Knowledge (XXG)

Space rendezvous

Source 📝

538: 523: 266: 22: 1275: 227:, putting the tracker not only above, but also behind the target. The proper technique requires changing the tracking vehicle's orbit to allow the rendezvous target to either catch up or be caught up with, and then at the correct moment changing to the same orbit as the target with no relative motion between the vehicles (for example, putting the tracker into a lower orbit, which has a shorter orbital period allowing it to catch up, then executing a 1236:
orbital velocity). Now in a slightly higher position, but with an orbital velocity that does not correspond to the local circular velocity, the chaser slightly falls behind the target. Small rocket pulses in the orbital velocity direction are necessary to keep the chaser along the radial vector of the target. If these rocket pulses are not executed (for example due to a thruster failure), the chaser will move away from the target. This is a
784: 3274: 179:' guidance systems inserted the two craft into nearly identical orbits; however, this was not nearly precise enough to achieve rendezvous, as the Vostok lacked maneuvering thrusters to adjust its orbit to match that of its twin. The initial separation distances were in the range of 5 to 6.5 kilometers (3.1 to 4.0 mi), and slowly diverged to thousands of kilometers (over a thousand miles) over the course of the missions. 55: 3244: 1240:. For the R-bar approach, this effect is stronger than for the V-bar approach, making the R-bar approach the safer one of the two. Generally, the R-bar approach from below is preferable, as the chaser is in a lower (faster) orbit than the target, and thus "catches up" with it. For the R-bar approach from above, the chaser is in a higher (slower) orbit than the target, and thus has to wait for the target to approach it. 914: 314: 3179: 1044:(the position of the spacecraft in the orbit) must be matched. For docking, the speed of the two vehicles must also be matched. The "chaser" is placed in a slightly lower orbit than the target. The lower the orbit, the higher the orbital velocity. The difference in orbital velocities of chaser and target is therefore such that the chaser is faster than the target, and catches up with it. 1319: 818: 417: 859: 425: 804: 1786:
Most observers felt that the U.S. moon landing ended the space race with a decisive American victory. The formal end of the space race occurred with the 1975 joint Apollo–Soyuz mission, in which U.S. and Soviet spacecraft docked, or joined, in orbit while their crews visited one another's craft and
1047:
Once the two spacecraft are sufficiently close, the chaser's orbit is synchronized with the target's orbit. That is, the chaser will be accelerated. This increase in velocity carries the chaser to a higher orbit. The increase in velocity is chosen such that the chaser approximately assumes the orbit
289:
Somebody said ... when you come to within three miles (5 km), you've rendezvoused. If anybody thinks they've pulled a rendezvous off at three miles (5 km), have fun! This is when we started doing our work. I don't think rendezvous is over until you are stopped – completely stopped – with no relative
1197:
direction. If this is omitted (for example due to a thruster failure), the chaser will be carried to a higher orbit, which is associated with an orbital velocity lower than the target's. Consequently, the target moves faster than the chaser and the distance between them increases. This is called a
1032:
To properly understand spacecraft rendezvous it is essential to understand the relation between spacecraft velocity and orbit. A spacecraft in a certain orbit cannot arbitrarily alter its velocity. Each orbit correlates to a certain orbital velocity. If the spacecraft fires thrusters and increases
652:
to grapple and move the spacecraft to a berthing port on the US segment. However the updated version of Cargo Dragon will no longer need to berth but instead will autonomously dock directly to the space station. The Russian segment only uses docking ports so it is not possible for HTV, Dragon and
222:
involved in the process. Simply pointing the active vehicle's nose at the target and thrusting was unsuccessful. If the target is ahead in the orbit and the tracking vehicle increases speed, its altitude also increases, actually moving it away from the target. The higher altitude then increases
1235:
to the orbital velocity of the passive spacecraft. When below the target the chaser fires radial thrusters to close in on the target. By this it increases its altitude. However, the orbital velocity of the chaser remains unchanged (thruster firings in the radial direction have no effect on the
1182:
to the flight path along the line of the radius of the orbit (called R-bar, as it is along the radial vector, with respect to Earth, of the target). The chosen method of approach depends on safety, spacecraft / thruster design, mission timeline, and, especially for docking with the ISS, on the
1196:
to the target's orbital velocity. In the V-bar approach from behind, the chaser fires small thrusters to increase its velocity in the direction of the target. This, of course, also drives the chaser to a higher orbit. To keep the chaser on the V-vector, other thrusters are fired in the radial
807:
Orbital rendezvous. 1/ Both spacecraft must be in the same orbital plane. ISS flies in a higher orbit (lower speed), ATV flies in a lower orbit and catches up with ISS. 2/At the moment when the ATV and the ISS make an alpha angle (about 2°), the ATV crosses the elliptical orbit to the
601:
are used at approximately six month intervals to transport crew members to and from ISS. With the introduction of NASA's Commercial Crew Program, the US is able to use their own launch vehicle along with the Soyuz, an updated version of SpaceX's Cargo Dragon; Crew Dragon.
290:
motion between the two vehicles, at a range of approximately 120 feet (37 m). That's rendezvous! From there on, it's stationkeeping. That's when you can go back and play the game of driving a car or driving an airplane or pushing a skateboard – it's about that simple.
1060:
Space rendezvous of an active, or "chaser", spacecraft with an (assumed) passive spacecraft may be divided into several phases, and typically starts with the two spacecraft in separate orbits, typically separated by more than 10,000 kilometers (6,200 mi):
214:'s upper stage. McDivitt was unable to get close enough to achieve station-keeping, due to depth-perception problems, and stage propellant venting which kept moving it around. However, the Gemini 4 attempts at rendezvous were unsuccessful largely because 1823: 1028:
The standard technique for rendezvous and docking is to dock an active vehicle, the "chaser", with a passive "target". This technique has been used successfully for the Gemini, Apollo, Apollo/Soyuz, Salyut, Skylab, Mir, ISS, and Tiangong programs.
298:
was a passing glance—the equivalent of a male walking down a busy main street with plenty of traffic whizzing by and he spots a cute girl walking on the other side. He's going 'Hey wait' but she's gone. That's a passing glance, not a
1191:
The V-bar approach is an approach of the "chaser" horizontally along the passive spacecraft's velocity vector. That is, from behind or from ahead, and in the same direction as the orbital motion of the passive target. The motion is
1033:(or decreases) its velocity it will obtain a different orbit, one that correlates to the higher (or lower) velocity. For circular orbits, higher orbits have a lower orbital velocity. Lower orbits have a higher orbital velocity. 1934: 1819: 1928:"A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission" 559:. The Progress spacecraft were used for re-supplying the station. In this space rendezvous gone wrong, the Progress collided with Mir, beginning a depressurization that was halted by closing the hatch to 1048:
of the target. Stepwise, the chaser closes in on the target, until proximity operations (see below) can be started. In the very final phase, the closure rate is reduced by use of the active vehicle's
775:" (RPODU) for the set of all spaceflight procedures that are typically needed around spacecraft operations where two spacecraft work in proximity to one another with intent to connect to one another. 3215: 749:
rocket / LM inside LM adapter / CSM (in order from bottom to top at launch, also the order from back to front with respect to the current motion), with CSM crewed, LM at this stage uncrewed:
1246:
proposed meeting ISS cargo needs with a vehicle which would approach the station, "using a traditional nadir R-bar approach." The nadir R-bar approach is also used for flights to the ISS of
1860:, page 65, "Since 1985 all Russian spacecraft had used the Kurs computers to dock automatically with the Mir station" ... "All the Russian commanders had to do was sit by and watch." 1348: 3308: 2291: 1681: 877: 1927: 3208: 1967: 1377:– the process of moving an orbiting object from its current position to a desired position, in such a way that no orbiting obstacles are contacted along the way 1996: 3324: 1495: 495:
The first rendezvous of two spacecraft from different countries took place in 1975, when an Apollo spacecraft docked with a Soyuz spacecraft as part of the
3201: 711:
and/or finally bring the satellite to a graveyard orbit, after which the CX-OLEV can possibly be reused for another satellite. Gradual transfer from the
2193: 1875: 1522: 1653: 1599: 1472: 567:
A rendezvous takes place each time a spacecraft brings crew members or supplies to an orbiting space station. The first spacecraft to do this was
470:
in October 1968. Automated systems brought the craft to within 200 meters (660 ft), while Beregovoy brought this closer with manual control.
147:
The same rendezvous technique can be used for spacecraft "landing" on natural objects with a weak gravitational field, e.g. landing on one of the
3056: 738: 2239: 1629: 444:. Gemini 6 was to have been the first docking mission, but had to be cancelled when that mission's Agena vehicle was destroyed during launch. 285:. The spacecraft were not equipped to dock with each other, but maintained station-keeping for more than 20 minutes. Schirra later commented: 3439: 3319: 1767: 3288: 1332: 633: 3116: 2356: 1568: 224: 1773: 3399: 526:
Most rendezvous are for docking, as in this photo of the crews and spaceship models of the historic first time Soviet and US spacecraft
239:
engineer André Meyer later remarked, "There is a good explanation for what went wrong with rendezvous." The crew, like everyone else at
3346: 3224: 772: 411: 141: 1266:
of the passive spacecraft—that is, from the side and out-of-plane of the orbit of the passive spacecraft—is called a Z-bar approach.
2171: 1857: 1849: 1439: 1408: 1015: 997: 931: 895: 845: 831: 787: 397: 331: 2289: 2216: 2238:
Johnson, Michael D.; Fitts, Richard; Howe, Brock; Hall, Baron; Kutter, Bernard; Zegler, Frank; Foster; Mark (September 18, 2007).
1670: 1431: 3377: 3372: 3111: 2991: 2410: 2271: 3076: 2830: 978: 378: 1231:
The R-bar approach consists of the chaser moving below or above the target spacecraft, along its radial vector. The motion is
3149: 2788: 2779: 2516: 950: 935: 350: 335: 1800: 1445: 151:
would require the same matching of orbital velocities, followed by a "descent" that shares some similarities with docking.
3256: 1963: 673: 2029: 3096: 2566: 1905: 1542: 1337: 1178:
are in-line with the flight path of the spacecraft (called V-bar, as it is along the velocity vector of the target) and
957: 712: 357: 3434: 3041: 1374: 1212: 594: 48: 2308: 1219:, extends along a line directly ahead of the station. Shuttles approach the ISS along the V-bar when docking at the 3429: 3262: 3021: 2848: 1989: 1220: 699:
Possible future rendezvous may be made by a yet to be developed automated Hubble Robotic Vehicle (HRV), and by the
625: 1502: 964: 924: 364: 324: 3419: 3303: 3298: 3159: 1343: 1037: 629: 3314: 3293: 3144: 2669: 704: 689: 240: 132:
and approach to a very close distance (e.g. within visual contact). Rendezvous requires a precise match of the
946: 346: 3154: 2462: 2197: 1049: 482: 137: 65: 42: 1519: 3424: 3016: 2618: 2538: 2526: 1871: 1358: 1052:. Docking typically occurs at a rate of 0.1 ft/s (0.030 m/s) to 0.2 ft/s (0.061 m/s). 708: 677: 657: 628:
also used this system to dock with the Russian segment of the ISS. Several uncrewed spacecraft use NASA's
522: 228: 32: 1723: 1650: 656:
Space rendezvous has been used for a variety of other purposes, including recent service missions to the
3139: 3081: 3051: 2839: 2716: 2684: 2654: 2613: 2598: 2477: 2307:
Bessel, James A.; Ceney, James M.; Crean, David M.; Ingham, Edward A.; Pabst, David J. (December 1993).
1591: 1468: 1363: 1247: 1243: 1216: 1156: 837: 742: 637: 621: 537: 265: 247:
involved. As a result, we all got a whole lot smarter and really perfected rendezvous maneuvers, which
2373: 2366: 21: 3164: 2986: 2770: 2659: 2628: 2556: 2531: 2506: 2467: 2448: 2403: 2316: 2131: 2044: 1175: 768: 720: 716: 441: 2168:
originally presented at COLLOQUE: MECANIQUE SPATIALE (SPACE DYNAMICS) TOULOUSE, FRANCE NOVEMBER 1989
1262:
An approach of the active, or "chaser", spacecraft horizontally from the side and orthogonal to the
726:
Alternatively the two spacecraft are already together, and just undock and dock in a different way:
3341: 3329: 3026: 2821: 2561: 2250: 1353: 794: 669: 645: 613: 552: 28: 2699: 2588: 2486: 2267:
Rendezvous Strategy of the Japanese Logistics Support Vehicle to the International Space Station,
2060: 1749: 1324: 605: 58: 294:
Schirra used another metaphor to describe the difference between the two nations' achievements:
2353: 1560: 3066: 2964: 2894: 2649: 2603: 2521: 1853: 1845: 1763: 1759: 1753: 1435: 1404: 1285:
and Apollo 2 lander in the background, in a first ever visit of an independent mission beyond
971: 734: 576: 371: 244: 219: 191: 144:, procedures which bring the spacecraft into physical contact and create a link between them. 1621: 700: 648:
spacecraft all maneuver to a close rendezvous and maintain station-keeping, allowing the ISS
496: 2978: 2742: 2704: 2578: 2548: 2501: 2139: 2097: 2052: 1368: 1274: 1263: 1163: 693: 609: 598: 459: 160: 133: 117: 84: 3086: 2679: 2583: 2573: 2472: 2396: 2360: 2295: 2275: 2105: 2039:. Space Systems Technology and Operations Conference, Orlando Florida, April 21–25, 2003. 1657: 1526: 1300: 1286: 783: 2348: 2163: 3273: 2382: 2320: 2212: 2135: 2048: 3243: 3182: 3134: 3126: 3121: 3006: 3001: 2932: 2912: 2903: 2496: 2482: 2458: 2453: 2428: 661: 437: 248: 236: 176: 54: 3413: 3336: 3193: 3036: 3031: 2950: 2593: 2511: 2377: 2313:
Air Force Institute of Technology, Wright-Patterson AFB, Ohio – School of Engineering
2269: 1380: 1296: 1251: 1208: 1041: 641: 274: 148: 125: 37: 2064: 2028:
Wertz, James R.; Bell, Robert (2003). Tchoryk, Jr., Peter; Shoemaker, James (eds.).
492:
achieved the first internal transfer of crew members between two docked spacecraft.
3101: 3011: 2885: 2868: 2726: 2623: 2491: 1990:"TRACK AND CAPTURE OF THE ORBITER WITH THE SPACE STATION REMOTE MANIPULATOR SYSTEM" 527: 211: 203: 164: 16:
Series of orbital maneuvers to bring two spacecraft into the vicinity of each other
2240:"Astrotech Research & Conventional Technology Utilization Spacecraft (ARCTUS)" 2349:
Analysis of a New Nonlinear Solution of Relative Orbital Motion by T. Alan Lovell
1804: 1546: 1425: 752:
the CSM separated, while the four upper panels of the LM adapter were disposed of
3106: 2941: 2711: 2691: 2608: 2144: 2119: 913: 685: 556: 313: 183: 1698: 202:
NASA's first attempt at rendezvous was made on June 3, 1965, when US astronaut
3382: 2674: 2068: 1314: 1304: 1282: 1232: 1179: 531: 452: 448: 167:
launched pairs of spacecraft from the same launch pad, one or two days apart (
136:
of the two spacecraft, allowing them to remain at a constant distance through
121: 1897: 758:
the CSM connected to the LM while that was still connected to the third stage
3367: 3091: 2443: 2108:, it is the maximum Earth central angle from the altitude of the spacecraft. 1292: 1278: 1193: 649: 481:
docked, collecting the two crew members of Soyuz 5, which had to perform an
424: 278: 25: 1820:"Space Station Launch Delays Will Have Little Impact on Overall Operations" 1427:
The Rocket Men: Vostok & Voskhod, The First Soviet Manned Spaceflights
416: 3362: 2324: 1160: 746: 572: 568: 511: 507: 503: 489: 433: 282: 207: 172: 168: 755:
the CSM turned 180 degrees (from engine backward, toward LM, to forward)
432:
The first docking of two spacecraft was achieved on March 16, 1966 when
2996: 2388: 2101: 2030:"Autonomous Rendezvous and Docking Technologies – Status and Prospects" 1204: 938: in this section. Unsourced material may be challenged and removed. 730:
Soyuz spacecraft from one docking point to another on the ISS or Salyut
478: 474: 467: 463: 338: in this section. Unsourced material may be challenged and removed. 2056: 473:
The first successful crewed docking occurred on January 16, 1969 when
447:
The Soviets carried out the first automated, uncrewed docking between
1036:
For orbital rendezvous to occur, both spacecraft must be in the same
681: 584: 580: 547: 803: 2801: 2420: 1844:
Bryan Burrough, Dragonfly: NASA and the crisis aboard Mir, (1998,
1273: 802: 782: 536: 521: 423: 415: 264: 129: 53: 20: 3387: 1957: 1955: 665: 215: 188:
Line-Of-Sight Guidance Techniques For Manned Orbital Rendezvous.
3197: 2392: 1529:/ Interviewed by Doug Ward / Elk Lake, Michigan – June 29, 1999 273:
Rendezvous was first successfully accomplished by US astronaut
907: 852: 811: 608:
are also used to rendezvous with and resupply space stations.
589: 307: 1403:. New York: Macmillan Publishing Co., Inc. pp. 117–118. 108: 1201:, and is a natural safeguard in case of a thruster failure. 458:
The first Soviet cosmonaut to attempt a manual docking was
102: 761:
the CSM/LM combination then separated from the third stage
684:
crew rendezvoused with and attached a rocket motor to the
281:
spacecraft within 1 foot (30 cm) of its sister craft
93: 190:
As a NASA astronaut, Aldrin worked to "translate complex
2124:
International Journal of Aeronautical and Space Sciences
194:
into relatively simple flight plans for my colleagues."
2374:
Handbook Automated Rendezvous and Docking of Spacecraft
873: 2120:"Optimal Control for Proximity Operations and Docking" 707:
that has run out of fuel. The CX-OLEV would take over
502:
The first multiple space docking took place when both
2194:"STS-104 Crew Interviews with Charles Hobaugh, Pilot" 96: 1349:
Deliberate crash landings on extraterrestrial bodies
579:
missions have successfully made rendezvous with six
105: 99: 90: 3355: 3281: 3249: 3065: 2977: 2921: 2857: 2810: 2750: 2741: 2637: 2547: 2436: 2427: 2383:
Docking system agreement key to global space policy
2249:. Long Beach, California. p. 7. Archived from 1872:"Japanese Cargo Craft Captured, Berthed to Station" 868:
may be too technical for most readers to understand
87: 2287:Success! Space station snags SpaceX Dragon capsule 1155:A variety of techniques may be used to effect the 2213:"Shuttle Discovery nears rendezvous with station" 1299:, performed the first ever rendezvous outside of 703:, which is being developed for rendezvous with a 1678:History Collection - Johnson Space Center - NASA 1166:necessary for proximity operations and docking. 2367:"Lunar Orbit Rendezvous and the Apollo Program" 1755:Encyclopedia of United States National Security 296: 287: 233: 2157: 2155: 551:module following a collision with an uncrewed 3209: 2404: 2164:"Shuttle Rendezvous and Proximity Operations" 1964:"ATV: a very special delivery - Lesson notes" 1537: 1535: 277:on December 15, 1965. Schirra maneuvered the 71:in lunar orbit after returning from a landing 8: 2023: 2021: 2019: 2017: 1174:The two most common methods of approach for 243:, "just didn't understand or reason out the 2247:AIAA SPACE 2007 Conference & Exposition 2104:as seen from the center of the planet; for 1803:. Encyclopedia Astronautica. Archived from 1545:. Encyclopedia Astronautica. Archived from 846:Learn how and when to remove these messages 440:, rendezvoused and docked with an uncrewed 269:Gemini 7 photographed from Gemini 6 in 1965 140:. Rendezvous may or may not be followed by 3216: 3202: 3194: 3178: 2747: 2433: 2411: 2397: 2389: 1211:mission to conduct a V-bar arrival at the 2143: 1016:Learn how and when to remove this message 998:Learn how and when to remove this message 896:Learn how and when to remove this message 880:, without removing the technical details. 398:Learn how and when to remove this message 1063: 1787:performed joint scientific experiments. 1391: 1183:location of the assigned docking port. 159:In its first human spaceflight program 134:orbital velocities and position vectors 3057:Transposition, docking, and extraction 2309:"Prototype Space Fabrication Platform" 1908:from the original on February 10, 2010 1622:"NASA - NSSDCA - Spacecraft - Details" 1307:and taking parts of it back to Earth. 767:NASA sometimes refers to "Rendezvous, 739:transposition, docking, and extraction 231:back to the original orbital height). 186:submitted his doctoral thesis titled, 2219:from the original on December 2, 2008 1687:from the original on October 7, 2022. 1561:"On The Shoulders of Titans - Ch12-7" 1120:1,000–100 meters (3,280–330 ft) 878:make it understandable to non-experts 571:, which successfully docked with the 462:who unsuccessfully tried to dock his 7: 2118:Lee, Daero; Pernicka, Henry (2010). 1818:Marcia S. Smith (February 3, 2012). 1475:from the original on October 9, 2011 1424:Hall, Rex; David J. Shayler (2001). 1333:Androgynous Peripheral Attach System 936:adding citations to reliable sources 719:will take a number of months, using 660:. Historically, for the missions of 616:have automatically docked with both 336:adding citations to reliable sources 3400:Category:Spacecraft docking systems 2002:from the original on August 7, 2020 1970:from the original on April 29, 2021 1940:from the original on August 7, 2020 745:of the sequence third stage of the 672:would rendezvous and dock with the 514:space station during January 1978. 428:Gemini 8 docking with Agena vehicle 3225:Docking and berthing of spacecraft 2174:from the original on July 27, 2013 1826:from the original on June 13, 2020 1776:from the original on July 26, 2020 1632:from the original on April 3, 2020 1602:from the original on April 3, 2020 1571:from the original on April 3, 2020 1448:from the original on April 2, 2020 1401:Manned Spacecraft, Second Revision 741:was performed an hour or so after 530:docking in 1975 of the concluding 412:Docking and berthing of spacecraft 35:to determine distance between the 14: 3117:Kepler's laws of planetary motion 2315:. Accession number ADA273904: 9. 2211:WILLIAM HARWOOD (March 9, 2001). 2162:Pearson, Don J. (November 1989). 1878:from the original on May 19, 2017 1699:"Model of a Soyuz-4-5 spacecraft" 1371:of orbits around the Earth's axis 827:This section has multiple issues. 64:ascent stage rendezvous with the 3272: 3242: 3177: 3112:Interplanetary Transport Network 2992:Collision avoidance (spacecraft) 1317: 912: 857: 816: 312: 83: 3077:Astronomical coordinate systems 2831:Longitude of the ascending node 1961:Arrival of the ATV to the ISS, 1724:"NSSDCA - Spacecraft - Details" 1133:100–10 meters (328–33 ft) 1107:to 1 kilometer (3,300 ft) 1082:(out of sight, out of contact) 923:needs additional citations for 835:or discuss these issues on the 323:needs additional citations for 218:engineers had yet to learn the 3150:Retrograde and prograde motion 2067:. Paper 5088-3. Archived from 1870:Jerry Wright (July 30, 2015). 664:that landed astronauts on the 653:Cygnus to find a berth there. 1: 3257:International Docking Adapter 1590:Agle, D.C. (September 1998). 1496:"From Earth to Moon to Earth" 674:Apollo Command/Service Module 555:in September 1997 as part of 420:Gemini 8 Agena target vehicle 3440:Projects established in 1965 3097:Equatorial coordinate system 1338:Clohessy-Wiltshire equations 713:geostationary transfer orbit 175:in 1963). In each case, the 2145:10.5139/IJASS.2010.11.3.206 1752:, ed. (December 21, 2005). 1375:Path-constrained rendezvous 1213:International Space Station 1146:<10 meters (33 ft) 595:International Space Station 261:First successful rendezvous 49:International Space Station 3458: 3263:Pressurized Mating Adapter 2849:Longitude of the periapsis 1660:NASA, NSSDC Master Catalog 1518:Oral History Transcript / 788:Command and service module 668:, the ascent stage of the 626:Automated Transfer Vehicle 409: 124:, one of which is often a 3396: 3304:Common Berthing Mechanism 3299:Chinese Docking Mechanism 3270: 3240: 3231: 3173: 3160:Specific angular momentum 2354:The Visitors (rendezvous) 2100:of the spacecraft's true 1822:. spacepolicyonline.com. 1399:Gatland, Kenneth (1976). 1344:Common Berthing Mechanism 575:station on June 7, 1971. 2037:SPIE AeroSense Symposium 705:geosynchronous satellite 690:communications satellite 646:Orbital Sciences' Cygnus 541:Damaged solar arrays on 466:craft with the uncrewed 210:craft to meet its spent 3155:Specific orbital energy 1902:www.orbitalrecovery.com 1656:April 13, 2020, at the 1100:(in sight, in contact) 1073:Typical phase duration 1050:reaction control system 692:to allow it to make an 483:extravehicular activity 436:, under the command of 212:Titan II launch vehicle 138:orbital station-keeping 2567:Geostationary transfer 2359:April 3, 2020, at the 2196:. NASA. Archived from 1592:"Flying the Gusmobile" 1525:March 4, 2016, at the 1359:Lunar orbit rendezvous 1289: 1281:astronaut Conrad with 1248:H-II Transfer Vehicles 1238:natural braking effect 1199:natural braking effect 1129:Proximity Operations B 1116:Proximity Operations A 809: 800: 773:Docking, and Undocking 737:, a maneuver known as 709:orbital stationkeeping 678:lunar orbit rendezvous 658:Hubble Space Telescope 620:and the ISS using the 564: 534: 429: 421: 301: 292: 270: 258: 223:orbital period due to 206:tried to maneuver his 72: 51: 3140:Orbital state vectors 3082:Characteristic energy 3052:Trans-lunar injection 2840:Argument of periapsis 2517:Prograde / Retrograde 2478:Hyperbolic trajectory 2294:May 25, 2012, at the 2256:on February 27, 2008. 1898:"orbitalrecovery.com" 1549:on November 29, 2010. 1432:Springer–Praxis Books 1364:Mars orbit rendezvous 1340:for co-orbit analysis 1277: 806: 786: 743:Trans Lunar Injection 721:Hall effect thrusters 680:maneuvers. Also, the 638:H-II Transfer Vehicle 540: 525: 455:on October 30, 1967. 427: 419: 268: 128:, arrive at the same 57: 24: 2987:Bi-elliptic transfer 2507:Parabolic trajectory 2274:May 5, 2021, at the 2200:on February 3, 2002. 1807:on October 30, 2007. 1469:"Orbital Rendezvous" 1434:. pp. 185–191. 1303:by landing close to 1295:, the second crewed 1176:proximity operations 1070:Separation distance 932:improve this article 769:Proximity-Operations 717:geosynchronous orbit 442:Agena Target Vehicle 332:improve this article 198:First attempt failed 3027:Low-energy transfer 2321:1993MsT..........9B 2215:. SPACEFLIGHT NOW. 2136:2010IJASS..11..206L 2049:2003SPIE.5088...20W 1750:Samuels, Richard J. 1651:NSSDC ID: 1967-105A 1626:nssdc.gsfc.nasa.gov 1354:Flyby (spaceflight) 1170:Methods of approach 670:Apollo Lunar Module 622:Kurs docking system 614:Progress spacecraft 553:Progress spacecraft 510:were docked to the 142:docking or berthing 29:Christopher Cassidy 3435:1965 introductions 3356:Navigation systems 3022:Inclination change 2670:Distant retrograde 2385:– October 20, 2010 1325:Spaceflight portal 1290: 1270:Surface rendezvous 1042:phase of the orbit 947:"Space rendezvous" 810: 801: 779:Phases and methods 630:berthing mechanism 606:Robotic spacecraft 565: 535: 485:to reach Soyuz 4. 430: 422: 347:"Space rendezvous" 271: 225:Kepler's third law 73: 52: 3430:Orbital maneuvers 3407: 3406: 3311:docking mechanism 3191: 3190: 3165:Two-line elements 2973: 2972: 2895:Eccentric anomaly 2737: 2736: 2604:Orbit of the Moon 2463:Highly elliptical 2074:on April 25, 2012 2057:10.1117/12.498121 1769:978-0-7619-2927-7 1760:SAGE Publications 1520:James A. McDivitt 1215:. The V-bar, or 1153: 1152: 1056:Rendezvous phases 1026: 1025: 1018: 1008: 1007: 1000: 982: 906: 905: 898: 850: 735:Apollo spacecraft 597:(ISS). Currently 577:Human spaceflight 408: 407: 400: 382: 245:orbital mechanics 220:orbital mechanics 192:orbital mechanics 120:during which two 118:orbital maneuvers 3447: 3420:Space rendezvous 3276: 3246: 3234:Space rendezvous 3218: 3211: 3204: 3195: 3181: 3180: 3122:Lagrangian point 3017:Hohmann transfer 2962: 2948: 2939: 2930: 2910: 2901: 2892: 2883: 2879: 2875: 2866: 2846: 2837: 2828: 2819: 2799: 2795: 2786: 2777: 2768: 2748: 2717:Heliosynchronous 2666:Lagrange points 2619:Transatmospheric 2434: 2413: 2406: 2399: 2390: 2370: 2337: 2336: 2334: 2332: 2323:. Archived from 2304: 2298: 2284: 2278: 2264: 2258: 2257: 2255: 2244: 2235: 2229: 2228: 2226: 2224: 2208: 2202: 2201: 2190: 2184: 2183: 2181: 2179: 2159: 2150: 2149: 2147: 2115: 2109: 2090: 2084: 2083: 2081: 2079: 2073: 2034: 2025: 2012: 2011: 2009: 2007: 2001: 1994: 1986: 1980: 1979: 1977: 1975: 1959: 1950: 1949: 1947: 1945: 1939: 1932: 1924: 1918: 1917: 1915: 1913: 1894: 1888: 1887: 1885: 1883: 1867: 1861: 1842: 1836: 1835: 1833: 1831: 1815: 1809: 1808: 1796: 1790: 1789: 1783: 1781: 1758:(1st ed.). 1746: 1740: 1739: 1737: 1735: 1720: 1714: 1713: 1711: 1709: 1695: 1689: 1688: 1686: 1675: 1671:"Part 1 - Soyuz" 1667: 1661: 1648: 1642: 1641: 1639: 1637: 1618: 1612: 1611: 1609: 1607: 1587: 1581: 1580: 1578: 1576: 1557: 1551: 1550: 1539: 1530: 1516: 1510: 1509: 1508:on May 27, 2014. 1507: 1501:. Archived from 1500: 1491: 1485: 1484: 1482: 1480: 1464: 1458: 1457: 1455: 1453: 1421: 1415: 1414: 1396: 1369:Nodal precession 1327: 1322: 1321: 1320: 1136:45 – 90 minutes 1064: 1021: 1014: 1003: 996: 992: 989: 983: 981: 940: 916: 908: 901: 894: 890: 887: 881: 861: 860: 853: 842: 820: 819: 812: 694:orbital maneuver 599:Soyuz spacecraft 460:Georgy Beregovoy 403: 396: 392: 389: 383: 381: 340: 316: 308: 256: 229:Hohmann transfer 115: 114: 111: 110: 107: 104: 101: 98: 95: 92: 89: 78:space rendezvous 40: 3457: 3456: 3450: 3449: 3448: 3446: 3445: 3444: 3410: 3409: 3408: 3403: 3392: 3351: 3277: 3268: 3247: 3236: 3227: 3222: 3192: 3187: 3169: 3087:Escape velocity 3068: 3061: 3042:Rocket equation 2969: 2961: 2955: 2946: 2937: 2928: 2917: 2908: 2899: 2890: 2881: 2877: 2873: 2864: 2853: 2844: 2835: 2826: 2817: 2806: 2797: 2793: 2789:Semi-minor axis 2784: 2780:Semi-major axis 2775: 2766: 2760: 2733: 2655:Areosynchronous 2639: 2633: 2614:Sun-synchronous 2599:Near-equatorial 2543: 2423: 2417: 2365: 2361:Wayback Machine 2345: 2340: 2330: 2328: 2327:on May 31, 2012 2306: 2305: 2301: 2296:Wayback Machine 2285: 2281: 2276:Wayback Machine 2265: 2261: 2253: 2242: 2237: 2236: 2232: 2222: 2220: 2210: 2209: 2205: 2192: 2191: 2187: 2177: 2175: 2161: 2160: 2153: 2117: 2116: 2112: 2095: 2091: 2087: 2077: 2075: 2071: 2032: 2027: 2026: 2015: 2005: 2003: 1999: 1992: 1988: 1987: 1983: 1973: 1971: 1962: 1960: 1953: 1943: 1941: 1937: 1930: 1926: 1925: 1921: 1911: 1909: 1896: 1895: 1891: 1881: 1879: 1869: 1868: 1864: 1843: 1839: 1829: 1827: 1817: 1816: 1812: 1798: 1797: 1793: 1779: 1777: 1770: 1762:. p. 669. 1748: 1747: 1743: 1733: 1731: 1722: 1721: 1717: 1707: 1705: 1703:MAAS Collection 1697: 1696: 1692: 1684: 1673: 1669: 1668: 1664: 1658:Wayback Machine 1649: 1645: 1635: 1633: 1620: 1619: 1615: 1605: 1603: 1596:Air & Space 1589: 1588: 1584: 1574: 1572: 1565:www.hq.nasa.gov 1559: 1558: 1554: 1541: 1540: 1533: 1527:Wayback Machine 1517: 1513: 1505: 1498: 1493: 1492: 1488: 1478: 1476: 1466: 1465: 1461: 1451: 1449: 1442: 1423: 1422: 1418: 1411: 1398: 1397: 1393: 1389: 1323: 1318: 1316: 1313: 1301:Low Earth Orbit 1287:Low Earth Orbit 1272: 1260: 1229: 1217:velocity vector 1189: 1172: 1106: 1099: 1088: 1081: 1058: 1022: 1011: 1010: 1009: 1004: 993: 987: 984: 941: 939: 929: 917: 902: 891: 885: 882: 874:help improve it 871: 862: 858: 821: 817: 781: 636:. The Japanese 583:stations, with 520: 414: 404: 393: 387: 384: 341: 339: 329: 317: 306: 263: 257: 255: 200: 177:launch vehicles 157: 86: 82: 66:command module 36: 17: 12: 11: 5: 3455: 3454: 3451: 3443: 3442: 3437: 3432: 3427: 3422: 3412: 3411: 3405: 3404: 3397: 3394: 3393: 3391: 3390: 3385: 3380: 3375: 3370: 3365: 3359: 3357: 3353: 3352: 3350: 3349: 3344: 3339: 3334: 3333: 3332: 3327: 3317: 3312: 3306: 3301: 3296: 3291: 3285: 3283: 3279: 3278: 3271: 3269: 3267: 3266: 3260: 3253: 3251: 3248: 3241: 3238: 3237: 3232: 3229: 3228: 3223: 3221: 3220: 3213: 3206: 3198: 3189: 3188: 3186: 3185: 3183:List of orbits 3174: 3171: 3170: 3168: 3167: 3162: 3157: 3152: 3147: 3142: 3137: 3135:Orbit equation 3132: 3124: 3119: 3114: 3109: 3104: 3099: 3094: 3089: 3084: 3079: 3073: 3071: 3063: 3062: 3060: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3014: 3009: 3007:Gravity assist 3004: 3002:Delta-v budget 2999: 2994: 2989: 2983: 2981: 2975: 2974: 2971: 2970: 2968: 2967: 2959: 2953: 2944: 2935: 2933:Orbital period 2925: 2923: 2919: 2918: 2916: 2915: 2913:True longitude 2906: 2904:Mean longitude 2897: 2888: 2871: 2861: 2859: 2855: 2854: 2852: 2851: 2842: 2833: 2824: 2814: 2812: 2808: 2807: 2805: 2804: 2791: 2782: 2773: 2763: 2761: 2759: 2758: 2755: 2751: 2745: 2739: 2738: 2735: 2734: 2732: 2731: 2730: 2729: 2721: 2720: 2719: 2714: 2709: 2708: 2707: 2694: 2689: 2688: 2687: 2682: 2677: 2672: 2664: 2663: 2662: 2660:Areostationary 2657: 2652: 2643: 2641: 2635: 2634: 2632: 2631: 2629:Very low Earth 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2570: 2569: 2564: 2557:Geosynchronous 2553: 2551: 2545: 2544: 2542: 2541: 2539:Transfer orbit 2536: 2535: 2534: 2529: 2519: 2514: 2509: 2504: 2499: 2497:Lagrange point 2494: 2489: 2480: 2475: 2470: 2465: 2456: 2451: 2446: 2440: 2438: 2431: 2425: 2424: 2419:Gravitational 2418: 2416: 2415: 2408: 2401: 2393: 2387: 2386: 2380: 2371: 2363: 2351: 2344: 2343:External links 2341: 2339: 2338: 2299: 2279: 2259: 2230: 2203: 2185: 2151: 2130:(3): 206–220. 2110: 2098:angular radius 2093: 2085: 2013: 1981: 1951: 1919: 1889: 1862: 1837: 1810: 1791: 1768: 1741: 1730:(in Norwegian) 1715: 1690: 1680:. p. 11. 1662: 1643: 1613: 1582: 1552: 1531: 1511: 1486: 1459: 1440: 1416: 1409: 1390: 1388: 1385: 1384: 1383: 1378: 1372: 1366: 1361: 1356: 1351: 1346: 1341: 1335: 1329: 1328: 1312: 1309: 1271: 1268: 1259: 1258:Z-bar approach 1256: 1228: 1227:R-bar approach 1225: 1223:docking port. 1207:was the third 1188: 1187:V-bar approach 1185: 1171: 1168: 1151: 1150: 1149:<5 minutes 1147: 1144: 1138: 1137: 1134: 1131: 1125: 1124: 1123:1 to 5 orbits 1121: 1118: 1112: 1111: 1108: 1104: 1101: 1093: 1092: 1089: 1086: 1083: 1075: 1074: 1071: 1068: 1057: 1054: 1024: 1023: 1006: 1005: 920: 918: 911: 904: 903: 865: 863: 856: 851: 825: 824: 822: 815: 780: 777: 765: 764: 763: 762: 759: 756: 753: 731: 662:Project Apollo 632:rather than a 519: 516: 488:In March 1969 438:Neil Armstrong 410:Main article: 406: 405: 320: 318: 311: 305: 302: 262: 259: 253: 199: 196: 173:Vostok 5 and 6 169:Vostok 3 and 4 156: 153: 116:) is a set of 15: 13: 10: 9: 6: 4: 3: 2: 3453: 3452: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3425:Astrodynamics 3423: 3421: 3418: 3417: 3415: 3402: 3401: 3395: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3360: 3358: 3354: 3348: 3345: 3343: 3340: 3338: 3337:Soyuz Kontakt 3335: 3331: 3328: 3326: 3323: 3322: 3321: 3318: 3316: 3313: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3286: 3284: 3280: 3275: 3264: 3261: 3258: 3255: 3254: 3252: 3245: 3239: 3235: 3230: 3226: 3219: 3214: 3212: 3207: 3205: 3200: 3199: 3196: 3184: 3176: 3175: 3172: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3130:-body problem 3129: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3074: 3072: 3070: 3064: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3032:Oberth effect 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2984: 2982: 2980: 2976: 2966: 2958: 2954: 2952: 2951:Orbital speed 2945: 2943: 2936: 2934: 2927: 2926: 2924: 2920: 2914: 2907: 2905: 2898: 2896: 2889: 2887: 2872: 2870: 2863: 2862: 2860: 2856: 2850: 2843: 2841: 2834: 2832: 2825: 2823: 2816: 2815: 2813: 2809: 2803: 2792: 2790: 2783: 2781: 2774: 2772: 2765: 2764: 2762: 2756: 2753: 2752: 2749: 2746: 2744: 2740: 2728: 2725: 2724: 2722: 2718: 2715: 2713: 2710: 2706: 2705:Earth's orbit 2703: 2702: 2701: 2698: 2697: 2695: 2693: 2690: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2667: 2665: 2661: 2658: 2656: 2653: 2651: 2648: 2647: 2645: 2644: 2642: 2636: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2568: 2565: 2563: 2562:Geostationary 2560: 2559: 2558: 2555: 2554: 2552: 2550: 2546: 2540: 2537: 2533: 2530: 2528: 2525: 2524: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2441: 2439: 2435: 2432: 2430: 2426: 2422: 2414: 2409: 2407: 2402: 2400: 2395: 2394: 2391: 2384: 2381: 2379: 2378:Wigbert Fehse 2375: 2372: 2368: 2364: 2362: 2358: 2355: 2352: 2350: 2347: 2346: 2342: 2326: 2322: 2318: 2314: 2310: 2303: 2300: 2297: 2293: 2290: 2288: 2283: 2280: 2277: 2273: 2270: 2268: 2263: 2260: 2252: 2248: 2241: 2234: 2231: 2218: 2214: 2207: 2204: 2199: 2195: 2189: 2186: 2173: 2169: 2165: 2158: 2156: 2152: 2146: 2141: 2137: 2133: 2129: 2125: 2121: 2114: 2111: 2107: 2103: 2099: 2089: 2086: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2024: 2022: 2020: 2018: 2014: 1998: 1991: 1985: 1982: 1969: 1965: 1958: 1956: 1952: 1936: 1929: 1923: 1920: 1907: 1903: 1899: 1893: 1890: 1877: 1873: 1866: 1863: 1859: 1858:0-06-093269-4 1855: 1851: 1850:0-88730-783-3 1847: 1841: 1838: 1825: 1821: 1814: 1811: 1806: 1802: 1795: 1792: 1788: 1780:September 20, 1775: 1771: 1765: 1761: 1757: 1756: 1751: 1745: 1742: 1729: 1725: 1719: 1716: 1704: 1700: 1694: 1691: 1683: 1679: 1672: 1666: 1663: 1659: 1655: 1652: 1647: 1644: 1631: 1627: 1623: 1617: 1614: 1601: 1597: 1593: 1586: 1583: 1570: 1566: 1562: 1556: 1553: 1548: 1544: 1538: 1536: 1532: 1528: 1524: 1521: 1515: 1512: 1504: 1497: 1494:Buzz Aldrin. 1490: 1487: 1474: 1470: 1467:Buzz Aldrin. 1463: 1460: 1452:September 25, 1447: 1443: 1441:1-85233-391-X 1437: 1433: 1429: 1428: 1420: 1417: 1412: 1410:0-02-542820-9 1406: 1402: 1395: 1392: 1386: 1382: 1381:Soyuz Kontakt 1379: 1376: 1373: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1339: 1336: 1334: 1331: 1330: 1326: 1315: 1310: 1308: 1306: 1302: 1298: 1297:lunar landing 1294: 1288: 1284: 1280: 1276: 1269: 1267: 1265: 1264:orbital plane 1257: 1255: 1253: 1252:SpaceX Dragon 1249: 1245: 1241: 1239: 1234: 1226: 1224: 1222: 1218: 1214: 1210: 1209:Space Shuttle 1206: 1202: 1200: 1195: 1186: 1184: 1181: 1180:perpendicular 1177: 1169: 1167: 1165: 1162: 1158: 1157:translational 1148: 1145: 1143: 1140: 1139: 1135: 1132: 1130: 1127: 1126: 1122: 1119: 1117: 1114: 1113: 1109: 1102: 1098: 1097:Drift Orbit B 1095: 1094: 1091:1 to 20 days 1090: 1084: 1080: 1079:Drift Orbit A 1077: 1076: 1072: 1069: 1066: 1065: 1062: 1055: 1053: 1051: 1045: 1043: 1039: 1038:orbital plane 1034: 1030: 1020: 1017: 1002: 999: 991: 980: 977: 973: 970: 966: 963: 959: 956: 952: 949: –  948: 944: 943:Find sources: 937: 933: 927: 926: 921:This section 919: 915: 910: 909: 900: 897: 889: 879: 875: 869: 866:This section 864: 855: 854: 849: 847: 840: 839: 834: 833: 828: 823: 814: 813: 805: 799: 796: 793:as seen from 792: 791:Charlie Brown 789: 785: 778: 776: 774: 770: 760: 757: 754: 751: 750: 748: 744: 740: 736: 732: 729: 728: 727: 724: 722: 718: 714: 710: 706: 702: 697: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 654: 651: 647: 643: 642:SpaceX Dragon 639: 635: 631: 627: 623: 619: 615: 611: 607: 603: 600: 596: 593:and with the 592: 591: 586: 582: 578: 574: 570: 562: 558: 554: 550: 549: 544: 539: 533: 529: 524: 517: 515: 513: 509: 505: 500: 498: 493: 491: 486: 484: 480: 476: 471: 469: 465: 461: 456: 454: 450: 445: 443: 439: 435: 426: 418: 413: 402: 399: 391: 380: 377: 373: 370: 366: 363: 359: 356: 352: 349: –  348: 344: 343:Find sources: 337: 333: 327: 326: 321:This section 319: 315: 310: 309: 304:First docking 303: 300: 295: 291: 286: 284: 280: 276: 275:Wally Schirra 267: 260: 252: 250: 246: 242: 238: 232: 230: 226: 221: 217: 213: 209: 205: 197: 195: 193: 189: 185: 180: 178: 174: 171:in 1962, and 170: 166: 162: 154: 152: 150: 149:Martian moons 145: 143: 139: 135: 131: 127: 126:space station 123: 119: 113: 80: 79: 70: 69: 63: 62: 59:Lunar Module 56: 50: 46: 45: 39: 38:Space Shuttle 34: 30: 27: 23: 19: 3398: 3233: 3145:Perturbation 3127: 3102:Ground track 3046: 3012:Gravity turn 2963:   2956: 2949:   2940:   2931:   2911:   2902:   2893:   2886:True anomaly 2884:   2869:Mean anomaly 2867:   2847:   2838:   2829:   2820:   2800:   2787:   2778:   2771:Eccentricity 2769:   2727:Lunar cycler 2700:Heliocentric 2640:other points 2589:Medium Earth 2487:Non-inclined 2329:. Retrieved 2325:the original 2312: 2302: 2286: 2282: 2266: 2262: 2251:the original 2246: 2233: 2221:. Retrieved 2206: 2198:the original 2188: 2178:November 26, 2176:. Retrieved 2167: 2127: 2123: 2113: 2088: 2076:. Retrieved 2069:the original 2040: 2036: 2004:. Retrieved 1984: 1972:. Retrieved 1942:. Retrieved 1922: 1910:. Retrieved 1901: 1892: 1880:. Retrieved 1874:. nasa.gov. 1865: 1840: 1828:. Retrieved 1813: 1805:the original 1794: 1785: 1778:. Retrieved 1754: 1744: 1732:. Retrieved 1727: 1718: 1706:. Retrieved 1702: 1693: 1677: 1665: 1646: 1634:. Retrieved 1625: 1616: 1606:December 15, 1604:. Retrieved 1595: 1585: 1573:. Retrieved 1564: 1555: 1547:the original 1514: 1503:the original 1489: 1477:. Retrieved 1462: 1450:. Retrieved 1430:. New York: 1426: 1419: 1400: 1394: 1291: 1261: 1242: 1237: 1230: 1203: 1198: 1190: 1173: 1154: 1141: 1128: 1115: 1110:1 to 5 days 1096: 1078: 1059: 1046: 1035: 1031: 1027: 1012: 994: 985: 975: 968: 961: 954: 942: 930:Please help 925:verification 922: 892: 883: 867: 843: 836: 830: 829:Please help 826: 797: 795:Lunar Module 790: 766: 725: 698: 655: 634:docking port 617: 604: 588: 566: 560: 546: 542: 528:Apollo-Soyuz 501: 497:Apollo–Soyuz 494: 487: 472: 457: 446: 431: 394: 385: 375: 368: 361: 354: 342: 330:Please help 325:verification 322: 297: 293: 288: 272: 234: 204:Jim McDivitt 201: 187: 181: 165:Soviet Union 158: 146: 77: 76: 74: 67: 60: 43: 18: 3107:Hill sphere 2942:Mean motion 2822:Inclination 2811:Orientation 2712:Mars cycler 2650:Areocentric 2522:Synchronous 2331:November 3, 1799:Mark Wade. 1734:October 22, 1708:October 22, 988:August 2020 686:Intelsat VI 624:, Europe's 557:Shuttle-Mir 388:August 2020 299:rendezvous. 184:Buzz Aldrin 33:rangefinder 3414:Categories 3282:Mechanisms 3047:Rendezvous 2743:Parameters 2579:High Earth 2549:Geocentric 2502:Osculating 2459:Elliptical 1801:"Soyuz 11" 1543:"Gemini 4" 1387:References 1305:Surveyor 3 1283:Surveyor 3 1254:vehicles. 1233:orthogonal 1161:rotational 1040:, and the 958:newspapers 886:April 2010 832:improve it 532:Space Race 453:Cosmos 188 449:Cosmos 186 358:newspapers 251:now uses." 122:spacecraft 3368:Canadarm2 3092:Ephemeris 3069:mechanics 2979:Maneuvers 2922:Variation 2685:Libration 2680:Lissajous 2584:Low Earth 2574:Graveyard 2473:Horseshoe 2223:March 17, 2078:August 3, 1974:April 29, 1293:Apollo 12 1279:Apollo 12 1250:, and of 1244:Astrotech 1164:maneuvers 838:talk page 650:Canadarm2 499:mission. 44:Endeavour 26:Astronaut 3363:Canadarm 3250:Adapters 2858:Position 2483:Inclined 2454:Circular 2357:Archived 2292:Archived 2272:Archived 2217:Archived 2172:Archived 2170:. NASA. 2065:64002452 1997:Archived 1995:. NASA. 1968:Archived 1935:Archived 1912:April 9, 1906:Archived 1876:Archived 1852:) 2000, 1830:June 13, 1824:Archived 1774:Archived 1682:Archived 1654:Archived 1636:April 9, 1630:Archived 1600:Archived 1575:April 9, 1569:Archived 1523:Archived 1473:Archived 1446:Archived 1311:See also 1194:parallel 747:Saturn V 573:Salyut 1 569:Soyuz 11 512:Salyut 6 508:Soyuz 27 504:Soyuz 26 490:Apollo 9 434:Gemini 8 283:Gemini 7 279:Gemini 6 254:—  208:Gemini 4 182:In 1963 68:Columbia 47:and the 3067:Orbital 3037:Phasing 2997:Delta-v 2802:Apsides 2796:,  2594:Molniya 2512:Parking 2449:Capture 2437:General 2369:. NASA. 2317:Bibcode 2132:Bibcode 2102:horizon 2096:is the 2045:Bibcode 2006:July 7, 1966:. ESA. 1944:May 16, 1882:May 15, 1205:STS-104 1142:Docking 1085:>2 λ 972:scholar 872:Please 733:In the 715:to the 701:CX-OLEV 640:(HTV), 587:, with 479:Soyuz 5 475:Soyuz 4 468:Soyuz 2 464:Soyuz 3 372:scholar 155:History 31:uses a 3383:Lyappa 3315:Gemini 3294:Apollo 2723:Other 2624:Tundra 2492:Kepler 2468:Escape 2421:orbits 2063:  2043:: 20. 1856:  1848:  1766:  1479:May 4, 1438:  1407:  1067:Phase 974:  967:  960:  953:  945:  798:Snoopy 682:STS-49 644:, and 585:Skylab 581:Salyut 561:Spektr 548:Spektr 374:  367:  360:  353:  345:  249:Apollo 163:, the 161:Vostok 3309:FREND 3265:(PMA) 3259:(IDA) 2965:Epoch 2754:Shape 2692:Lunar 2646:Mars 2638:About 2609:Polar 2429:Types 2254:(PDF) 2243:(PDF) 2072:(PDF) 2061:S2CID 2033:(PDF) 2000:(PDF) 1993:(PDF) 1938:(PDF) 1931:(PDF) 1685:(PDF) 1674:(PDF) 1506:(PDF) 1499:(PDF) 1221:PMA-2 979:JSTOR 965:books 610:Soyuz 379:JSTOR 365:books 130:orbit 61:Eagle 41: 3388:TORU 3378:Kurs 3373:Igla 3347:USIS 3342:SSVP 3325:IBDM 3320:IDSS 3289:APAS 2757:Size 2696:Sun 2675:Halo 2527:semi 2333:2011 2225:2009 2180:2011 2080:2019 2041:5088 2008:2017 1976:2021 1946:2020 1914:2018 1884:2017 1854:ISBN 1846:ISBN 1832:2020 1782:2020 1764:ISBN 1736:2021 1728:NASA 1710:2021 1638:2018 1608:2018 1577:2018 1481:2012 1454:2016 1436:ISBN 1405:ISBN 1159:and 951:news 808:ISS. 688:F-3 666:Moon 612:and 543:Mir' 518:Uses 506:and 477:and 451:and 351:news 216:NASA 3330:NDS 2532:sub 2444:Box 2376:by 2140:doi 2106:LEO 2094:max 2053:doi 1105:max 1103:2 λ 1087:max 934:by 876:to 676:in 618:Mir 590:Mir 334:by 241:MSC 237:GPO 235:As 3416:: 2880:, 2876:, 2485:/ 2461:/ 2311:. 2245:. 2166:. 2154:^ 2138:. 2128:11 2126:. 2122:. 2059:. 2051:. 2035:. 2016:^ 1954:^ 1933:. 1904:. 1900:. 1784:. 1772:. 1726:. 1701:. 1676:. 1628:. 1624:. 1598:. 1594:. 1567:. 1563:. 1534:^ 1471:. 1444:. 841:. 771:, 723:. 696:. 545:s 109:uː 103:eɪ 75:A 3217:e 3210:t 3203:v 3128:n 2960:0 2957:t 2947:v 2938:n 2929:T 2909:l 2900:L 2891:E 2882:f 2878:θ 2874:ν 2865:M 2845:ϖ 2836:ω 2827:Ω 2818:i 2798:q 2794:Q 2785:b 2776:a 2767:e 2412:e 2405:t 2398:v 2335:. 2319:: 2227:. 2182:. 2148:. 2142:: 2134:: 2092:λ 2082:. 2055:: 2047:: 2010:. 1978:. 1948:. 1916:. 1886:. 1834:. 1738:. 1712:. 1640:. 1610:. 1579:. 1483:. 1456:. 1413:. 1019:) 1013:( 1001:) 995:( 990:) 986:( 976:· 969:· 962:· 955:· 928:. 899:) 893:( 888:) 884:( 870:. 848:) 844:( 563:. 401:) 395:( 390:) 386:( 376:· 369:· 362:· 355:· 328:. 112:/ 106:v 100:d 97:n 94:ɒ 91:r 88:ˈ 85:/ 81:(

Index


Astronaut
Christopher Cassidy
rangefinder
Space Shuttle
Endeavour
International Space Station

Lunar Module Eagle
command module Columbia
/ˈrɒndv/
orbital maneuvers
spacecraft
space station
orbit
orbital velocities and position vectors
orbital station-keeping
docking or berthing
Martian moons
Vostok
Soviet Union
Vostok 3 and 4
Vostok 5 and 6
launch vehicles
Buzz Aldrin
orbital mechanics
Jim McDivitt
Gemini 4
Titan II launch vehicle
NASA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.