Knowledge (XXG)

Lung microbiota

Source 📝

363:
residents: secretions from airway epithelial cells (especially goblet cells), secretions from submucosal glands and transudate from plasma. Moreover, the pool of available nutrients is increased by the activities of some members of the microbiota. Macromolecular components of respiratory secretions (proteins, glycoproteins, lipids, nucleic acids) are converted to nutrients (e.g. carbohydrates, amino acids). Thus, the metabolic activity of present bacteria allow for the colonization of new species. The commensal bacteria are nonpathogenic and defend our airways against the pathogens. There are several possible mechanisms. Commensals are the native competitors of pathogenic bacteria, because they tend to occupy the same ecological niche inside the human body. Secondly, they are able to produce antibacterial substances called bacteriocins which inhibit the growth of pathogens.
403: 304:) have activated particular pattern recognition receptors on/in epithelial cells, the proinflammatory signaling pathways are activated. This results mainly in IL-1, IL-6 and IL-8 production. These cytokines induce chemotaxis to the site of infection in its target cells (e.g., neutrophils, dendritic cells and macrophages). On the other hand, representatives of standard microbiota induce only weak signals preventing inflammation. The mechanism of distinguishing between harmless and harmful bacteria on the molecular as well as on physiological levels is not completely understood. 290: 1392: 222:. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are 1418: 36: 296:. The airway epithelium has a complex structure consisting of at least seven diverse cell types interacting with each other by means of tight junctions. Epithelial cells can transmit immunostimulatory signals to underlying tissues taking part in the mechanisms of innate and adaptive immune response. The key transmitters of these signals are dendritic cells. Once pathogenic bacteria (e.g., 342:
attachment of one or more ubiquitin (Ub) monomers. The inhibition of ubiquitination leads to reduction of inflammation, because only polyubiquitinated (IκB-κ is targeted for degradation by the 26 S proteasome, allowing NF-κB translocation to the nucleus and activation the transcription of effector genes (for example IL-8). Probiotic bacteria such as
1430: 351:, attenuates pro-inflammatory cytokine expression by promoting nuclear export of NF-κB subunit RelA, through a peroxisome proliferator activated receptor γ (PPAR-γ)-dependent pathway. PPAR-γ target transcriptionally active Rel A and induce early nuclear clearance limiting the duration of NF-κB action. 285:
The airway epithelium together with alveolar macrophages and dendritic cells play a major role in the initial recognition of bacterial products getting into the lower airways with the air. Since some of these products are potent proinflammatory stimuli it is extremely important for the immune system
434:, along with similar species that can colonize and act symbiotically but can cause disease if they begin to take over the tissues they have colonized or invade other tissues, have been called "pathobionts". MRSA can similarly colonize people without making them sick. The presence of such genera as 346:
are able to modulate the activity of the Ub-proteasome system via inducing reactive oxygen species (ROS) production in epithelial cells. In mammalian cells, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways in response to proinflammatory cytokines.
325:
which translocates from the cytoplasm into the nucleus and activates pro-inflammatory genes in epithelial cells and macrophages. The DNA-binding protein complex recognizes a discrete nucleotide sequence (5’-GGG ACT TTC T-3’) in the upstream region of a variety of response genes. The activation of
341:
are able to prohibit the ubiquitination of NF-κB inhibitor molecule nuclear factor of NF-κB light polypeptide gene enhancer in B-cells inhibitor alpha (IκB-κ). Another explanation of commensal tolerance of the epithelium refers to the post-translational modification of a protein by the covalent
362:
The airways are continually exposed to a multitude of microorganisms, some of which are able to persist and even colonize respiratory tract. This is possible due to the presence of nutrients, oxygen, and optimal growth temperature. There are several host-derived nutrient sources for microbial
321:(RLRs) which recognize a broad variety of microbial structural components. After recognition of pathogenic bacteria proinflammatory pathways are activated and cellular components of the adaptive and innate immunity are recruited to the infection site. One key regulator in this process is 347:
Bacterially induced ROS causes oxidative inactivation of the catalytic cysteine residue of Ub 12 resulting in incomplete but transient loss of cullin-1 neddylation and consequent effects on NF-κB and β-catenin signaling. Another commensal species,
240:. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown. 497:
High-throughput sequencing and the whole genome sequencing approaches will provide the further information about the complexity and physiological implication of commensal bacteria in the lower respiratory tract.
308:
This process becomes much more intriguing when taking into account that commensals often share their surface molecules with pathogens. Epithelial cells are equipped with very sensitive recognition tools –
537:
Erb-Downward, John R.; Thompson, Deborah L.; Han, Meilan K.; Freeman, Christine M.; McCloskey, Lisa; Schmidt, Lindsay A.; Young, Vincent B.; Toews, Galen B.; et al. (2011). Bereswill, Stefan (ed.).
390:
are the main producers of bacteriocins in respiratory tract. Moreover, commensals are known to induce Th1 response and anti-inflammatory interleukin (IL)-10, antimicrobial peptides, FOXP3, secretory
1019:
Cox, Michael J.; Allgaier, Martin; Taylor, Byron; Baek, Marshall S.; Huang, Yvonne J.; Daly, Rebecca A.; Karaoz, Ulas; Andersen, Gary L.; et al. (2010). Ratner, Adam J. (ed.).
286:
to distinguish between pathogens and non-pathogenic commensals. This prevents the development of constant inflammation and forms tolerance against harmless microbiota.
597:
Hilty, Markus; Burke, Conor; Pedro, Helder; Cardenas, Paul; Bush, Andy; Bossley, Cara; Davies, Jane; Ervine, Aaron; et al. (2010). Neyrolles, Olivier (ed.).
329:
In contrast, harmless bacteria do not cause the translocation of NF-κB into the nucleus thus preventing the inflammation although they can express the same
921:
Kumar, Amrita; Wu, Huixia; Collier-Hyams, Lauren S; Hansen, Jason M; Li, Tengguo; Yamoah, Kosj; Pan, Zhen-Qiang; Jones, Dean P; Neish, Andrew S (2007).
1308: 876:
Sha, Q.; Truong-Tran, AQ; Plitt, JR; Beck, LA; Schleimer, RP (2004). "Activation of Airway Epithelial Cells by Toll-Like Receptor Agonists".
411: 330: 1253: 119: 970:
Huang, Yvonne J.; Kim, Eugenia; Cox, Michael J.; Brodie, Eoin L.; Brown, Ron; Wiener-Kronish, Jeanine P.; Lynch, Susan V. (2010).
53: 354:
The balance between pathogens and commensals is extremely important in the maintenance of homeostasis in the respiratory tract.
1303: 100: 57: 72: 402: 326:
NF-κB by a number of stimuli: bacterial cell walls or inflammatory cytokines results in its translocation to the nucleus.
1408: 79: 46: 86: 1372: 1246: 972:"A Persistent and Diverse Airway Microbiota Present during Chronic Obstructive Pulmonary Disease Exacerbations" 236: 410:
Changes in microbial community composition seem to play a role in progression of such pulmonary disorders as
68: 885: 333:(MAMPs). One possible mechanism explaining this effect was suggested by Neish showing that non-pathogenic 230: 1356: 833:
Kumar, Himanshu; Kawai, Taro; Akira, Shizuo (2011). "Pathogen Recognition by the Innate Immune System".
755: 224: 289: 1450: 1395: 1315: 1032: 610: 551: 890: 164:. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine 1325: 1270: 1239: 512: 318: 310: 923:"Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species" 747: 1320: 858: 1183:"Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus" 1335: 1288: 1212: 1163: 1112: 1060: 1001: 952: 903: 850: 815: 738: 687: 638: 579: 314: 145: 93: 1262: 1202: 1194: 1153: 1143: 1102: 1094: 1050: 1040: 991: 983: 942: 934: 895: 842: 805: 797: 728: 718: 677: 669: 628: 618: 569: 559: 507: 391: 249: 148:
particularly on the mucous layer and the epithelial surfaces. These microorganisms include
1434: 1283: 770: 419: 1036: 614: 555: 1422: 1207: 1182: 1158: 1131: 1107: 1082: 1055: 1020: 996: 971: 947: 922: 810: 785: 733: 706: 682: 657: 633: 598: 574: 539: 212: 1083:"Composition and immunological significance of the upper respiratory tract microbiota" 1444: 1298: 1021:"Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients" 267: 218: 194: 188: 161: 141: 862: 1330: 176: 1198: 1045: 846: 623: 564: 517: 273: 261: 206: 200: 182: 35: 1417: 673: 17: 1293: 427: 255: 170: 938: 899: 1377: 1351: 1278: 1098: 1216: 1167: 1116: 1064: 1005: 956: 907: 854: 819: 742: 691: 642: 583: 430:
present in the upper respiratory tract, and on skin and in the gut mucosa.
987: 1148: 801: 656:
Beck, James M.; Young, Vincent B.; Huffnagle, Gary B. (1 February 2012).
322: 149: 478:
present mostly in healthy individual cohort. The relative abundance of
540:"Analysis of the Lung Microbiome in the "Healthy" Smoker and in COPD" 415: 153: 1231: 723: 401: 165: 157: 137: 1235: 748:
Figure 2: Distribution of fungal genera in different body sites
786:"The human lung and Aspergillus: You are what you breathe in?" 29: 1181:
Uhlemann, AC; Otto, M; Lowy, FD; DeLeo, FR (January 2014).
243:
The fungal genera that are commonly found make up the lung
878:
American Journal of Respiratory Cell and Molecular Biology
446:
is correlated with stable COPD state. On the other hand,
1081:
Schenck, LP; Surette, MG; Bowdish, DM (November 2016).
1076: 1074: 599:"Disordered Microbial Communities in Asthmatic Airways" 140:
microbial community consisting of a complex variety of
1406: 784:
Richardson, M; Bowyer, P; Sabino, R (1 April 2019).
1365: 1344: 1269: 313:(TLRs), nucleotide-binding oligomerization domain 60:. Unsourced material may be challenged and removed. 1136:Clinical, Cosmetic and Investigational Dermatology 494:are found most often in cystic fibrosis patients. 406:Ecological modeling of the respiratory microbiome 247:, in the microbiota of the lung, and include 1247: 8: 707:"The human mycobiome in health and disease" 1254: 1240: 1232: 1206: 1157: 1147: 1106: 1054: 1044: 995: 946: 889: 809: 732: 722: 681: 632: 622: 573: 563: 120:Learn how and when to remove this message 27:Community of microorganisms from the lung 317:(NLRs) and retinoic acid-inducible gene 288: 1413: 976:OMICS: A Journal of Integrative Biology 705:Cui L, Morris A, Ghedin E (July 2013). 529: 765: 764: 753: 412:chronic obstructive pulmonary disease 331:microbe-associated molecular patterns 7: 482:is increased in asthmatic children. 58:adding citations to reliable sources 835:International Reviews of Immunology 294:Mechanisms underlying inflammation 25: 1187:Infection, Genetics and Evolution 1132:"Microbiome in atopic dermatitis" 1428: 1416: 1391: 1390: 34: 45:needs additional citations for 281:Role of the epithelial barrier 1: 1199:10.1016/j.meegid.2013.04.030 1046:10.1371/journal.pone.0011044 847:10.3109/08830185.2010.529976 658:"The microbiome of the lung" 624:10.1371/journal.pone.0008578 565:10.1371/journal.pone.0016384 796:(Supplement_2): S145–S154. 1467: 674:10.1016/j.trsl.2012.02.005 1386: 1373:Human Microbiome Project 939:10.1038/sj.emboj.7601867 900:10.1165/rcmb.2003-0388OC 237:Streptococcus pneumoniae 1345:Disorders and therapies 1099:10.1002/1873-3468.12455 1309:In bacterial vaginosis 662:Translational Research 484:Pseudomonas aeruginosa 426:is part of the normal 407: 319:(RIG)-I-like receptors 305: 231:Haemophilus influenzae 988:10.1089/omi.2009.0100 488:Staphylococcus aureus 405: 398:Clinical significance 292: 225:Moraxella catarrhalis 1149:10.2147/ccid.s130013 492:Burkholderia cepacia 315:(NOD)-like receptors 54:improve this article 1130:Wollina, U (2017). 1037:2010PLoSO...511044C 615:2010PLoSO...5.8578H 556:2011PLoSO...616384E 513:List of human flora 394:(sIgA) production. 349:B. thetaiotaomicron 335:S. typhimurium 311:toll like receptors 144:found in the lower 802:10.1093/mmy/myy149 408: 306: 1404: 1403: 1093:(21): 3705–3720. 763:External link in 146:respiratory tract 130: 129: 122: 104: 69:"Lung microbiota" 16:(Redirected from 1458: 1433: 1432: 1431: 1421: 1420: 1412: 1394: 1393: 1263:Human microbiota 1256: 1249: 1242: 1233: 1221: 1220: 1210: 1178: 1172: 1171: 1161: 1151: 1127: 1121: 1120: 1110: 1078: 1069: 1068: 1058: 1048: 1016: 1010: 1009: 999: 967: 961: 960: 950: 927:The EMBO Journal 918: 912: 911: 893: 873: 867: 866: 830: 824: 823: 813: 790:Medical Mycology 781: 775: 774: 768: 767: 761: 759: 751: 736: 726: 702: 696: 695: 685: 653: 647: 646: 636: 626: 594: 588: 587: 577: 567: 534: 508:Human microbiome 472:Stenotrophomonas 392:immunoglobulin A 339:S. pullorum 277:, among others. 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 1466: 1465: 1461: 1460: 1459: 1457: 1456: 1455: 1441: 1440: 1439: 1429: 1427: 1415: 1407: 1405: 1400: 1382: 1361: 1357:Faecal transfer 1340: 1265: 1260: 1230: 1225: 1224: 1180: 1179: 1175: 1129: 1128: 1124: 1080: 1079: 1072: 1018: 1017: 1013: 969: 968: 964: 933:(21): 4457–66. 920: 919: 915: 891:10.1.1.314.5790 875: 874: 870: 832: 831: 827: 783: 782: 778: 762: 752: 704: 703: 699: 655: 654: 650: 596: 595: 591: 536: 535: 531: 526: 504: 420:cystic fibrosis 400: 360: 283: 134:lung microbiota 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 18:Lung microbiome 15: 12: 11: 5: 1464: 1462: 1454: 1453: 1443: 1442: 1438: 1437: 1425: 1402: 1401: 1399: 1398: 1387: 1384: 1383: 1381: 1380: 1375: 1369: 1367: 1363: 1362: 1360: 1359: 1354: 1348: 1346: 1342: 1341: 1339: 1338: 1333: 1328: 1323: 1318: 1313: 1312: 1311: 1306: 1296: 1291: 1286: 1281: 1275: 1273: 1267: 1266: 1261: 1259: 1258: 1251: 1244: 1236: 1229: 1228:External links 1226: 1223: 1222: 1173: 1122: 1070: 1011: 962: 913: 868: 825: 776: 697: 648: 589: 528: 527: 525: 522: 521: 520: 515: 510: 503: 500: 480:Proteobacteria 456:Microbacterium 444:Staphylococcus 432:S. aureus 424:S. aureus 399: 396: 380:Staphylococcus 359: 356: 282: 279: 213:Staphylococcus 162:bacteriophages 142:microorganisms 128: 127: 110:September 2011 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1463: 1452: 1449: 1448: 1446: 1436: 1426: 1424: 1419: 1414: 1410: 1397: 1389: 1388: 1385: 1379: 1376: 1374: 1371: 1370: 1368: 1364: 1358: 1355: 1353: 1350: 1349: 1347: 1343: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1310: 1307: 1305: 1302: 1301: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1276: 1274: 1272: 1268: 1264: 1257: 1252: 1250: 1245: 1243: 1238: 1237: 1234: 1227: 1218: 1214: 1209: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1174: 1169: 1165: 1160: 1155: 1150: 1145: 1141: 1137: 1133: 1126: 1123: 1118: 1114: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1075: 1071: 1066: 1062: 1057: 1052: 1047: 1042: 1038: 1034: 1031:(6): e11044. 1030: 1026: 1022: 1015: 1012: 1007: 1003: 998: 993: 989: 985: 981: 977: 973: 966: 963: 958: 954: 949: 944: 940: 936: 932: 928: 924: 917: 914: 909: 905: 901: 897: 892: 887: 884:(3): 358–64. 883: 879: 872: 869: 864: 860: 856: 852: 848: 844: 840: 836: 829: 826: 821: 817: 812: 807: 803: 799: 795: 791: 787: 780: 777: 772: 757: 750: 749: 744: 740: 735: 730: 725: 724:10.1186/gm467 720: 716: 712: 708: 701: 698: 693: 689: 684: 679: 675: 671: 668:(4): 258–66. 667: 663: 659: 652: 649: 644: 640: 635: 630: 625: 620: 616: 612: 608: 604: 600: 593: 590: 585: 581: 576: 571: 566: 561: 557: 553: 550:(2): e16384. 549: 545: 541: 533: 530: 523: 519: 516: 514: 511: 509: 506: 505: 501: 499: 495: 493: 489: 485: 481: 477: 473: 469: 465: 461: 457: 453: 452:Mesorhizobium 449: 445: 441: 437: 433: 429: 425: 422:. In humans, 421: 417: 413: 404: 397: 395: 393: 389: 385: 384:Streptococcus 381: 377: 373: 372:Lactobacillus 369: 364: 357: 355: 352: 350: 345: 340: 336: 332: 327: 324: 320: 316: 312: 303: 302:P. aeruginosa 299: 298:S. pneumoniae 295: 291: 287: 280: 278: 276: 275: 270: 269: 268:Saccharomyces 264: 263: 258: 257: 252: 251: 246: 241: 239: 238: 233: 232: 227: 226: 221: 220: 219:Streptococcus 215: 214: 209: 208: 203: 202: 197: 196: 195:Fusobacterium 191: 190: 189:Acinetobacter 185: 184: 179: 178: 173: 172: 167: 163: 159: 155: 151: 147: 143: 139: 135: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 1331:Human virome 1304:In pregnancy 1190: 1186: 1176: 1139: 1135: 1125: 1090: 1087:FEBS Letters 1086: 1028: 1024: 1014: 979: 975: 965: 930: 926: 916: 881: 877: 871: 841:(1): 16–34. 838: 834: 828: 793: 789: 779: 766:|quote= 756:cite journal 746: 714: 710: 700: 665: 661: 651: 609:(1): e8578. 606: 602: 592: 547: 543: 532: 496: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 431: 423: 409: 388:Streptomyces 387: 383: 379: 375: 371: 367: 365: 361: 353: 348: 344:Lactobacilli 343: 338: 334: 328: 307: 301: 297: 293: 284: 272: 266: 260: 254: 248: 244: 242: 235: 229: 223: 217: 211: 205: 199: 193: 187: 181: 177:Sphingomonas 175: 169: 133: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1451:Microbiomes 1271:Human flora 982:(1): 9–59. 518:Bacteriocin 476:Lactococcus 460:Micrococcus 440:Pseudomonas 376:Lactococcus 274:Aspergillus 262:Neosartorya 207:Veillonella 201:Megasphaera 183:Pseudomonas 1193:: 563–74. 711:Genome Med 524:References 464:Veillonela 448:Prevotella 436:Mycoplasma 428:microbiota 358:Physiology 337:PhoPc and 256:Malassezia 171:Prevotella 80:newspapers 1378:OpenBiome 1352:Dysbiosis 1336:Mycobiota 1142:: 51–56. 886:CiteSeerX 717:(7): 63. 468:Rhizobium 245:mycobiome 138:pulmonary 1445:Category 1435:Medicine 1396:Category 1326:Salivary 1316:Placenta 1217:23648426 1168:28260936 1117:27730630 1065:20585638 1025:PLOS ONE 1006:20141328 957:17914462 908:15191912 863:42000671 855:21235323 820:30816978 743:23899327 692:22683412 643:20052417 603:PLOS ONE 584:21364979 544:PLOS ONE 502:See also 414:(COPD), 368:Bacillus 150:bacteria 1423:Biology 1409:Portals 1366:Related 1208:3884050 1159:5327846 1108:7164007 1056:2890402 1033:Bibcode 997:3116451 948:2063476 811:6394755 734:3978422 683:3440512 634:2798952 611:Bibcode 575:3043049 552:Bibcode 366:Genera 250:Candida 158:viruses 136:is the 94:scholar 1321:Uterus 1299:Vagina 1215:  1205:  1166:  1156:  1115:  1105:  1063:  1053:  1004:  994:  955:  945:  906:  888:  861:  853:  818:  808:  741:  731:  690:  680:  641:  631:  582:  572:  490:, and 474:, and 442:, and 418:, and 416:asthma 386:, and 271:, and 234:, and 216:, and 166:genera 96:  89:  82:  75:  67:  1289:Mouth 859:S2CID 323:NF-κB 154:fungi 101:JSTOR 87:books 1294:Skin 1284:Lung 1213:PMID 1164:PMID 1113:PMID 1061:PMID 1002:PMID 953:PMID 904:PMID 851:PMID 816:PMID 771:help 739:PMID 688:PMID 639:PMID 580:PMID 160:and 132:The 73:news 1279:Gut 1203:PMC 1195:doi 1154:PMC 1144:doi 1103:PMC 1095:doi 1091:590 1051:PMC 1041:doi 992:PMC 984:doi 943:PMC 935:doi 896:doi 843:doi 806:PMC 798:doi 729:PMC 719:doi 678:PMC 670:doi 666:160 629:PMC 619:doi 570:PMC 560:doi 56:by 1447:: 1211:. 1201:. 1191:21 1189:. 1185:. 1162:. 1152:. 1140:10 1138:. 1134:. 1111:. 1101:. 1089:. 1085:. 1073:^ 1059:. 1049:. 1039:. 1027:. 1023:. 1000:. 990:. 980:14 978:. 974:. 951:. 941:. 931:26 929:. 925:. 902:. 894:. 882:31 880:. 857:. 849:. 839:30 837:. 814:. 804:. 794:57 792:. 788:. 760:: 758:}} 754:{{ 745:. 737:. 727:. 713:. 709:. 686:. 676:. 664:. 660:. 637:. 627:. 617:. 605:. 601:. 578:. 568:. 558:. 546:. 542:. 486:, 470:, 466:, 462:, 458:, 454:, 450:, 438:, 382:, 378:, 374:, 370:, 300:, 265:, 259:, 253:, 228:, 210:, 204:, 198:, 192:, 186:, 180:, 174:, 168:: 156:, 152:, 1411:: 1255:e 1248:t 1241:v 1219:. 1197:: 1170:. 1146:: 1119:. 1097:: 1067:. 1043:: 1035:: 1029:5 1008:. 986:: 959:. 937:: 910:. 898:: 865:. 845:: 822:. 800:: 773:) 769:( 721:: 715:5 694:. 672:: 645:. 621:: 613:: 607:5 586:. 562:: 554:: 548:6 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Lung microbiome

verification
improve this article
adding citations to reliable sources
"Lung microbiota"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
pulmonary
microorganisms
respiratory tract
bacteria
fungi
viruses
bacteriophages
genera
Prevotella
Sphingomonas
Pseudomonas
Acinetobacter
Fusobacterium
Megasphaera
Veillonella
Staphylococcus
Streptococcus
Moraxella catarrhalis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.