Knowledge (XXG)

Laccase

Source đź“ť

375:
have been found to greatly increase the maximum resistance and decrease extensibility of the dough. The resistance was increased due to the crosslinking of AX via ferulic acid and resulting in a strong AX and gluten network. Although laccase is known to crosslink AX, under the microscope it was found that the laccase also acted on the flour proteins. Oxidation of the ferulic acid on AX to form ferulic acid radicals increased the oxidation rate of free SH groups on the gluten proteins and thus influenced the formation of S-S bonds between gluten polymers. Laccase is also able to oxidize peptide-bound tyrosine, but very poorly. Because of the increased strength of the dough, it showed irregular bubble formation during proofing. This was a result of the gas (carbon dioxide) becoming trapped within the crust so it could not diffuse out (like it would have normally) and causing abnormal pore size. Resistance and extensibility was a function of dosage, but at very high dosage the dough showed contradictory results: maximum resistance was reduced drastically. The high dosage may have caused extreme changes in the structure of dough, resulting in incomplete gluten formation. Another reason is that it may mimic overmixing, causing negative effects on gluten structure. Laccase-treated dough had low stability over prolonged storage. The dough became softer and this is related to laccase mediation. The laccase-mediated radical mechanism creates secondary reactions of FA-derived radicals that result in breaking of covalent linkages in AX and weakening of the AX gel.
424: 294: 374:
Laccases have the potential to crosslink food polymers such as proteins and nonstarch polysaccharides in dough. In non-starch polysaccharides, such as arabinoxylans (AX), laccase catalyzes the oxidative gelation of feruloylated arabinoxylans by dimerization of their ferulic esters. These cross-links
393:
Pers. (1794). Laccase is active at wine pH and its activity is not readily suppressed by sulfur dioxide. It has been noted to cause oxidative browning in white wines and loss of colour in red wines. It can also degrade a number of key phenolic compounds critical to wine quality. Aside from wine,
350:
removes all copper from the enzyme, and re-embedding with type I and type II copper has been shown to be impossible. Type III copper, however, can be re-embedded back into the enzyme. A variety of other anions inhibit laccase.
1034:
Zimdars S, Hitschler J, Schieber A, Weber F (2017). "Oxidation of wine polyphenols by secretomes of wild Botrytis cinerea strains from white and red grape varieties and determination of their specific laccase activity".
946:
Zimdars S, Hitschler J, Schieber A, Weber F (2017). "Oxidation of wine polyphenols by secretomes of wild Botrytis cinerea strains from white and red grape varieties and determination of their specific laccase activity".
317:
The active site consists of four copper centers, which adopt structures classified as type I, type II, and type III. A tricopper ensemble contains types II and III copper (see figure). It is this center that binds
342:. The final copper center is the type II copper center, which has two histidine ligands and a hydroxide ligand. The type II together with the type III copper center forms the tricopper ensemble, which is where 366:. They can be paired with an electron mediator to facilitate electron transfer to a solid electrode wire. Laccases are some of the few oxidoreductases commercialized as industrial catalysts. 1451: 182: 1444: 201: 974:
Vignault A, Pascual O, Jourdes M, Moine V, Fermaud M, Roudet J, Canals JM, Teissedre PL, Zamora F (2019). "Impact of enological tannins on laccase activity".
338:
ligand. The type III copper center consists of two copper atoms that each possess three histidine ligands and are linked to one another via a hydroxide
1485: 1437: 1503: 326:, but functions solely as an electron transfer site. The type I copper center consists of a single copper atom that is ligated to a minimum of two 919:
Minussi RC, Rossi M, Bologna L, Rotilio D, Pastore GM, Durán N (2007). "Phenols Removal in Musts: Strategy for Wine Stabilization by Laccase".
1252: 865: 725: 491:
Cohen R, Persky L, Hadar Y (April 2002). "Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus".
1882: 708:
Alcalde M (2007). "Laccases: Biological functions, molecular structure and industrial applications.". In Polaina J, MacCabe AP (eds.).
1593: 884:
Selinheimo E, Autio K, Kruus K, Buchert J (July 2007). "Elucidating the mechanism of laccase and tyrosinase in wheat bread making".
792:"Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks" 643: 322:
and reduces it to water. Each Cu(I,II) couple delivers one electron required for this conversion. The type I copper does not bind O
405: 194: 145: 121: 1749: 1341:
Suresh PS, Kumar A, Kumar R, Singh VP (January 2008). "An in silico approach to bioremediation: laccase as a case study".
1164:
Monti, Daniela; Ottolina, Gianluca; Carrea, Giacomo; Riva, Sergio (2011). "Redox Reactions Catalyzed by Isolated Enzymes".
334:
residue, but in some laccases produced by certain plants and bacteria, the type I copper center contains an additional
346:
reduction takes place. The type III copper can be replaced by Hg(II), which causes a decrease in laccase activity.
1261: 1734: 1850: 1837: 1824: 1811: 1798: 1785: 1772: 1536: 1513: 1495: 1477: 355: 1744: 139: 1698: 1641: 1468: 1423: 222: 32: 126: 1872: 1646: 363: 263: 1544: 206: 1667: 1586: 278: 114: 1739: 49: 1265: 1212: 803: 741:
Thorum MS, Anderson CA, Hatch JJ, Campbell AS, Marshall NM, Zimmerman SC, et al. (August 2010).
1703: 1560: 397:
The ability of laccases to modify complex organic molecules has attracted attention in the area of
258: 229: 142: 44: 1064:"Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications" 66: 1877: 1636: 1395: 1228: 743:"Direct, Electrocatalytic Oxygen Reduction by Laccase on Anthracene-2-methanethiol Modified Gold" 516: 1201:"Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi—a Critical Review" 618: 1887: 1387: 1358: 1291: 1283: 1181: 1146: 1095: 901: 861: 831: 772: 721: 690: 639: 633: 600: 565: 508: 473: 456:
Solomon EI, Sundaram UM, Machonkin TE (November 1996). "Multicopper Oxidases and Oxygenases".
398: 133: 1429: 1682: 1677: 1651: 1579: 1521: 1379: 1350: 1327: 1273: 1220: 1173: 1136: 1126: 1085: 1075: 1044: 1014: 983: 956: 928: 893: 821: 811: 762: 754: 713: 680: 672: 592: 555: 547: 500: 465: 389: 274: 102: 1729: 1713: 1626: 1414: 409: 339: 1278: 1247: 78: 1269: 1216: 807: 37: 1767: 1708: 1460: 1141: 1114: 1090: 1063: 1003:"Effects of laccase from Botrytis cinerea on the oxidative degradation of anthocyanins" 826: 791: 767: 742: 685: 660: 560: 535: 428: 387:
Laccase is produced by a number of fungal species that can infect grapes, most notably
253: 177: 157: 1866: 1672: 1631: 1019: 1002: 987: 359: 152: 1399: 1232: 520: 1621: 1419: 536:"Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans" 932: 855: 596: 1845: 1780: 1616: 1464: 1332: 1315: 161: 1354: 796:
Proceedings of the National Academy of Sciences of the United States of America
423: 1224: 676: 504: 335: 249: 241: 1391: 1287: 1080: 1048: 960: 717: 1819: 1793: 816: 327: 306: 302: 262:, play a role in the degradation of lignin, and can therefore be classed as 237: 1362: 1295: 1246:
Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva (2016-06-12).
1185: 1150: 1099: 905: 835: 776: 694: 604: 569: 512: 477: 293: 1383: 1131: 551: 343: 331: 310: 1370:
Xu F (Spring 2005). "Applications of oxidoreductases: Recent progress".
225: 90: 1200: 857:
Tyrosinase and laccase as novel crosslinking tools for food biopolymers
347: 282: 267: 109: 1177: 897: 758: 534:
Lee D, Jang EH, Lee M, Kim SW, Lee Y, Lee KT, Bahn YS (October 2019).
469: 266:. Other laccases produced by fungi can facilitate the biosynthesis of 1832: 1602: 298: 245: 233: 189: 85: 73: 61: 273:
Laccase was first studied by Hikorokuro Yoshida in 1883 and then by
232:
found in plants, fungi, and bacteria. Laccases oxidize a variety of
1806: 384: 292: 270:
pigments. Laccases catalyze ring cleavage of aromatic compounds.
1062:
Mayolo-Deloisa K, González-González M, Rito-Palomares M (2020).
1001:
Giménez P, Just-Borràs A, Gombau J, Canals JM, Zamora F (2023).
583:
Claus H (2004). "Laccases: structure, reactions, distribution".
97: 1575: 1433: 1113:
Osma JF, Toca-Herrera JL, RodrĂ­guez-Couto S (September 2010).
790:
Wheeldon IR, Gallaway JW, Barton SC, Banta S (October 2008).
404:
Laccases have been also been studied as catalysts to degrade
1316:"Laccases for Denim Bleaching: An Eco-Friendly Alternative" 1571: 297:
The tricopper site found in many laccases; note that each
635:
Science and civilisation in China: Chemistry and chemical
256:. Other laccases, such as those produced by the fungus 244:. For example, laccases play a role in the formation of 638:. Vol. 5. Cambridge University Press. p. 209. 1199:
Asif MB, Hai FI, Singh L, Price WE, Nghiem LD (2017).
661:"Electron transfer and reaction mechanism of laccases" 1758: 1722: 1691: 1660: 1609: 1553: 1535: 1512: 1494: 1476: 1248:"Plant Molecular Farming: Much More than Medicines" 200: 188: 176: 171: 151: 132: 120: 108: 96: 84: 72: 60: 55: 43: 31: 26: 21: 362:. The enzyme has been examined as the cathode in 394:laccases are of interest in the food industry. 383:Laccases have been applied in the production of 849: 847: 845: 451: 449: 1587: 1445: 1343:Journal of Molecular Graphics & Modelling 1068:Frontiers in Bioengineering and Biotechnology 879: 877: 8: 860:. VTT Technical Research Centre of Finland. 1594: 1580: 1572: 1452: 1438: 1430: 886:Journal of Agricultural and Food Chemistry 168: 1486:Trans-acenaphthene-1,2-diol dehydrogenase 1422:at the U.S. National Library of Medicine 1331: 1277: 1140: 1130: 1089: 1079: 1018: 825: 815: 766: 747:The Journal of Physical Chemistry Letters 684: 559: 1115:"Uses of laccases in the food industry" 445: 248:by promoting the oxidative coupling of 493:Applied Microbiology and Biotechnology 18: 1253:Annual Review of Analytical Chemistry 7: 1378:(1). Mary Ann Liebert, Inc.: 38–50. 1314:Rodriguez-Couto, S (February 2012). 1279:10.1146/annurev-anchem-071015-041706 665:Cellular and Molecular Life Sciences 632:Lu GD, Ho PY, Sivin N (1980-09-25). 236:substrates, performing one-electron 1504:Coenzyme Q - cytochrome c reductase 659:Jones SM, Solomon EI (March 2015). 14: 1020:10.20870/oeno-one.2023.57.3.7567 988:10.20870/oeno-one.2019.53.1.2361 619:"Gabriel Bertrand on isimabomba" 422: 712:. Springer. pp. 461–476. 309:(color code: copper is brown, 1: 933:10.1016/j.molcatb.2006.12.004 854:Selinheimo E (October 2008). 379:Biotechnological applications 597:10.1016/j.micron.2003.10.029 1333:10.2174/1876520301205010001 254:naturally occurring phenols 1904: 1883:Natural phenols metabolism 1355:10.1016/j.jmgm.2007.05.005 285:, hence the name laccase. 277:in 1894 in the sap of the 1750:Michaelis–Menten kinetics 1225:10.1007/s40726-017-0049-5 1205:Current Pollution Reports 677:10.1007/s00018-014-1826-6 505:10.1007/s00253-002-0930-y 356:oxygen reduction reaction 281:, where it helps to form 167: 1642:Diffusion-limited enzyme 1424:Medical Subject Headings 1372:Industrial Biotechnology 1081:10.3389/fbioe.2020.00222 1049:10.1021/acs.jafc.7b04375 961:10.1021/acs.jafc.7b04375 718:10.1007/1-4020-5377-0_26 264:lignin-modifying enzymes 921:J. Mol. Catal. B: Enzym 817:10.1073/pnas.0805249105 370:Activity in wheat dough 364:enzymatic biofuel cells 301:center is bound to the 1545:Cytochrome b6f complex 330:residues and a single 314: 1735:Eadie–Hofstee diagram 1668:Allosteric regulation 1384:10.1089/ind.2005.1.38 552:10.1128/mBio.02267-19 354:Laccases affects the 296: 279:Japanese lacquer tree 1745:Lineweaver–Burk plot 1320:Open Textile Journal 230:multicopper oxidases 1561:Alternative oxidase 1270:2016ARAC....9..271T 1217:2017CPolR...3...88A 1132:10.4061/2010/918761 1037:J. Agric. Food Chem 949:J. Agric. Food Chem 808:2008PNAS..10515275W 802:(40): 15275–15280. 406:emerging pollutants 259:Pleurotus ostreatus 1704:Enzyme superfamily 1637:Enzyme promiscuity 710:Industrial Enzymes 429:Biology portal 315: 1860: 1859: 1569: 1568: 1178:10.1021/cr100334x 898:10.1021/jf0703349 892:(15): 6357–6365. 867:978-951-38-7118-5 759:10.1021/jz100745s 753:(15): 2251–2254. 727:978-1-4020-5376-4 470:10.1021/cr950046o 399:organic synthesis 216: 215: 212: 211: 115:metabolic pathway 1895: 1740:Hanes–Woolf plot 1683:Enzyme activator 1678:Enzyme inhibitor 1652:Enzyme catalysis 1596: 1589: 1582: 1573: 1522:Catechol oxidase 1454: 1447: 1440: 1431: 1403: 1366: 1337: 1335: 1300: 1299: 1281: 1243: 1237: 1236: 1196: 1190: 1189: 1172:(7): 4111–4140. 1166:Chemical Reviews 1161: 1155: 1154: 1144: 1134: 1110: 1104: 1103: 1093: 1083: 1059: 1053: 1052: 1031: 1025: 1024: 1022: 998: 992: 991: 971: 965: 964: 943: 937: 936: 916: 910: 909: 881: 872: 871: 851: 840: 839: 829: 819: 787: 781: 780: 770: 738: 732: 731: 705: 699: 698: 688: 656: 650: 649: 629: 623: 622: 615: 609: 608: 580: 574: 573: 563: 546:(5): e02267-19. 531: 525: 524: 488: 482: 481: 464:(7): 2563–2606. 458:Chemical Reviews 453: 427: 426: 390:Botrytis cinerea 275:Gabriel Bertrand 169: 19: 16:Class of enzymes 1903: 1902: 1898: 1897: 1896: 1894: 1893: 1892: 1863: 1862: 1861: 1856: 1768:Oxidoreductases 1754: 1730:Enzyme kinetics 1718: 1714:List of enzymes 1687: 1656: 1627:Catalytic triad 1605: 1600: 1570: 1565: 1549: 1531: 1508: 1490: 1472: 1461:Oxidoreductases 1458: 1411: 1406: 1369: 1340: 1313: 1309: 1307:General sources 1304: 1303: 1245: 1244: 1240: 1198: 1197: 1193: 1163: 1162: 1158: 1119:Enzyme Research 1112: 1111: 1107: 1061: 1060: 1056: 1043:: 10582–10590. 1033: 1032: 1028: 1000: 999: 995: 973: 972: 968: 955:: 10582–10590. 945: 944: 940: 918: 917: 913: 883: 882: 875: 868: 853: 852: 843: 789: 788: 784: 740: 739: 735: 728: 707: 706: 702: 658: 657: 653: 646: 631: 630: 626: 617: 616: 612: 582: 581: 577: 533: 532: 528: 490: 489: 485: 455: 454: 447: 442: 437: 421: 418: 410:pharmaceuticals 381: 372: 340:bridging ligand 325: 321: 291: 17: 12: 11: 5: 1901: 1899: 1891: 1890: 1885: 1880: 1875: 1873:Copper enzymes 1865: 1864: 1858: 1857: 1855: 1854: 1841: 1828: 1815: 1802: 1789: 1776: 1762: 1760: 1756: 1755: 1753: 1752: 1747: 1742: 1737: 1732: 1726: 1724: 1720: 1719: 1717: 1716: 1711: 1706: 1701: 1695: 1693: 1692:Classification 1689: 1688: 1686: 1685: 1680: 1675: 1670: 1664: 1662: 1658: 1657: 1655: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1613: 1611: 1607: 1606: 1601: 1599: 1598: 1591: 1584: 1576: 1567: 1566: 1564: 1563: 1557: 1555: 1551: 1550: 1548: 1547: 1541: 1539: 1533: 1532: 1530: 1529: 1524: 1518: 1516: 1510: 1509: 1507: 1506: 1500: 1498: 1492: 1491: 1489: 1488: 1482: 1480: 1474: 1473: 1459: 1457: 1456: 1449: 1442: 1434: 1428: 1427: 1417: 1410: 1409:External links 1407: 1405: 1404: 1367: 1349:(5): 845–849. 1338: 1310: 1308: 1305: 1302: 1301: 1262:Annual Reviews 1238: 1191: 1156: 1105: 1054: 1026: 993: 966: 938: 927:(3): 102–107. 911: 873: 866: 841: 782: 733: 726: 700: 671:(5): 869–883. 651: 644: 624: 610: 591:(1–2): 93–96. 575: 526: 499:(5): 582–594. 483: 444: 443: 441: 438: 436: 433: 432: 431: 417: 414: 380: 377: 371: 368: 360:overpotentials 323: 319: 305:sidechains of 290: 287: 252:, a family of 214: 213: 210: 209: 204: 198: 197: 192: 186: 185: 180: 174: 173: 165: 164: 155: 149: 148: 137: 130: 129: 124: 118: 117: 112: 106: 105: 100: 94: 93: 88: 82: 81: 76: 70: 69: 64: 58: 57: 53: 52: 47: 41: 40: 35: 29: 28: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1900: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1870: 1868: 1852: 1848: 1847: 1842: 1839: 1835: 1834: 1829: 1826: 1822: 1821: 1816: 1813: 1809: 1808: 1803: 1800: 1796: 1795: 1790: 1787: 1783: 1782: 1777: 1774: 1770: 1769: 1764: 1763: 1761: 1757: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1727: 1725: 1721: 1715: 1712: 1710: 1709:Enzyme family 1707: 1705: 1702: 1700: 1697: 1696: 1694: 1690: 1684: 1681: 1679: 1676: 1674: 1673:Cooperativity 1671: 1669: 1666: 1665: 1663: 1659: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1632:Oxyanion hole 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1614: 1612: 1608: 1604: 1597: 1592: 1590: 1585: 1583: 1578: 1577: 1574: 1562: 1559: 1558: 1556: 1552: 1546: 1543: 1542: 1540: 1538: 1534: 1528: 1525: 1523: 1520: 1519: 1517: 1515: 1511: 1505: 1502: 1501: 1499: 1497: 1493: 1487: 1484: 1483: 1481: 1479: 1475: 1470: 1466: 1462: 1455: 1450: 1448: 1443: 1441: 1436: 1435: 1432: 1425: 1421: 1418: 1416: 1413: 1412: 1408: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1339: 1334: 1329: 1325: 1321: 1317: 1312: 1311: 1306: 1297: 1293: 1289: 1285: 1280: 1275: 1271: 1267: 1263: 1259: 1255: 1254: 1249: 1242: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1211:(2): 88–103. 1210: 1206: 1202: 1195: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1160: 1157: 1152: 1148: 1143: 1138: 1133: 1128: 1124: 1120: 1116: 1109: 1106: 1101: 1097: 1092: 1087: 1082: 1077: 1073: 1069: 1065: 1058: 1055: 1050: 1046: 1042: 1038: 1030: 1027: 1021: 1016: 1012: 1008: 1004: 997: 994: 989: 985: 981: 977: 970: 967: 962: 958: 954: 950: 942: 939: 934: 930: 926: 922: 915: 912: 907: 903: 899: 895: 891: 887: 880: 878: 874: 869: 863: 859: 858: 850: 848: 846: 842: 837: 833: 828: 823: 818: 813: 809: 805: 801: 797: 793: 786: 783: 778: 774: 769: 764: 760: 756: 752: 748: 744: 737: 734: 729: 723: 719: 715: 711: 704: 701: 696: 692: 687: 682: 678: 674: 670: 666: 662: 655: 652: 647: 645:9780521085731 641: 637: 636: 628: 625: 620: 614: 611: 606: 602: 598: 594: 590: 586: 579: 576: 571: 567: 562: 557: 553: 549: 545: 541: 537: 530: 527: 522: 518: 514: 510: 506: 502: 498: 494: 487: 484: 479: 475: 471: 467: 463: 459: 452: 450: 446: 439: 434: 430: 425: 420: 419: 415: 413: 411: 407: 402: 400: 395: 392: 391: 386: 378: 376: 369: 367: 365: 361: 357: 352: 349: 345: 341: 337: 333: 329: 312: 308: 304: 300: 295: 288: 286: 284: 280: 276: 271: 269: 265: 261: 260: 255: 251: 247: 243: 240:, leading to 239: 235: 231: 227: 224: 220: 208: 205: 203: 199: 196: 193: 191: 187: 184: 181: 179: 175: 170: 166: 163: 159: 156: 154: 153:Gene Ontology 150: 147: 144: 141: 138: 135: 131: 128: 125: 123: 119: 116: 113: 111: 107: 104: 101: 99: 95: 92: 91:NiceZyme view 89: 87: 83: 80: 77: 75: 71: 68: 65: 63: 59: 54: 51: 48: 46: 42: 39: 36: 34: 30: 25: 20: 1846:Translocases 1843: 1830: 1817: 1804: 1791: 1781:Transferases 1778: 1765: 1622:Binding site 1526: 1375: 1371: 1346: 1342: 1323: 1319: 1257: 1251: 1241: 1208: 1204: 1194: 1169: 1165: 1159: 1122: 1118: 1108: 1071: 1067: 1057: 1040: 1036: 1029: 1010: 1006: 996: 979: 975: 969: 952: 948: 941: 924: 920: 914: 889: 885: 856: 799: 795: 785: 750: 746: 736: 709: 703: 668: 664: 654: 634: 627: 621:(in French). 613: 588: 584: 578: 543: 539: 529: 496: 492: 486: 461: 457: 403: 396: 388: 382: 373: 353: 316: 272: 257: 242:crosslinking 218: 217: 79:BRENDA entry 1617:Active site 1264:: 271–294. 289:Active site 250:monolignols 67:IntEnz view 50:80498-15-3 27:Identifiers 1867:Categories 1820:Isomerases 1794:Hydrolases 1661:Regulation 1326:(1): 1–7. 1125:: 918761. 1074:(8): 222. 435:References 336:methionine 307:histidines 238:oxidations 136:structures 103:KEGG entry 1878:EC 1.10.3 1699:EC number 1392:1931-8421 1288:1936-1327 440:Citations 328:histidine 313:is blue). 303:imidazole 56:Databases 1888:Proteins 1723:Kinetics 1647:Cofactor 1610:Activity 1467:family ( 1465:diphenol 1400:56165525 1363:17606396 1296:27049632 1233:51897758 1186:21526768 1151:21048873 1100:32266246 1007:OENO One 976:OENO One 906:17602567 836:18824691 777:20847902 695:25572295 605:15036303 570:31575776 521:45444911 513:11956739 478:11848837 416:See also 344:dioxygen 332:cysteine 311:nitrogen 234:phenolic 226:1.10.3.2 219:Laccases 207:proteins 195:articles 183:articles 140:RCSB PDB 38:1.10.3.2 1833:Ligases 1603:Enzymes 1537:1.10.99 1527:Laccase 1420:Laccase 1266:Bibcode 1213:Bibcode 1142:2963825 1091:7105568 827:2563127 804:Bibcode 768:2938065 686:4323859 561:6775464 358:at low 348:Cyanide 283:lacquer 268:melanin 162:QuickGO 127:profile 110:MetaCyc 45:CAS no. 22:Laccase 1807:Lyases 1514:1.10.3 1496:1.10.2 1478:1.10.1 1426:(MeSH) 1415:BRENDA 1398:  1390:  1361:  1294:  1286:  1231:  1184:  1149:  1139:  1098:  1088:  904:  864:  834:  824:  775:  765:  724:  693:  683:  642:  603:  585:Micron 568:  558:  519:  511:  476:  299:copper 246:lignin 228:) are 190:PubMed 172:Search 158:AmiGO 146:PDBsum 86:ExPASy 74:BRENDA 62:IntEnz 33:EC no. 1759:Types 1554:Other 1471:1.10) 1396:S2CID 1260:(1). 1229:S2CID 517:S2CID 385:wines 122:PRIAM 1851:list 1844:EC7 1838:list 1831:EC6 1825:list 1818:EC5 1812:list 1805:EC4 1799:list 1792:EC3 1786:list 1779:EC2 1773:list 1766:EC1 1388:ISSN 1359:PMID 1292:PMID 1284:ISSN 1182:PMID 1147:PMID 1123:2010 1096:PMID 902:PMID 862:ISBN 832:PMID 773:PMID 722:ISBN 691:PMID 640:ISBN 601:PMID 566:PMID 540:mBio 509:PMID 474:PMID 408:and 202:NCBI 143:PDBe 98:KEGG 1380:doi 1351:doi 1328:doi 1274:doi 1221:doi 1174:doi 1170:111 1137:PMC 1127:doi 1086:PMC 1076:doi 1045:doi 1015:doi 984:doi 957:doi 929:doi 894:doi 822:PMC 812:doi 800:105 763:PMC 755:doi 714:doi 681:PMC 673:doi 593:doi 556:PMC 548:doi 501:doi 466:doi 401:]. 178:PMC 134:PDB 1869:: 1469:EC 1463:: 1394:. 1386:. 1374:. 1357:. 1347:26 1345:. 1322:. 1318:. 1290:. 1282:. 1272:. 1256:. 1250:. 1227:. 1219:. 1207:. 1203:. 1180:. 1168:. 1145:. 1135:. 1121:. 1117:. 1094:. 1084:. 1070:. 1066:. 1041:65 1039:. 1013:. 1011:57 1009:. 1005:. 982:. 980:53 978:. 953:65 951:. 925:45 923:. 900:. 890:55 888:. 876:^ 844:^ 830:. 820:. 810:. 798:. 794:. 771:. 761:. 749:. 745:. 720:. 689:. 679:. 669:72 667:. 663:. 599:. 589:35 587:. 564:. 554:. 544:10 542:. 538:. 515:. 507:. 497:58 495:. 472:. 462:96 460:. 448:^ 412:. 223:EC 160:/ 1853:) 1849:( 1840:) 1836:( 1827:) 1823:( 1814:) 1810:( 1801:) 1797:( 1788:) 1784:( 1775:) 1771:( 1595:e 1588:t 1581:v 1453:e 1446:t 1439:v 1402:. 1382:: 1376:1 1365:. 1353:: 1336:. 1330:: 1324:5 1298:. 1276:: 1268:: 1258:9 1235:. 1223:: 1215:: 1209:3 1188:. 1176:: 1153:. 1129:: 1102:. 1078:: 1072:8 1051:. 1047:: 1023:. 1017:: 990:. 986:: 963:. 959:: 935:. 931:: 908:. 896:: 870:. 838:. 814:: 806:: 779:. 757:: 751:1 730:. 716:: 697:. 675:: 648:. 607:. 595:: 572:. 550:: 523:. 503:: 480:. 468:: 324:2 320:2 318:O 221:(

Index

EC no.
1.10.3.2
CAS no.
80498-15-3
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
Gene Ontology
AmiGO
QuickGO
PMC
articles
PubMed
articles
NCBI
proteins
EC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑