequence with a Descent Orbit Insertion (DOI) burn to lower their 1816: 1696: 1115: 1781: 1535: 1854: 1493: 1484: 1221: 161: 564:
to save more of the LM fuel for its powered descent, by using the CSM's fuel to perform the DOI burn, and later raising its
560:
reaching heights of 20,000 feet (6.1 km; 3.3 nmi). After the second landing mission, the procedure was changed on
557: 537: 211: 950: 1801: 1271: 369: 359: 1016: 1746: 597: 309: 294: 226:
For lunar orbits with altitudes in the 500 to 20,000 km (300 to 12,000 mi) range, the gravity of Earth leads to orbit
901: 500:, was launched on August 24, 1966, and studied lunar gravitational anomalies, radiation and solar wind measurements. 1908: 1726: 1553: 320: 1864: 954: 798: 1849: 1374: 816:
The moon's Hill sphere has a radius of 60,000 kilometres, about one-sixth of the distance between it and Earth.
592: 256: 227: 130: 398: 663: 1859: 1167: 463:
sent the first spacecraft to the vicinity of the Moon (or any extraterrestrial object), the robotic vehicle
275: 126: 1721: 1323: 1243: 1231: 475: 472: 1844: 1786: 1756: 1544: 1421: 1389: 1359: 1318: 1303: 1182: 482:
and returned to the Earth. This craft provided the first pictures of the far side of the Lunar surface.
334: 248: 304: 160:
Gravitational anomalies slightly distorting the orbits of some Lunar Orbiters led to the discovery of
1869: 1691: 1475: 1364: 1333: 1261: 1236: 1211: 1172: 1153: 1108: 991: 711: 479: 271: 259:, using two oppositional Lagrange points (L1 and L2), flying from one to the other around the Moon. 173:
become the nominal circular 60 nautical miles (110 km; 69 mi) when the LM made its return
1731: 1526: 1266: 541: 444: 417: 348: 215: 191: 409: 1404: 1293: 1191: 819:
For mean distance and mass data for the bodies (for verification of the foregoing citation), see
235: 822: 439: 26: 1771: 1669: 1599: 1354: 1308: 1226: 1050: 727: 630: 587: 20: 1751: 1683: 1447: 1409: 1283: 1253: 1206: 803: 779: 719: 622: 508: 362:
trajectory around Earth. Using a direct transfer, it arrived on moon in four and a half days
174: 850: 1791: 1384: 1288: 1278: 1177: 1101: 745: 504: 448: 338: 281: 267: 194:: 27°, 50°, 76°, and 86°, in which a spacecraft can stay in a low orbit indefinitely. The 112: 1043:"CHAPTER IX: MISSIONS I, II, III: APOLLO SITE SEARCH AND VERIFICATION, The First Launch" 715: 1887: 1839: 1831: 1826: 1711: 1706: 1637: 1617: 1608: 1201: 1187: 1163: 1158: 1133: 984:"APPENDIX C [367-373] RECORD OF UNMANNED LUNAR PROBES, 1958-1968: Soviet Union" 582: 577: 533: 521: 493: 297:, using as well a Lagrange point, have been used and are planned to be employed by the 252: 1902: 1741: 1736: 1655: 1298: 1216: 402: 298: 231: 152: 30: 1072: 266:
around or together with one of the Earth-Moon Lagrange points, as employed by lunar
1806: 1716: 1590: 1573: 1431: 1328: 1196: 460: 187: 139: 98: 278:
satellite placed around Earth-Moon L2 at roughly 65,000 km (40,000 mi).
214:, contributed to this discovery. PFS-1 ended up in a long-lasting orbit, at 28° 186:
Study of the mascons' effect on lunar spacecraft led to the discovery in 2001 of
1811: 1646: 1416: 1313: 1020: 626: 242: 46: 1379: 958: 471:, launched on October 4, 1959, was the first robotic spacecraft to complete a 263: 134: 731: 343:
There are three main ways to get to lunar orbit from Earth: direct transfer,
1796: 1148: 927:"Fifty Years Ago, This Photo Captured the First View of Earth From the Moon" 682: 565: 561: 553: 549: 478:, still not a lunar orbit, but a figure-8 trajectory which swung around the 452: 313: 203: 195: 169: 82: 65:. In general these orbits are not circular. When farthest from the Moon (at 42: 34: 723: 405:'s trajectory included multiple orbit raising maneuvers to get to the Moon 827: 556:
to about 50,000 feet (15 km; 8.2 nmi), chosen to avoid hitting
545: 516: 290: 66: 447:(the Moon), and first picture of both Earth and the Moon from space, by 1701: 1093: 783: 512: 497: 485: 312:) in cislunar space, as illustrated by A.I. Solutions, Inc. using the 496:
flux, and lunar environment until May 30, 1966. A follow-on mission,
468: 464: 1506: 1125: 768:"Stable Constellations of Frozen Elliptical Inclined Lunar Orbits" 686: 438: 408: 397: 353: 319: 303: 280: 207: 199: 58: 25: 902:"45 Years Ago: How the 1st Photo of Earth From the Moon Happened" 752: 489: 62: 1097: 1049:. National Aeronautics and Space Administration. Archived from 990:. National Aeronautics and Space Administration. Archived from 617:
Woods, W.D. (2008). "Entering lunar orbit: the LOI manoeuvre".
285:
An example of a halo orbit at the second lunar lagrange point.
877:"It's International Moon Day! Let's talk about Cislunar Space" 621:. Space Exploration. Springer Praxis Books. pp. 189–210. 515:
of 1,008 nautical miles (1,867 km; 1,160 mi) and a
351:. These take 3–4 days, months or 2.5–4 months respectively. 568:
back to a circular orbit after the LM had made its landing.
503:
The first United States spacecraft to orbit the Moon was
262:
Relatively stable orbits above locations on the Moon are
157:
Most lunar low orbits below 100 km (60 mi) are unstable.
1047:
DESTINATION MOON: A History of the Lunar Orbiter Program
988:
DESTINATION MOON: A History of the Lunar Orbiter Program
492:
and any extraterrestrial body in April 1966. It studied
133:
that make most unstable, and leave only a few orbital
143:. These would be useful for long-term stays in LLO. 1770: 1682: 1626: 1562: 1515: 1455: 1446: 1342: 1252: 1141: 1132: 230:. At altitudes higher than that perturbed two-body 540:(CSM) remained in a lunar parking orbit while the 488:became the first spacecraft to actually orbit the 831:. Greenbelt, MD: NASA Goddard Space Flight Center 210:, both small satellites released from the Apollo 19:For the orbit of the Moon around the Earth, see 1079:. National Aeronautics and Space Administration 658: 656: 654: 652: 650: 648: 646: 1109: 430:List of extraterrestrial orbiters § Moon 255:are options for stable lunar orbits, as with 97:. These derive from names or epithets of the 8: 1019:. Encyclopedia Astronautica. Archived from 507:on August 14, 1966. The first orbit was an 1883: 1452: 1138: 1116: 1102: 1094: 1010: 1008: 977: 975: 772:The Journal of the Astronautical Sciences 443:First image of Earth from around another 875:The Aerospace Corporation (2023-07-20). 274:, the first of such kind being the 2019 944: 942: 940: 821:Williams, David R. (20 December 2021). 609: 1762:Transposition, docking, and extraction 115:maneuver used to achieve lunar orbit. 933:from the original on August 25, 2016. 7: 451:(not to be confused with the later 147:Perturbation effects and low orbits 424:History of missions to lunar orbit 16:Orbit of an object around the Moon 14: 1822:Kepler's laws of planetary motion 900:Stein, Ben P. (August 23, 2011). 851:"A New Paradigm for Lunar Orbits" 324:Overview of NRHOs around the Moon 1882: 1817:Interplanetary Transport Network 1697:Collision avoidance (spacecraft) 797:Follows, Mike (4 October 2017). 129:, but suffer from gravitational 69:) a spacecraft is said to be at 37:above the Moon in December 2022. 1782:Astronomical coordinate systems 1536:Longitude of the ascending node 1077:Apollo 11 Lunar Surface Journal 81:. When closest to the Moon (at 1855:Retrograde and prograde motion 1041:Byers, Bruce K. (1976-12-14). 982:Byers, Bruce K. (1976-12-14). 1: 1071:Jones, Eric M. (1976-12-14). 308:Near-rectilinear halo orbit ( 1802:Equatorial coordinate system 520:purpose of finding suitable 370:Lunar Reconnaissance Orbiter 295:near-rectilinear halo orbits 234:models are insufficient and 61:by an object around Earth's 627:10.1007/978-0-387-74066-9_8 619:How Apollo Flew to the Moon 598:Near-rectilinear halo orbit 1925: 1554:Longitude of the periapsis 746:"Apollo 11 Mission Report" 668:NASA Science: Science News 427: 332: 150: 18: 1878: 1865:Specific angular momentum 1073:"The First Lunar Landing" 955:Encyclopedia Astronautica 799:"Ever Decreasing Circles" 528:Crewed and later orbiters 257:distant retrograde orbits 593:Distant retrograde orbit 137:possible for indefinite 1860:Specific orbital energy 766:Ely, Todd (July 2005). 416:'s trajectory included 127:exploration of the Moon 1272:Geostationary transfer 755:. pp. 4–3 to 4–4. 724:10.1006/icar.2000.6573 664:"Bizarre Lunar Orbits" 538:Command/Service Module 476:free return trajectory 456: 420: 406: 395: 325: 317: 286: 85:) it is said to be at 38: 1845:Orbital state vectors 1787:Characteristic energy 1757:Trans-lunar injection 1545:Argument of periapsis 1222:Prograde / Retrograde 1183:Hyperbolic trajectory 442: 428:Further information: 412: 401: 357: 335:Trans-lunar injection 323: 307: 284: 238:models are required. 151:Further information: 105:Lunar orbit insertion 29: 1692:Bi-elliptic transfer 1212:Parabolic trajectory 480:far side of the Moon 272:far side of the Moon 241:Although the Moon's 192:orbital inclinations 1732:Low-energy transfer 929:. August 23, 2016. 716:2001Icar..150....1K 445:astronomical object 418:low energy transfer 349:low-energy transfer 345:low thrust transfer 162:mass concentrations 55:selenocentric orbit 1727:Inclination change 1375:Distant retrograde 1023:on August 21, 2002 784:10.1007/BF03546355 670:. NASA. 2006-11-06 457: 421: 407: 396: 326: 318: 287: 190:occurring at four 39: 1909:Orbit of the Moon 1896: 1895: 1870:Two-line elements 1678: 1677: 1600:Eccentric anomaly 1442: 1441: 1309:Orbit of the Moon 1168:Highly elliptical 823:"Moon Fact Sheet" 636:978-0-387-71675-6 588:Orbital mechanics 222:Lunar high orbits 182:Stable low orbits 53:(also known as a 21:Orbit of the Moon 1916: 1886: 1885: 1827:Lagrangian point 1722:Hohmann transfer 1667: 1653: 1644: 1635: 1615: 1606: 1597: 1588: 1584: 1580: 1571: 1551: 1542: 1533: 1524: 1504: 1500: 1491: 1482: 1473: 1453: 1422:Heliosynchronous 1371:Lagrange points 1324:Transatmospheric 1139: 1118: 1111: 1104: 1095: 1088: 1087: 1085: 1084: 1068: 1062: 1061: 1059: 1058: 1038: 1032: 1031: 1029: 1028: 1012: 1003: 1002: 1000: 999: 979: 970: 969: 967: 966: 957:. Archived from 946: 935: 934: 923: 917: 916: 914: 912: 897: 891: 890: 888: 887: 872: 866: 865: 863: 862: 847: 841: 840: 838: 836: 818: 813: 811: 804:NewScientist.com 794: 788: 787: 763: 757: 756: 750: 742: 736: 735: 699: 693: 692: 676: 675: 660: 641: 640: 614: 509:elliptical orbit 394: 392: 383: 381: 372: 367: 329:Orbital transfer 268:relay satellites 1924: 1923: 1919: 1918: 1917: 1915: 1914: 1913: 1899: 1898: 1897: 1892: 1874: 1792:Escape velocity 1773: 1766: 1747:Rocket equation 1674: 1666: 1660: 1651: 1642: 1633: 1622: 1613: 1604: 1595: 1586: 1582: 1578: 1569: 1558: 1549: 1540: 1531: 1522: 1511: 1502: 1498: 1494:Semi-minor axis 1489: 1485:Semi-major axis 1480: 1471: 1465: 1438: 1360:Areosynchronous 1344: 1338: 1319:Sun-synchronous 1304:Near-equatorial 1248: 1128: 1122: 1092: 1091: 1082: 1080: 1070: 1069: 1065: 1056: 1054: 1040: 1039: 1035: 1026: 1024: 1017:"Lunar Orbiter" 1014: 1013: 1006: 997: 995: 981: 980: 973: 964: 962: 948: 947: 938: 925: 924: 920: 910: 908: 899: 898: 894: 885: 883: 874: 873: 869: 860: 858: 849: 848: 844: 834: 832: 820: 809: 807: 796: 795: 791: 765: 764: 760: 748: 744: 743: 739: 701: 700: 696: 673: 671: 662: 661: 644: 637: 616: 615: 611: 606: 574: 558:lunar mountains 530: 524:landing sites. 505:Lunar Orbiter 1 449:Lunar Orbiter 1 437: 432: 426: 390: 389: 379: 378: 365: 364: 363: 341: 339:orbit insertion 333:Main articles: 331: 253:Lagrange points 224: 184: 155: 149: 119:Low lunar orbit 113:orbit insertion 24: 17: 12: 11: 5: 1922: 1920: 1912: 1911: 1901: 1900: 1894: 1893: 1891: 1890: 1888:List of orbits 1879: 1876: 1875: 1873: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1840:Orbit equation 1837: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1778: 1776: 1768: 1767: 1765: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1719: 1714: 1712:Gravity assist 1709: 1707:Delta-v budget 1704: 1699: 1694: 1688: 1686: 1680: 1679: 1676: 1675: 1673: 1672: 1664: 1658: 1649: 1640: 1638:Orbital period 1630: 1628: 1624: 1623: 1621: 1620: 1618:True longitude 1611: 1609:Mean longitude 1602: 1593: 1576: 1566: 1564: 1560: 1559: 1557: 1556: 1547: 1538: 1529: 1519: 1517: 1513: 1512: 1510: 1509: 1496: 1487: 1478: 1468: 1466: 1464: 1463: 1460: 1456: 1450: 1444: 1443: 1440: 1439: 1437: 1436: 1435: 1434: 1426: 1425: 1424: 1419: 1414: 1413: 1412: 1399: 1394: 1393: 1392: 1387: 1382: 1377: 1369: 1368: 1367: 1365:Areostationary 1362: 1357: 1348: 1346: 1340: 1339: 1337: 1336: 1334:Very low Earth 1331: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1276: 1275: 1274: 1269: 1262:Geosynchronous 1258: 1256: 1250: 1249: 1247: 1246: 1244:Transfer orbit 1241: 1240: 1239: 1234: 1224: 1219: 1214: 1209: 1204: 1202:Lagrange point 1199: 1194: 1185: 1180: 1175: 1170: 1161: 1156: 1151: 1145: 1143: 1136: 1130: 1129: 1124:Gravitational 1123: 1121: 1120: 1113: 1106: 1098: 1090: 1089: 1063: 1033: 1004: 971: 936: 918: 892: 867: 842: 789: 778:(3): 301–316. 758: 737: 694: 642: 635: 608: 607: 605: 602: 601: 600: 595: 590: 585: 583:List of orbits 580: 578:Cislunar space 573: 570: 534:Apollo program 529: 526: 522:Apollo program 494:micrometeoroid 436: 435:First orbiters 433: 425: 422: 330: 327: 223: 220: 212:Service Module 183: 180: 148: 145: 15: 13: 10: 9: 6: 4: 3: 2: 1921: 1910: 1907: 1906: 1904: 1889: 1881: 1880: 1877: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1835:-body problem 1834: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1779: 1777: 1775: 1769: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1737:Oberth effect 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1689: 1687: 1685: 1681: 1671: 1663: 1659: 1657: 1656:Orbital speed 1650: 1648: 1641: 1639: 1632: 1631: 1629: 1625: 1619: 1612: 1610: 1603: 1601: 1594: 1592: 1577: 1575: 1568: 1567: 1565: 1561: 1555: 1548: 1546: 1539: 1537: 1530: 1528: 1521: 1520: 1518: 1514: 1508: 1497: 1495: 1488: 1486: 1479: 1477: 1470: 1469: 1467: 1461: 1458: 1457: 1454: 1451: 1449: 1445: 1433: 1430: 1429: 1427: 1423: 1420: 1418: 1415: 1411: 1410:Earth's orbit 1408: 1407: 1406: 1403: 1402: 1400: 1398: 1395: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1372: 1370: 1366: 1363: 1361: 1358: 1356: 1353: 1352: 1350: 1349: 1347: 1341: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1273: 1270: 1268: 1267:Geostationary 1265: 1264: 1263: 1260: 1259: 1257: 1255: 1251: 1245: 1242: 1238: 1235: 1233: 1230: 1229: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1146: 1144: 1140: 1137: 1135: 1131: 1127: 1119: 1114: 1112: 1107: 1105: 1100: 1099: 1096: 1078: 1074: 1067: 1064: 1053:on 2020-09-27 1052: 1048: 1044: 1037: 1034: 1022: 1018: 1011: 1009: 1005: 994:on 2021-01-26 993: 989: 985: 978: 976: 972: 961:on 2012-01-11 960: 956: 952: 945: 943: 941: 937: 932: 928: 922: 919: 907: 903: 896: 893: 882: 878: 871: 868: 856: 852: 846: 843: 830: 829: 824: 817: 806: 805: 800: 793: 790: 785: 781: 777: 773: 769: 762: 759: 754: 747: 741: 738: 733: 729: 725: 721: 717: 713: 709: 705: 698: 695: 691: 690: 688: 685:subsatellite 684: 669: 665: 659: 657: 655: 653: 651: 649: 647: 643: 638: 632: 628: 624: 620: 613: 610: 603: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 575: 571: 569: 567: 563: 559: 555: 551: 547: 543: 539: 535: 527: 525: 523: 518: 514: 510: 506: 501: 499: 495: 491: 487: 483: 481: 477: 474: 470: 466: 462: 454: 450: 446: 441: 434: 431: 423: 419: 415: 411: 404: 403:Chandrayaan-3 400: 387: 376: 371: 361: 358:Animation of 356: 352: 350: 346: 340: 336: 328: 322: 315: 311: 306: 302: 300: 299:Lunar Gateway 296: 292: 283: 279: 277: 273: 269: 265: 260: 258: 254: 250: 249:Orbits around 246: 244: 239: 237: 233: 232:astrodynamics 229: 228:perturbations 221: 219: 217: 213: 209: 206:subsatellite 205: 201: 198:subsatellite 197: 193: 189: 188:frozen orbits 181: 179: 176: 171: 167: 163: 158: 154: 153:Lunar mascons 146: 144: 142: 141: 140:frozen orbits 136: 132: 131:perturbations 128: 124: 120: 116: 114: 110: 106: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 36: 32: 31:Orion capsule 28: 22: 1850:Perturbation 1832: 1807:Ground track 1717:Gravity turn 1668:   1661: 1654:   1645:   1636:   1616:   1607:   1598:   1591:True anomaly 1589:   1574:Mean anomaly 1572:   1552:   1543:   1534:   1525:   1505:   1492:   1483:   1476:Eccentricity 1474:   1432:Lunar cycler 1405:Heliocentric 1396: 1345:other points 1294:Medium Earth 1192:Non-inclined 1081:. Retrieved 1076: 1066: 1055:. Retrieved 1051:the original 1046: 1036: 1025:. Retrieved 1021:the original 1015:Wade, Mark. 996:. Retrieved 992:the original 987: 963:. Retrieved 959:the original 949:Wade, Mark. 921: 909:. Retrieved 905: 895: 884:. Retrieved 880: 870: 859:. Retrieved 857:. 2006-12-01 854: 845: 833:. Retrieved 826: 815: 808:. Retrieved 802: 792: 775: 771: 761: 740: 707: 703: 697: 679: 678: 672:. Retrieved 667: 618: 612: 542:Lunar Module 531: 502: 484: 461:Soviet Union 458: 385: 374: 342: 289:Since 2022 ( 288: 261: 247: 240: 225: 185: 165: 159: 156: 138: 135:trajectories 122: 118: 117: 108: 104: 103: 99:moon goddess 94: 91:pericynthion 90: 86: 78: 74: 70: 54: 50: 40: 1812:Hill sphere 1647:Mean motion 1527:Inclination 1516:Orientation 1417:Mars cycler 1355:Areocentric 1227:Synchronous 710:(1): 1–18. 473:circumlunar 382: Earth 264:halo orbits 251:Earth-Moon 243:Hill sphere 216:inclination 75:apocynthion 51:lunar orbit 47:spaceflight 1752:Rendezvous 1448:Parameters 1284:High Earth 1254:Geocentric 1207:Osculating 1164:Elliptical 1083:2014-11-09 1057:2007-02-17 1027:2007-02-17 998:2007-02-17 965:2007-02-17 911:October 7, 886:2023-11-07 861:2023-11-05 674:2012-12-09 604:References 511:, with an 393: Moon 236:three-body 175:rendezvous 95:periselene 1797:Ephemeris 1774:mechanics 1684:Maneuvers 1627:Variation 1390:Libration 1385:Lissajous 1289:Low Earth 1279:Graveyard 1178:Horseshoe 906:Space.com 732:0019-1035 683:Apollo 15 566:periapsis 562:Apollo 14 554:periapsis 550:periapsis 453:Earthrise 316:software. 314:FreeFlyer 204:Apollo 16 196:Apollo 15 170:Apollo 11 83:periapsis 79:aposelene 43:astronomy 35:Artemis 1 1903:Category 1563:Position 1188:Inclined 1159:Circular 931:Archived 855:Phys.org 828:NASA.gov 572:See also 546:apoapsis 517:perilune 455:image). 291:CAPSTONE 202:and the 164:(dubbed 111:) is an 87:perilune 67:apoapsis 57:) is an 1772:Orbital 1742:Phasing 1702:Delta-v 1507:Apsides 1501:,  1299:Molniya 1217:Parking 1154:Capture 1142:General 835:23 July 810:23 July 712:Bibcode 513:apolune 498:Luna 11 486:Luna 10 276:Queqiao 270:to the 166:mascons 71:apolune 1428:Other 1329:Tundra 1197:Kepler 1173:Escape 1126:orbits 951:"Luna" 881:Medium 730:  704:Icarus 633:  469:Luna 3 465:Luna 1 391:  386:· 384:  380:  375:· 373:  368:  366:  1670:Epoch 1459:Shape 1397:Lunar 1351:Mars 1343:About 1314:Polar 1134:Types 749:(PDF) 687:PFS-1 388: 377: 208:PFS-2 200:PFS-1 93:, or 77:, or 59:orbit 1462:Size 1401:Sun 1380:Halo 1232:semi 913:2020 837:2023 812:2023 753:NASA 728:ISSN 631:ISBN 548:and 532:The 490:Moon 459:The 414:SLIM 347:and 337:and 310:NRHO 63:Moon 49:, a 45:and 1237:sub 1149:Box 780:doi 720:doi 708:150 623:doi 536:'s 360:LRO 123:LLO 109:LOI 41:In 33:of 1905:: 1585:, 1581:, 1190:/ 1166:/ 1075:. 1045:. 1007:^ 986:. 974:^ 953:. 939:^ 904:. 879:. 853:. 825:. 814:. 801:. 776:53 774:. 770:. 751:. 726:. 718:. 706:. 677:. 666:. 645:^ 629:. 301:. 293:) 101:. 89:, 73:, 1833:n 1665:0 1662:t 1652:v 1643:n 1634:T 1614:l 1605:L 1596:E 1587:f 1583:θ 1579:ν 1570:M 1550:ϖ 1541:ω 1532:Ω 1523:i 1503:q 1499:Q 1490:b 1481:a 1472:e 1117:e 1110:t 1103:v 1086:. 1060:. 1030:. 1001:. 968:. 915:. 889:. 864:. 839:. 786:. 782:: 734:. 722:: 714:: 639:. 625:: 121:( 107:( 23:.

Index

Orbit of the Moon

Orion capsule
Artemis 1
astronomy
spaceflight
orbit
Moon
apoapsis
periapsis
moon goddess
orbit insertion
exploration of the Moon
perturbations
trajectories
frozen orbits
Lunar mascons
mass concentrations
Apollo 11
rendezvous
frozen orbits
orbital inclinations
Apollo 15
PFS-1
Apollo 16
PFS-2
Service Module
inclination
perturbations
astrodynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.