Knowledge (XXG)

Lake ecosystem

Source đź“ť

655:. The amount of oxygen present in standing waters depends upon: 1) the area of transparent water exposed to the air, 2) the circulation of water within the system and 3) the amount of oxygen generated and used by organisms present. In shallow, plant-rich pools there may be great fluctuations of oxygen, with extremely high concentrations occurring during the day due to photosynthesis and very low values at night when respiration is the dominant process of primary producers. Thermal stratification in larger systems can also affect the amount of oxygen present in different zones. The epilimnion is oxygen rich because it circulates quickly, gaining oxygen via contact with the air. The hypolimnion, however, circulates very slowly and has no atmospheric contact. Additionally, fewer green plants exist in the hypolimnion, so there is less oxygen released from photosynthesis. In spring and fall when the epilimnion and hypolimnion mix, oxygen becomes more evenly distributed in the system. Low oxygen levels are characteristic of the profundal zone due to the accumulation of decaying vegetation and animal matter that “rains” down from the pelagic and benthic zones and the inability to support primary producers. 634:. Exactly how these currents become established is still not well understood, but it is evident that it involves some interaction between horizontal surface currents and surface gravity waves. The visible result of these rotations, which can be seen in any lake, are the surface foamlines that run parallel to the wind direction. Positively buoyant particles and small organisms concentrate in the foamline at the surface and negatively buoyant objects are found in the upwelling current between the two rotations. Objects with neutral buoyancy tend to be evenly distributed in the water column. This turbulence circulates nutrients in the water column, making it crucial for many pelagic species, however its effect on benthic and profundal organisms is minimal to non-existent, respectively. The degree of nutrient circulation is system specific, as it depends upon such factors as wind strength and duration, as well as lake or pool depth and productivity. 2598: 1203:. Lakes and ponds that contain bedrock that is rich in carbonates have a natural buffer, resulting in no alteration of pH. Systems without this bedrock, however, are very sensitive to acid inputs because they have a low neutralizing capacity, resulting in pH declines even with only small inputs of acid. At a pH of 5–6 algal species diversity and biomass decrease considerably, leading to an increase in water transparency – a characteristic feature of acidified lakes. As the pH continues lower, all fauna becomes less diverse. The most significant feature is the disruption of fish reproduction. Thus, the population is eventually composed of few, old individuals that eventually die and leave the systems without fishes. Acid rain has been especially harmful to lakes in 676: 3294: 1299: 1136:
include energy availability, climatic variability, disturbance, competition, etc. Despite this global diversity gradient, this pattern can be weak for freshwater systems compared to global marine and terrestrial systems. This may be related to size, as Hillebrand and Azovsky found that smaller organisms (protozoa and plankton) did not follow the expected trend strongly, while larger species (vertebrates) did. They attributed this to better dispersal ability by smaller organisms, which may result in high distributions globally.
1238:." This bloom decreases water transparency, leading to the loss of submerged plants. The resultant reduction in habitat structure has negative impacts on the species that utilize it for spawning, maturation, and general survival. Additionally, the large number of short-lived phytoplankton result in a massive amount of dead biomass settling into the sediment. Bacteria need large amounts of oxygen to decompose this material, thus reducing the oxygen concentration of the water. This is especially pronounced in 662:
system production. The phosphorus cycle is complex, but the model outlined below describes the basic pathways. Phosphorus mainly enters a pond or lake through runoff from the watershed or by atmospheric deposition. Upon entering the system, a reactive form of phosphorus is usually taken up by algae and macrophytes, which release a non-reactive phosphorus compound as a byproduct of photosynthesis. This phosphorus can drift downwards and become part of the benthic or profundal sediment, or it can be
512:, is the shallow zone near the shore. This is where rooted wetland plants occur. The offshore is divided into two further zones, an open water zone and a deep water zone. In the open water zone (or photic zone) sunlight supports photosynthetic algae and the species that feed upon them. In the deep water zone, sunlight is not available and the food web is based on detritus entering from the littoral and photic zones. Some systems use other names. The off shore areas may be called the 866:
with unsuitable abiotic factors in one zone by simply moving to another. A detrital feeder in the profundal zone, for example, that finds the oxygen concentration has dropped too low may feed closer to the benthic zone. A fish might also alter its residence during different parts of its life history: hatching in a sediment nest, then moving to the weedy benthic zone to develop in a protected environment with food resources, and finally into the pelagic zone as an adult.
5110: 778:
woody tissue, investing that energy into fast growth instead. In order to contend with stresses induced by the wind and waves, plants must be both flexible and tough. Light, water depth, and substrate types are the most important factors controlling the distribution of submerged aquatic plants. Macrophytes are sources of food, oxygen, and habitat structure in the benthic zone, but cannot penetrate the depths of the euphotic zone, and hence are not found there.
561:, the major energy source of lentic systems. The amount of light received depends upon a combination of several factors. Small ponds may experience shading by surrounding trees, while cloud cover may affect light availability in all systems, regardless of size. Seasonal and diurnal considerations also play a role in light availability because the shallower the angle at which light strikes water, the more light is lost by reflection. This is known as 709: 846:), and numerous types of insects. These organisms are mostly found in the areas of macrophyte growth, where the richest resources, highly-oxygenated water, and warmest portion of the ecosystem are found. The structurally diverse macrophyte beds are important sites for the accumulation of organic matter, and provide an ideal area for colonization. The sediments and plants also offer a great deal of protection from predatory fishes. 787: 31: 1178:, which reaches a depth of 1500 m and has a sedimentation rate of 0.5 mm/yr. Assuming that sedimentation is not influenced by anthropogenic factors, this system should go extinct in approximately 3 million years. Shallow lentic systems might also fill in as swamps encroach inward from the edges. These processes operate on a much shorter timescale, taking hundreds to thousands of years to complete the extinction process. 586:, where internal body temperatures are defined by the surrounding system. Water can be heated or cooled through radiation at the surface and conduction to or from the air and surrounding substrate. Shallow ponds often have a continuous temperature gradient from warmer waters at the surface to cooler waters at the bottom. In addition, temperature fluctuations can vary greatly in these systems, both diurnally and seasonally. 3320: 3308: 610: 167: 1285: 590:
season progresses, the warmer air temperatures heat the surface waters, making them less dense. The deeper waters remain cool and dense due to reduced light penetration. As the summer begins, two distinct layers become established, with such a large temperature difference between them that they remain stratified. The lowest zone in the lake is the coldest and is called the
2926: 920:
millimeters of the surface, likely due to inhibition by ultraviolet light. The exact depth and photosynthetic rate measurements of this curve are system-specific and depend upon: 1) the total biomass of photosynthesizing cells, 2) the amount of light attenuating materials, and 3) the abundance and frequency range of light absorbing pigments (i.e.
771:= not rooted in the substrate, and floating on the surface. These various forms of macrophytes generally occur in different areas of the benthic zone, with emergent vegetation nearest the shoreline, then floating-leaved macrophytes, followed by submersed vegetation. Free-floating macrophytes can occur anywhere on the system's surface. 857:, which greatly increases the amount of oxygen carried to cells. Because the concentration of oxygen within this zone is low, most species construct tunnels or burrows in which they can hide, and utilize the minimum amount of movements necessary to circulate water through, drawing oxygen to them without expending too much energy. 623: 818:, or dormancy period, that should allow the zooplankton to encounter conditions that are more favorable to survival when they finally hatch. The invertebrates that inhabit the benthic zone are numerically dominated by small species, and are species-rich compared to the zooplankton of the open water. They include: 122:, which has a maximum depth of 1642 m. The general distinction between pools/ponds and lakes is vague, but Brown states that ponds and pools have their entire bottom surfaces exposed to light, while lakes do not. In addition, some lakes become seasonally stratified. Ponds and pools have two regions: the 1135:
There is a well-documented global pattern that correlates decreasing plant and animal diversity with increasing latitude, that is to say, there are fewer species as one moves towards the poles. The cause of this pattern is one of the greatest puzzles for ecologists today. Theories for its explanation
666:
to the reactive form by microbes in the water column. Similarly, non-reactive phosphorus in the sediment can be remineralized into the reactive form. Sediments are generally richer in phosphorus than lake water, however, indicating that this nutrient may have a long residency time there before it is
973:
use scraping, rasping, and shredding adaptations to feed on periphytic algae and macrophytes. Members of the collector guild browse the sediments, picking out specific particles with raptorial appendages. Deposit feeding invertebrates indiscriminately consume sediment, digesting any organic material
808:
are tiny animals suspended in the water column. Like phytoplankton, these species have developed mechanisms that keep them from sinking to deeper waters, including drag-inducing body forms, and the active flicking of appendages (such as antennae or spines). Remaining in the water column may have its
940:
input of litterfall are examples of coarse particulate organic matter (CPOM>1 mm). Bacteria degrade these into fine particulate organic matter (FPOM<1 mm) and then further into usable nutrients. Small organisms such as plankton are also characterized as FPOM. Very low concentrations
865:
Fish have a range of physiological tolerances that are dependent upon which species they belong to. They have different lethal temperatures, dissolved oxygen requirements, and spawning needs that are based on their activity levels and behaviors. Because fish are highly mobile, they are able to deal
543:
can be part of the lentic system, as they form naturally along most lake shores, the width of the wetland and littoral zone being dependent upon the slope of the shoreline and the amount of natural change in water levels, within and among years. Often dead trees accumulate in this zone, either from
1173:
All lakes and ponds receive sediment inputs. Since these systems are not really expanding, it is logical to assume that they will become increasingly shallower in depth, eventually becoming wetlands or terrestrial vegetation. The length of this process should depend upon a combination of depth and
813:
sp., make daily vertical migrations in the water column by passively sinking to the darker lower depths during the day, and actively moving towards the surface during the night. Also, because conditions in a lentic system can be quite variable across seasons, zooplankton have the ability to switch
536:
which has plants still affected by the presence of the lake—this can include effects from windfalls, spring flooding, and winter ice damage. The production of the lake as a whole is the result of production from plants growing in the littoral zone, combined with production from plankton growing in
978:
guild, capturing and consuming living animals. The profundal zone is home to a unique group of filter feeders that use small body movements to draw a current through burrows that they have created in the sediment. This mode of feeding requires the least amount of motion, allowing these species to
777:
are more buoyant than their terrestrial counterparts because freshwater has a higher density than air. This makes structural rigidity unimportant in lakes and ponds (except in the aerial stems and leaves). Thus, the leaves and stems of most aquatic plants use less energy to construct and maintain
661:
is important for all organisms because it is a component of DNA and RNA and is involved in cell metabolism as a component of ATP and ADP. Also, phosphorus is not found in large quantities in freshwater systems, limiting photosynthesis in primary producers, making it the main determinant of lentic
573:
regions, the prior receiving sunlight and latter being below the depths of light penetration, making it void of photosynthetic capacity. In relation to lake zonation, the pelagic and benthic zones are considered to lie within the photic region, while the profundal zone is in the aphotic region.
956:
The decomposition of organic materials can continue in the benthic and profundal zones if the matter falls through the water column before being completely digested by the pelagic bacteria. Bacteria are found in the greatest abundance here in sediments, where they are typically 2-1000 times more
1198:
are naturally released from volcanoes, organic compounds in the soil, wetlands, and marine systems, but the majority of these compounds come from the combustion of coal, oil, gasoline, and the smelting of ores containing sulfur. These substances dissolve in atmospheric moisture and enter lentic
1052:
The biodiversity of a lentic system increases with the surface area of the lake or pond. This is attributable to the higher likelihood of partly terrestrial species of finding a larger system. Also, because larger systems typically have larger populations, the chance of extinction is decreased.
1012:
guild acquire nutrition from a host species, usually another fish or large vertebrate. Fish taxa are flexible in their feeding roles, varying their diets with environmental conditions and prey availability. Many species also undergo a diet shift as they develop. Therefore, it is likely that any
589:
Temperature regimes are very different in large lakes. In temperate regions, for example, as air temperatures increase, the icy layer formed on the surface of the lake breaks up, leaving the water at approximately 4 Â°C. This is the temperature at which water has the highest density. As the
979:
conserve energy. A small number of invertebrate taxa are predators in the profundal zone. These species are likely from other regions and only come to these depths to feed. The vast majority of invertebrates in this zone are deposit feeders, getting their energy from the surrounding sediments.
1021:
As noted in the previous sections, the lentic biota are linked in complex web of trophic relationships. These organisms can be considered to loosely be associated with specific trophic groups (e.g. primary producers, herbivores, primary carnivores, secondary carnivores, etc.). Scientists have
919:
process involves the combination of carbon dioxide, water, and solar energy to produce carbohydrates and dissolved oxygen. Within a lake or pond, the potential rate of photosynthesis generally decreases with depth due to light attenuation. Photosynthesis, however, is often low at the top few
1038:
processes are functioning when the abundance or diversity of members of higher trophic levels is dependent upon the availability or quality of resources from lower levels. Finally, a combined regulating theory, bottom-up:top-down, combines the predicted influences of consumers and resource
1265:, or the introduction of harmful diseases and parasites. With regard to native species, invaders may cause changes in size and age structure, distribution, density, population growth, and may even drive populations to extinction. Examples of prominent invaders of lentic systems include the 1076:
1. Increased nutrient and light availability result in rapid phytoplankton growth towards the end of winter. The dominant species, such as diatoms, are small and have quick growth capabilities. 2. These plankton are consumed by zooplankton, which become the dominant plankton taxa.
901:
species. Most of these vertebrates spend part of their time in terrestrial habitats, and thus, are not directly affected by abiotic factors in the lake or pond. Many fish species are important both as consumers and as prey species to the larger vertebrates mentioned above.
949:. Elements other than carbon, particularly phosphorus and nitrogen, are regenerated when protozoa feed on bacterial prey and this way, nutrients become once more available for use in the water column. This regeneration cycle is known as the 729:, are the principle photosynthesizers in ponds and lakes. Phytoplankton are found drifting in the water column of the pelagic zone. Many species have a higher density than water, which should cause them to sink inadvertently down into the 1069:) model, with 24 statements constructed from the analysis of numerous systems. The following includes a subset of these statements, as explained by Brönmark and Hansson illustrating succession through a single seasonal cycle: 602:. During the colder fall season, heat is lost at the surface and the epilimnion cools. When the temperatures of the two zones are close enough, the waters begin to mix again to create a uniform temperature, an event termed 1123:
9. Cold temperatures and decreased light availability result in lower rates of primary production and decreased phytoplankton populations. 10. Reproduction in zooplankton decreases due to lower temperatures and less prey.
987:
Fish size, mobility, and sensory capabilities allow them to exploit a broad prey base, covering multiple zonation regions. Like invertebrates, fish feeding habits can be categorized into guilds. In the pelagic zone,
1053:
Additional factors, including temperature regime, pH, nutrient availability, habitat complexity, speciation rates, competition, and predation, have been linked to the number of species present within systems.
695:
on the surfaces of rocks and plants, suspended in the water column, and in the sediments of the benthic and profundal zones. Other forms are also associated with the guts of lentic animals as parasites or in
565:. Once light has penetrated the surface, it may also be scattered by particles suspended in the water column. This scattering decreases the total amount of light as depth increases. Lakes are divided into 2757: 749:. Periphytic algae, on the other hand, are attached to a substrate. In lakes and ponds, they can cover all benthic surfaces. Both types of plankton are important as food sources and as oxygen providers. 3249: 606:. In the winter, inverse stratification occurs as water near the surface cools freezes, while warmer, but denser water remains near the bottom. A thermocline is established, and the cycle repeats. 145:. Over long periods of time, lakes, or bays within them, may gradually become enriched by nutrients and slowly fill in with organic sediments, a process called succession. When humans use the 1246:
prevents oxygen-rich water from the surface to mix with lower levels. Low or anoxic conditions preclude the existence of many taxa that are not physiologically tolerant of these conditions.
544:
windfalls on the shore or logs transported to the site during floods. This woody debris provides important habitat for fish and nesting birds, as well as protecting shorelines from erosion.
1039:
availability. It predicts that trophic levels close to the lowest trophic levels will be most influenced by bottom-up forces, while top-down effects should be strongest at top levels.
2752: 1234:
from runoff or leaching and subsequent groundwater flow. This increase in nutrients required for primary producers results in a massive increase of phytoplankton growth, termed a "
495: 1153:
activities. The rift lakes in Africa, for example are the result of seismic activity along the site of separation of two tectonic plates. Ice-formed lakes are created when
2597: 814:
from laying regular eggs to resting eggs when there is a lack of food, temperatures fall below 2 Â°C, or if predator abundance is high. These resting eggs have a
2782: 936:
The vast majority of bacteria in lakes and ponds obtain their energy by decomposing vegetation and animal matter. In the pelagic zone, dead fish and the occasional
4103: 3356: 745:
that can adjust vertical position, and allow movement in any direction. Phytoplankton can also maintain their presence in the water column by being circulated in
1061:
Phytoplankton and zooplankton communities in lake systems undergo seasonal succession in relation to nutrient availability, predation, and competition. Sommer
741:, or by changing their shapes to induce drag, thus slowing their descent. A very sophisticated adaptation utilized by a small number of species is a tail-like 2274: 1851:
Shimoda, Yuko; Azim, M. Ekram; Perhar, Gurbir; Ramin, Maryam; Kenney, Melissa A.; Sadraddini, Somayeh; Gudimov, Alex; Arhonditsis, George B. (1 March 2011).
4247: 2622: 1327: 1312: 996:
include fishes that feed on zooplankton in the water column (zooplanktivores), insects at the water's surface, on benthic structures, or in the sediment (
4317: 1030:. Typically, these processes operate only between two trophic levels, with no effect on the others. In some cases, however, aquatic systems experience a 700:
relationships. Bacteria play an important role in system metabolism through nutrient recycling, which is discussed in the Trophic Relationships section.
941:
of nutrients are released during decomposition because the bacteria are utilizing them to build their own biomass. Bacteria, however, are consumed by
924:) inside of photosynthesizing cells. The energy created by these primary producers is important for the community because it is transferred to higher 130:, which comprises the bottom and shore regions. Since lakes have deep bottom regions not exposed to light, these systems have an additional zone, the 1257:
have been introduced to lentic systems through both purposeful events (e.g. stocking game and food species) as well as unintentional events (e.g. in
3854: 488: 2772: 1034:; for example, this might occur if primary producers experience less grazing by herbivores because these herbivores are suppressed by carnivores. 809:
advantages in terms of feeding, but this zone's lack of refugia leaves zooplankton vulnerable to predation. In response, some species, especially
2023:
Browne, R. A. (1981). "Lakes as islands: biogeographic distribution, turnover rates, and species composition in the lakes of central New York".
4327: 4055: 1022:
developed several theories in order to understand the mechanisms that control the abundance and diversity within these groups. Very generally,
1226:
systems contain a high concentration of phosphorus (~30 ÎĽg/L), nitrogen (~1500 ÎĽg/L), or both. Phosphorus enters lentic waters from
2243: 1568: 4332: 1149:
Lakes can be formed in a variety of ways, but the most common are discussed briefly below. The oldest and largest systems are the result of
3889: 2787: 1853:"Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes?" 4520: 2885: 2747: 797:
to walk on top of water. They live on the surface of ponds, marshes, and other quiet waters. They can move very quickly, up to 1.5 
481: 3937: 149:, the volumes of sediment entering the lake can accelerate this process. The addition of sediments and nutrients to a lake is known as 4273: 4096: 3349: 675: 2058:
Sommer, U.; Z. M. Gliwicz; W. Lampert; A. Duncan (1986). "The PEG-model of seasonal succession of planktonic events in freshwaters".
134:. These three areas can have very different abiotic conditions and, hence, host species that are specifically adapted to live there. 3609: 2777: 1535: 250: 1527: 2412: 2267: 5309: 4920: 4352: 4065: 3932: 3644: 184: 4610: 3239: 1731: 1642: 1598: 1506: 1460: 1386: 1127:
The PEG model presents an idealized version of this succession pattern, while natural systems are known for their variation.
1097:
5. With increased nutrient availability and decreased predation from zooplankton, a diverse phytoplankton community develops.
231: 188: 4737: 4382: 969:
create currents via siphons or beating cilia, to pull water and its nutritional contents, towards themselves for straining.
1726:
Keddy, P.A. (2010). Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK.
203: 4783: 4337: 4089: 3342: 1035: 1023: 691:
Bacteria are present in all regions of lentic waters. Free-living forms are associated with decomposing organic material,
626:
Illustration of Langmuir rotations; open circles=positively buoyant particles, closed circles=negatively buoyant particles
4215: 1095:
4. Zooplankton abundance declines as a result of decreased phytoplankton prey and increased predation by juvenile fishes.
3259: 3244: 2367: 1109:
7. Small-sized zooplankton become the dominant type of zooplankton because they are less vulnerable to fish predation.
1008:. Omnivores ingest a wide variety of prey, encompassing floral, faunal, and detrital material. Finally, members of the 5382: 4572: 3463: 3254: 2260: 210: 1758:"Freshwater lake ecosystem shift caused by social-economic transitions in Yangtze River Basin over the past century" 4637: 4357: 3561: 3458: 2562: 1088:
occurs, as phytoplankton populations become depleted due to increased predation by growing numbers of zooplankton.
1066: 177: 4818: 4430: 4322: 4180: 4165: 4160: 3551: 2870: 2764: 2143:
Hillebrand, H.; A. I. Azovsky (2001). "Body size determines the strength of the latitudinal diversity gradient".
1107:. The abundance of various phytoplankton species varies in relation to their biological need for these nutrients. 4577: 217: 5416: 5099: 4808: 4803: 4773: 4040: 3922: 3323: 3116: 3111: 2407: 2170:
Birk, Sapriya; Miller, J. David; MacMullin, Aidan; Patterson, R. Timothy; Villeneuve, Paul J. (February 2023).
1822:"Seasonal aspects of photosynthesis in Posidonia oceanica: Influence of depth, temperature and light intensity" 652: 1116:
8. Predation by fishes is reduced due to lower temperatures and zooplankton of all sizes increase in number.
5411: 4652: 4515: 4425: 4293: 4175: 4145: 4002: 3967: 3687: 3654: 3629: 3024: 2835: 2729: 2457: 2447: 508:
Lake ecosystems can be divided into zones. One common system divides lakes into three zones. The first, the
199: 99:, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with 4798: 4742: 4677: 4540: 4475: 4410: 4070: 3972: 3760: 3468: 3448: 2850: 2840: 2542: 2527: 1852: 1261:). These organisms can affect natives via competition for prey or habitat, predation, habitat alteration, 2172:"Perceptions of Freshwater Algal Blooms, Causes and Health among New Brunswick Lakefront Property Owners" 1026:
processes dictate that the abundance of prey taxa is dependent upon the actions of consumers from higher
915:
Lentic systems gain most of their energy from photosynthesis performed by aquatic plants and algae. This
5354: 5054: 4702: 4647: 4510: 4495: 4278: 4235: 4225: 4220: 3977: 3957: 3813: 3803: 3745: 3740: 3576: 3428: 3269: 3196: 2996: 2971: 2946: 2830: 2577: 2357: 679: 1700: 1085: 965:
Benthic invertebrates, due to their high level of species richness, have many methods of prey capture.
1157:
recede, leaving behind abnormalities in the landscape shape that are then filled with water. Finally,
755:
live in both the benthic and pelagic zones, and can be grouped according to their manner of growth: â‘´
5278: 4828: 4793: 4788: 4712: 4707: 4662: 4560: 4530: 4525: 4377: 4240: 4230: 3775: 3614: 3403: 3004: 2966: 2297: 1968: 746: 631: 112: 3334: 5421: 5319: 4913: 4878: 4853: 4717: 4687: 4632: 4545: 4435: 4420: 4367: 4200: 4135: 4017: 3947: 3478: 3226: 2880: 2689: 2647: 2417: 2377: 1239: 643: 369: 321: 4081: 5362: 5202: 5034: 5009: 4989: 4889: 4838: 4833: 4642: 4605: 4303: 4268: 4125: 4050: 3952: 3884: 3874: 3808: 3755: 3566: 3511: 3473: 3398: 3146: 3141: 3009: 2951: 2845: 2694: 2612: 2497: 2477: 2387: 2330: 2125: 2075: 2040: 1934: 5109: 4347: 2094: 2071: 1821: 1634: 1628: 118:
Lentic systems are diverse, ranging from a small, temporary rainwater pool a few inches deep to
5339: 5273: 5124: 5014: 4778: 4747: 4535: 4362: 4170: 4035: 4012: 3869: 3750: 3526: 3438: 3423: 3408: 3388: 3156: 3131: 3034: 2981: 2900: 2567: 2532: 2472: 2432: 2402: 2372: 2283: 2239: 2211: 2193: 2117: 1984: 1926: 1918: 1872: 1795: 1787: 1727: 1681: 1638: 1594: 1564: 1531: 1502: 1456: 1382: 582:
Temperature is an important abiotic factor in lentic ecosystems because most of the biota are
464: 65: 1230:
effluents, discharge from raw sewage, or from runoff of farmland. Nitrogen mostly comes from
5217: 4984: 4732: 4595: 4587: 4505: 4387: 4372: 4308: 4288: 4205: 4195: 4190: 4155: 3987: 3927: 3798: 3599: 3541: 3453: 3413: 3264: 2956: 2860: 2812: 2724: 2617: 2557: 2315: 2201: 2183: 2152: 2109: 2067: 2032: 1976: 1910: 1864: 1833: 1777: 1769: 1671: 1556: 1262: 1254: 1227: 1004:). Fish that consume detritus and gain energy by processing its organic material are called 798: 713: 708: 663: 224: 100: 49: 5212: 5159: 5154: 5044: 4974: 4868: 4727: 4697: 4692: 4682: 4615: 4600: 4480: 4460: 4342: 4210: 4116: 4007: 3917: 3859: 3844: 3443: 3369: 3234: 3201: 3062: 3014: 2890: 2865: 2674: 2627: 2552: 2397: 2382: 1195: 1175: 1099:
6. As the summer continues, nutrients become depleted in a predictable order: phosphorus,
1031: 794: 437: 424: 402: 391: 68:(non-living) physical and chemical interactions. Lake ecosystems are a prime example of 1972: 1165:
in origin, resulting when a meandering river bend is pinched off from the main channel.
786: 30: 5372: 5299: 5064: 5059: 5004: 4954: 4906: 4848: 4672: 4625: 4555: 4550: 4445: 4312: 4185: 3992: 3982: 3962: 3765: 3730: 3669: 3546: 3501: 3393: 3098: 3052: 3047: 3019: 2986: 2855: 2714: 2632: 2482: 2427: 2345: 2340: 2335: 2206: 2171: 1953: 1290: 1223: 1191: 950: 850: 774: 752: 733:. To combat this, phytoplankton have developed density-changing mechanisms, by forming 558: 529: 469: 301: 150: 146: 61: 2156: 916: 5405: 5367: 5314: 5250: 5169: 5134: 4873: 3849: 3823: 3780: 3770: 3725: 3712: 3692: 3584: 3418: 3373: 3312: 3206: 3171: 3072: 3067: 3042: 2572: 2537: 2512: 2362: 2325: 1837: 1757: 1317: 1258: 1027: 966: 946: 937: 925: 722: 630:
In exposed systems, wind can create turbulent, spiral-formed surface currents called
603: 562: 533: 521: 509: 413: 290: 279: 2079: 5377: 5304: 5139: 5039: 4969: 4959: 4858: 4843: 4500: 4470: 4415: 4298: 4263: 4140: 3639: 3307: 3298: 3077: 3057: 2961: 2699: 2582: 2502: 2462: 2452: 2422: 2129: 1304: 1266: 992:
graze on periphyton and macrophytes or pick phytoplankton out of the water column.
921: 583: 525: 513: 448: 312: 127: 123: 1938: 609: 2233: 853:. Those that can are often red in color, due to the presence of large amounts of 759:= rooted in the substrate, but with leaves and flowers extending into the air; ⑵ 5329: 5179: 5164: 5149: 5089: 4994: 4150: 3879: 3697: 3659: 3634: 3624: 3589: 3536: 3516: 3211: 3186: 3181: 3151: 2934: 2910: 2875: 2684: 2587: 2507: 2467: 2320: 1756:
Zhang, Ke; Yang, Xiangdong; Kattel, Giri; Lin, Qi; Shen, Ji (21 November 2018).
1270: 1243: 1235: 1204: 1005: 997: 805: 738: 599: 591: 566: 517: 358: 347: 166: 119: 2188: 1952:
Azam, F; Fenchel, T; Field, Jg; Gray, Js; Meyer-Reil, La; Thingstad, F (1983).
1868: 1773: 1676: 1659: 5344: 5334: 5235: 5144: 5129: 5094: 5069: 4863: 4440: 4405: 4045: 3997: 3942: 3912: 3818: 3735: 3679: 3556: 3506: 3191: 3126: 2915: 2895: 2679: 2652: 2437: 2350: 1899:"Predation on prokaryotes in the water column and its ecological implications" 1898: 1280: 1231: 1158: 989: 874: 854: 819: 726: 658: 595: 336: 77: 2197: 1988: 1922: 1876: 1791: 1685: 5324: 5265: 5245: 5240: 5197: 5174: 5079: 5029: 5024: 4898: 4768: 4722: 4450: 3894: 3864: 3664: 3619: 3594: 3531: 3521: 3496: 3488: 3433: 3216: 3121: 2905: 2669: 2662: 2637: 2547: 1560: 1322: 1200: 1009: 1001: 993: 898: 894: 870: 742: 697: 142: 131: 17: 2925: 2215: 2121: 2013:
Winfield, I. J. "Fish Population Ecology", pp. 517–537 in O'Sullivan (2005)
1930: 1799: 849:
Very few invertebrates are able to inhabit the cold, dark, and oxygen-poor
141:, which typically are small lakes that intergrade with wetlands, and water 5255: 5084: 5074: 5049: 5019: 4999: 4979: 4949: 4823: 4752: 4283: 3790: 3702: 3649: 3604: 3166: 2976: 2522: 2517: 2442: 2004:
Jónasson, P. M. "Benthic Invertebrates", pp. 341–416 in O'Sullivan (2005)
1208: 1154: 1150: 1104: 975: 942: 835: 827: 815: 790: 1914: 1782: 5349: 4813: 4620: 4490: 4485: 4112: 4060: 3720: 3365: 3176: 3136: 3106: 3084: 2704: 2492: 2392: 2044: 1980: 1162: 970: 882: 810: 734: 730: 692: 598:. Between these zones is a band of rapid temperature change called the 570: 540: 191: in this section. Unsourced material may be challenged and removed. 96: 622: 5207: 5189: 4933: 3161: 2487: 2252: 1100: 945:, which are in turn consumed by zooplankton, and then further up the 890: 831: 648: 108: 57: 2036: 869:
Other vertebrate taxa inhabit lentic systems as well. These include
532:. Inland from the littoral zone, one can also frequently identify a 2113: 5227: 1212: 1013:
single fish occupies multiple feeding guilds within its lifetime.
886: 843: 785: 707: 674: 621: 608: 104: 81: 53: 557:
Light provides the solar energy required to drive the process of
5390: 4964: 4941: 4929: 2657: 1065:
described these patterns as part of the Plankton Ecology Group (
878: 839: 823: 138: 92: 88: 4902: 4085: 3338: 2810: 2294: 2256: 2719: 2709: 1746:
Gliwicz, Z. M. "Zooplankton", pp. 461–516 in O'Sullivan (2005)
160: 1057:
Succession patterns in plankton communities – the PEG model
2095:"On the generality of the latitudinal diversity gradient" 1954:"The Ecological Role of Water-Column Microbes in the Sea" 1660:"How does lake primary production scale with lake size?" 2235:
The Lakes Handbook: Lake Restoration and Rehabilitation
974:
it contains. Finally, some invertebrates belong to the
763:= rooted in the substrate, but with floating leaves; ⑶ 1630:
Ecology of Freshwaters: man and medium, past to future
1381:. Heinimann Educational Books, London. p. 163. 5292: 5264: 5226: 5188: 5117: 4940: 4761: 4661: 4586: 4459: 4396: 4256: 4124: 4026: 3905: 3832: 3789: 3711: 3678: 3575: 3487: 3381: 3225: 3097: 3033: 2995: 2933: 2823: 2740: 2605: 2308: 103:, which involve flowing terrestrial waters such as 111:. Together, these two ecosystems are examples of 2000: 1998: 1593:. Oxford University Press, Oxford. p. 296. 1501:. Prentice Hall, Upper Saddle, NJ. p. 592. 1455:. Oxford University Press, Oxford. p. 285. 1446: 1444: 1442: 1440: 1438: 1436: 1434: 1432: 1430: 1428: 1426: 1424: 1422: 1420: 1418: 1742: 1740: 1701:"Adaptation of Phytoplankton to Float in Water" 1416: 1414: 1412: 1410: 1408: 1406: 1404: 1402: 1400: 1398: 667:remineralized and re-introduced to the system. 1551:John Wiley & Sons, Ltd, ed. (2001-05-30). 1174:sedimentation rate. Moss gives the example of 4914: 4097: 3350: 2558:Stable isotope analysis in aquatic ecosystems 2268: 2232:O'Sullivan, Patrick; Reynolds, C. S. (2005). 1584: 1582: 1580: 1492: 1372: 1370: 1368: 1366: 1364: 1362: 489: 8: 1490: 1488: 1486: 1484: 1482: 1480: 1478: 1476: 1474: 1472: 1360: 1358: 1356: 1354: 1352: 1350: 1348: 1346: 1344: 1342: 953:and is a key component of lentic food webs. 2623:Freshwater environmental quality parameters 1622: 1620: 1618: 1616: 1614: 1612: 1610: 1328:Man-made lentic water bodies of Maharashtra 1313:Freshwater environmental quality parameters 4921: 4907: 4899: 4318:Latitudinal gradients in species diversity 4104: 4090: 4082: 3839: 3357: 3343: 3335: 2939: 2820: 2807: 2305: 2291: 2275: 2261: 2253: 613:Seasonal stratification in temperate lakes 496: 482: 262: 2205: 2187: 1781: 1675: 251:Learn how and when to remove this message 87:, which means "sluggish"), which include 76:refers to stationary or relatively still 4216:Predator–prey (Lotka–Volterra) equations 3855:Tritrophic interactions in plant defense 1722: 1720: 29: 4248:Random generalized Lotka–Volterra model 1658:Cael, B. B.; Seekell, David A. (2023). 1338: 456: 377: 320: 265: 4056:Herbivore adaptations to plant defense 1000:), and those that feed on other fish ( 137:Two important subclasses of lakes are 2072:10.1127/archiv-hydrobiol/106/1986/433 1633:. Blackwell Science, London. p.  1524:Encyclopedia of Environmental Science 1215:and the north eastern United States. 7: 4071:Predator avoidance in schooling fish 1451:Brönmark, C.; L. A. Hansson (2005). 957:prevalent than in the water column. 793:are predatory insects which rely on 594:. The upper warm zone is called the 189:adding citations to reliable sources 4521:Intermediate disturbance hypothesis 2886:Oceanic physical-biological process 2748:List of freshwater ecoregions (WWF) 1699:Smriti, Saifun Nahar (2023-10-05). 4274:Ecological effects of biodiversity 1664:Frontiers in Environmental Science 1522:Alexander, David E. (1 May 1999). 682:of a bacterial community in a lake 25: 3610:Generalist and specialist species 2157:10.1034/j.1600-0587.2001.240302.x 1591:The Biology of Streams and Rivers 1589:Giller, S.; B. Malmqvist (1998). 767:= growing beneath the surface; â‘· 35:The three primary zones of a lake 5108: 4333:Occupancy–abundance relationship 3319: 3318: 3306: 3292: 2924: 2596: 2413:Colored dissolved organic matter 1297: 1283: 1043:Community patterns and diversity 165: 4353:Relative abundance distribution 4066:Plant defense against herbivory 3933:Competitive exclusion principle 3645:Mesopredator release hypothesis 2758:Latin America and the Caribbean 1897:Pernthaler, Jakob (July 2005). 1857:Journal of Great Lakes Research 176:needs additional citations for 3938:Consumer–resource interactions 3240:Ecological values of mangroves 2783:North Pacific Subtropical Gyre 1961:Marine Ecology Progress Series 1453:The Biology of Lakes and Ponds 1: 4784:Biological data visualization 4611:Environmental niche modelling 4338:Population viability analysis 1820:Pirc, Helmut (January 1986). 4269:Density-dependent inhibition 3260:Marine conservation activism 3245:Fisheries and climate change 1838:10.1016/0304-3770(86)90021-5 651:is essential for organismal 4738:Liebig's law of the minimum 4573:Resource selection function 3464:Metabolic theory of ecology 3255:Human impact on marine life 3132:Davidson Seamount § Ecology 2368:Aquatic population dynamics 1903:Nature Reviews Microbiology 5438: 4638:Niche apportionment models 4358:Relative species abundance 3562:Primary nutritional groups 3459:List of feeding behaviours 2189:10.1007/s00267-022-01736-2 1869:10.1016/j.jglr.2010.10.004 1774:10.1038/s41598-018-35482-5 1677:10.3389/fenvs.2023.1103068 861:Fish and other vertebrates 641: 5106: 4887: 4819:Ecosystem based fisheries 4431:Interspecific competition 4323:Minimum viable population 4181:Maximum sustainable yield 4166:Intraspecific competition 4161:Effective population size 4041:Anti-predator adaptations 3552:Photosynthetic efficiency 3286: 2942: 2922: 2871:Marine primary production 2819: 2806: 2765:List of marine ecoregions 2594: 2304: 2290: 897:), and a large number of 769:free-floating macrophytes 126:open water zone, and the 5100:Waste stabilization pond 4809:Ecological stoichiometry 4774:Alternative stable state 3117:Coastal biogeomorphology 3112:Marine coastal ecosystem 2176:Environmental Management 2060:Archiv fĂĽr Hydrobiologie 1232:agricultural fertilizers 4653:Ontogenetic niche shift 4516:Ideal free distribution 4426:Ecological facilitation 4176:Malthusian growth model 4146:Consumer-resource model 4003:Paradox of the plankton 3968:Energy systems language 3688:Chemoorganoheterotrophy 3655:Optimal foraging theory 3630:Heterotrophic nutrition 3025:Paradox of the plankton 2836:Diel vertical migration 2730:Freshwater swamp forest 2448:GIS and aquatic science 2296:General components and 2093:Hillebrand, H. (2004). 2025:Journal of Biogeography 1561:10.1038/npg.els.0003191 1140:Natural lake lifecycles 4799:Ecological forecasting 4743:Marginal value theorem 4541:Landscape epidemiology 4476:Cross-boundary subsidy 4411:Biological interaction 3761:Microbial intelligence 3449:Green world hypothesis 2851:Large marine ecosystem 2543:Shoaling and schooling 1048:Local species richness 802: 721:Algae, including both 718: 683: 627: 614: 37: 5055:Salt evaporation pond 4804:Ecological humanities 4703:Ecological energetics 4648:Niche differentiation 4511:Habitat fragmentation 4279:Ecological extinction 4226:Small population size 3978:Feed conversion ratio 3958:Ecological succession 3890:San Francisco Estuary 3804:Ecological efficiency 3746:Microbial cooperation 3270:Marine protected area 3197:Salt pannes and pools 2972:Marine larval ecology 2947:Census of Marine Life 2831:Deep scattering layer 2788:San Francisco Estuary 2753:Africa and Madagascar 2578:Underwater camouflage 2358:Aquatic biomonitoring 2298:freshwater ecosystems 1555:(1 ed.). Wiley. 1377:Brown, A. L. (1987). 961:Benthic invertebrates 906:Trophic relationships 789: 711: 680:Co-occurrence network 678: 632:Langmuir circulations 625: 612: 113:freshwater ecosystems 33: 5310:Big fish–little pond 5279:Freshwater ecosystem 5213:Puddles on a surface 4829:Evolutionary ecology 4794:Ecological footprint 4789:Ecological economics 4713:Ecological threshold 4708:Ecological indicator 4578:Source–sink dynamics 4531:Land change modeling 4526:Insular biogeography 4378:Species distribution 4117:Modelling ecosystems 3776:Microbial metabolism 3615:Intraguild predation 3404:Biogeochemical cycle 3370:Modelling ecosystems 3005:Marine bacteriophage 2967:Marine invertebrates 1273:in the Great Lakes. 1131:Latitudinal patterns 185:improve this article 46:lacustrine ecosystem 5320:Constructed wetland 4879:Theoretical ecology 4854:Natural environment 4718:Ecosystem diversity 4688:Ecological collapse 4678:Bateman's principle 4633:Limiting similarity 4546:Landscape limnology 4368:Species homogeneity 4206:Population modeling 4201:Population dynamics 4018:Trophic state index 2881:Ocean fertilization 2690:Trophic state index 2648:Lake stratification 2378:Aquatic respiration 2102:American Naturalist 1973:1983MEPS...10..257A 1915:10.1038/nrmicro1180 717:, an aquatic plant. 644:Aquatic respiration 322:Lake stratification 5203:Coffee ring effect 5010:Infiltration basin 4990:Facultative lagoon 4890:Outline of ecology 4839:Industrial ecology 4834:Functional ecology 4698:Ecological deficit 4643:Niche construction 4606:Ecosystem engineer 4383:Species–area curve 4304:Introduced species 4119:: Other components 4051:Deimatic behaviour 3953:Ecological network 3885:North Pacific Gyre 3870:hydrothermal vents 3809:Ecological pyramid 3756:Microbial food web 3567:Primary production 3512:Foundation species 3147:Intertidal wetland 3142:Intertidal ecology 3010:Marine prokaryotes 2952:Deep-sea community 2846:Iron fertilization 2769:Specific examples 2695:Upland and lowland 2613:Freshwater biology 2478:Microbial food web 2388:Aquatic toxicology 2331:Aquatic adaptation 2284:Aquatic ecosystems 1981:10.3354/meps010257 1762:Scientific Reports 1497:Kalff, J. (2002). 1379:Freshwater Ecology 1169:Natural extinction 803: 747:Langmuir rotations 719: 684: 628: 615: 548:Abiotic components 528:may be called the 520:may be called the 465:Aquatic ecosystems 38: 5399: 5398: 5340:Pond of Abundance 5274:Aquatic ecosystem 4896: 4895: 4779:Balance of nature 4536:Landscape ecology 4421:Community ecology 4363:Species diversity 4299:Indicator species 4294:Gradient analysis 4171:Logistic function 4079: 4078: 4036:Animal coloration 4013:Trophic mutualism 3751:Microbial ecology 3542:Photoheterotrophs 3527:Myco-heterotrophy 3439:Ecosystem ecology 3424:Carrying capacity 3389:Abiotic component 3332: 3331: 3313:Oceans portal 3282: 3281: 3278: 3277: 3157:Hydrothermal vent 3093: 3092: 2982:Seashore wildlife 2813:Marine ecosystems 2802: 2801: 2798: 2797: 2568:Thermal pollution 2533:Ramsar Convention 2473:Microbial ecology 2433:Fisheries science 2373:Aquatic predation 2245:978-0-632-04795-6 1627:Moss, B. (1998). 1570:978-0-470-01617-6 1086:clear water phase 928:via consumption. 911:Primary producers 704:Primary producers 671:Biotic components 506: 505: 261: 260: 253: 235: 70:lentic ecosystems 27:Type of ecosystem 16:(Redirected from 5429: 5112: 4985:Evaporation pond 4923: 4916: 4909: 4900: 4596:Ecological niche 4568:selection theory 4388:Umbrella species 4373:Species richness 4309:Invasive species 4289:Flagship species 4196:Population cycle 4191:Overexploitation 4156:Ecological yield 4106: 4099: 4092: 4083: 3988:Mesotrophic soil 3928:Climax community 3860:Marine food webs 3799:Biomagnification 3600:Chemoorganotroph 3454:Keystone species 3414:Biotic component 3359: 3352: 3345: 3336: 3322: 3321: 3315: 3311: 3310: 3301: 3299:Lakes portal 3297: 3296: 3295: 3265:Marine pollution 2957:Deep-water coral 2940: 2928: 2861:Marine chemistry 2821: 2808: 2725:Freshwater marsh 2618:Freshwater biome 2600: 2316:Acoustic ecology 2306: 2292: 2277: 2270: 2263: 2254: 2249: 2220: 2219: 2209: 2191: 2167: 2161: 2160: 2140: 2134: 2133: 2099: 2090: 2084: 2083: 2055: 2049: 2048: 2020: 2014: 2011: 2005: 2002: 1993: 1992: 1958: 1949: 1943: 1942: 1894: 1888: 1887: 1885: 1883: 1848: 1842: 1841: 1817: 1811: 1810: 1808: 1806: 1785: 1753: 1747: 1744: 1735: 1724: 1715: 1714: 1712: 1711: 1696: 1690: 1689: 1679: 1655: 1649: 1648: 1624: 1605: 1604: 1586: 1575: 1574: 1548: 1542: 1541: 1519: 1513: 1512: 1494: 1467: 1466: 1448: 1393: 1392: 1374: 1307: 1302: 1301: 1300: 1293: 1288: 1287: 1286: 1255:Invasive species 1250:Invasive species 1240:stratified lakes 1228:sewage treatment 1017:Lentic food webs 714:Nelumbo nucifera 537:the open water. 498: 491: 484: 447: 445: 436: 434: 423: 421: 412: 410: 401: 399: 390: 388: 370:Destratification 368: 366: 357: 355: 346: 344: 335: 333: 311: 309: 300: 298: 289: 287: 278: 276: 263: 256: 249: 245: 242: 236: 234: 200:"Lake ecosystem" 193: 169: 161: 101:lotic ecosystems 21: 5437: 5436: 5432: 5431: 5430: 5428: 5427: 5426: 5417:Aquatic ecology 5402: 5401: 5400: 5395: 5288: 5260: 5222: 5184: 5160:Spent fuel pool 5155:Reflecting pool 5125:Anchialine pool 5113: 5104: 4936: 4927: 4897: 4892: 4883: 4869:Systems ecology 4757: 4728:Extinction debt 4693:Ecological debt 4683:Bioluminescence 4664: 4657: 4626:marine habitats 4601:Ecological trap 4582: 4462: 4455: 4398: 4392: 4348:Rapoport's rule 4343:Priority effect 4284:Endemic species 4252: 4211:Population size 4127: 4120: 4110: 4080: 4075: 4028: 4022: 4008:Trophic cascade 3918:Bioaccumulation 3901: 3828: 3785: 3707: 3674: 3571: 3483: 3444:Ecosystem model 3377: 3363: 3333: 3328: 3305: 3304: 3293: 3291: 3290: 3274: 3235:Coral bleaching 3221: 3202:Seagrass meadow 3099:Marine habitats 3089: 3063:Coral reef fish 3029: 3015:Marine protists 2991: 2929: 2920: 2891:Ocean turbidity 2866:Marine food web 2815: 2794: 2736: 2675:River ecosystem 2628:Freshwater fish 2601: 2592: 2398:Bioluminescence 2383:Aquatic science 2300: 2286: 2281: 2246: 2231: 2228: 2223: 2169: 2168: 2164: 2142: 2141: 2137: 2097: 2092: 2091: 2087: 2057: 2056: 2052: 2037:10.2307/2844594 2022: 2021: 2017: 2012: 2008: 2003: 1996: 1956: 1951: 1950: 1946: 1896: 1895: 1891: 1881: 1879: 1850: 1849: 1845: 1819: 1818: 1814: 1804: 1802: 1755: 1754: 1750: 1745: 1738: 1725: 1718: 1709: 1707: 1698: 1697: 1693: 1657: 1656: 1652: 1645: 1626: 1625: 1608: 1601: 1588: 1587: 1578: 1571: 1550: 1549: 1545: 1538: 1521: 1520: 1516: 1509: 1496: 1495: 1470: 1463: 1450: 1449: 1396: 1389: 1376: 1375: 1340: 1336: 1303: 1298: 1296: 1289: 1284: 1282: 1279: 1252: 1221: 1196:nitrogen oxides 1189: 1184: 1176:Lake Tanganyika 1171: 1147: 1142: 1133: 1122: 1115: 1108: 1098: 1096: 1094: 1083: 1075: 1059: 1050: 1045: 1032:trophic cascade 1019: 985: 963: 934: 913: 908: 863: 795:surface tension 784: 761:floating-leaved 706: 689: 673: 646: 640: 620: 580: 555: 550: 502: 443: 442: 438:Meromictic lake 432: 431: 425:Polymictic lake 419: 418: 408: 407: 403:Monomictic lake 397: 396: 392:Holomictic lake 386: 385: 364: 363: 353: 352: 342: 341: 331: 330: 307: 306: 296: 295: 285: 284: 274: 273: 257: 246: 240: 237: 194: 192: 182: 170: 159: 62:micro-organisms 36: 28: 23: 22: 15: 12: 11: 5: 5435: 5433: 5425: 5424: 5419: 5414: 5412:Aquatic biomes 5404: 5403: 5397: 5396: 5394: 5393: 5388: 5380: 5375: 5373:Water aeration 5370: 5365: 5360: 5352: 5347: 5342: 5337: 5332: 5327: 5322: 5317: 5312: 5307: 5302: 5300:Aerated lagoon 5296: 5294: 5290: 5289: 5287: 5286: 5284:Lake ecosystem 5281: 5276: 5270: 5268: 5262: 5261: 5259: 5258: 5253: 5248: 5243: 5238: 5232: 5230: 5224: 5223: 5221: 5220: 5215: 5210: 5205: 5200: 5194: 5192: 5186: 5185: 5183: 5182: 5177: 5172: 5167: 5162: 5157: 5152: 5147: 5142: 5137: 5132: 5127: 5121: 5119: 5115: 5114: 5107: 5105: 5103: 5102: 5097: 5092: 5087: 5082: 5077: 5072: 5067: 5062: 5057: 5052: 5047: 5045:Retention pond 5042: 5037: 5035:Polishing pond 5032: 5027: 5022: 5017: 5012: 5007: 5005:Immersion pond 5002: 4997: 4992: 4987: 4982: 4977: 4975:Detention pond 4972: 4967: 4962: 4957: 4955:Balancing lake 4952: 4946: 4944: 4938: 4937: 4928: 4926: 4925: 4918: 4911: 4903: 4894: 4893: 4888: 4885: 4884: 4882: 4881: 4876: 4871: 4866: 4861: 4856: 4851: 4849:Microecosystem 4846: 4841: 4836: 4831: 4826: 4821: 4816: 4811: 4806: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4765: 4763: 4759: 4758: 4756: 4755: 4750: 4748:Thorson's rule 4745: 4740: 4735: 4730: 4725: 4720: 4715: 4710: 4705: 4700: 4695: 4690: 4685: 4680: 4675: 4673:Assembly rules 4669: 4667: 4659: 4658: 4656: 4655: 4650: 4645: 4640: 4635: 4630: 4629: 4628: 4618: 4613: 4608: 4603: 4598: 4592: 4590: 4584: 4583: 4581: 4580: 4575: 4570: 4558: 4556:Patch dynamics 4553: 4551:Metapopulation 4548: 4543: 4538: 4533: 4528: 4523: 4518: 4513: 4508: 4503: 4498: 4493: 4488: 4483: 4478: 4473: 4467: 4465: 4457: 4456: 4454: 4453: 4448: 4446:Storage effect 4443: 4438: 4433: 4428: 4423: 4418: 4413: 4408: 4402: 4400: 4394: 4393: 4391: 4390: 4385: 4380: 4375: 4370: 4365: 4360: 4355: 4350: 4345: 4340: 4335: 4330: 4328:Neutral theory 4325: 4320: 4315: 4313:Native species 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4260: 4258: 4254: 4253: 4251: 4250: 4245: 4244: 4243: 4238: 4228: 4223: 4218: 4213: 4208: 4203: 4198: 4193: 4188: 4186:Overpopulation 4183: 4178: 4173: 4168: 4163: 4158: 4153: 4148: 4143: 4138: 4132: 4130: 4122: 4121: 4111: 4109: 4108: 4101: 4094: 4086: 4077: 4076: 4074: 4073: 4068: 4063: 4058: 4053: 4048: 4043: 4038: 4032: 4030: 4024: 4023: 4021: 4020: 4015: 4010: 4005: 4000: 3995: 3993:Nutrient cycle 3990: 3985: 3983:Feeding frenzy 3980: 3975: 3970: 3965: 3963:Energy quality 3960: 3955: 3950: 3945: 3940: 3935: 3930: 3925: 3923:Cascade effect 3920: 3915: 3909: 3907: 3903: 3902: 3900: 3899: 3898: 3897: 3892: 3887: 3882: 3877: 3872: 3867: 3857: 3852: 3847: 3842: 3836: 3834: 3830: 3829: 3827: 3826: 3821: 3816: 3811: 3806: 3801: 3795: 3793: 3787: 3786: 3784: 3783: 3778: 3773: 3768: 3766:Microbial loop 3763: 3758: 3753: 3748: 3743: 3738: 3733: 3731:Lithoautotroph 3728: 3723: 3717: 3715: 3713:Microorganisms 3709: 3708: 3706: 3705: 3700: 3695: 3690: 3684: 3682: 3676: 3675: 3673: 3672: 3670:Prey switching 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3581: 3579: 3573: 3572: 3570: 3569: 3564: 3559: 3554: 3549: 3547:Photosynthesis 3544: 3539: 3534: 3529: 3524: 3519: 3514: 3509: 3504: 3502:Chemosynthesis 3499: 3493: 3491: 3485: 3484: 3482: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3396: 3394:Abiotic stress 3391: 3385: 3383: 3379: 3378: 3364: 3362: 3361: 3354: 3347: 3339: 3330: 3329: 3327: 3326: 3316: 3302: 3287: 3284: 3283: 3280: 3279: 3276: 3275: 3273: 3272: 3267: 3262: 3257: 3252: 3247: 3242: 3237: 3231: 3229: 3223: 3222: 3220: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3124: 3119: 3114: 3109: 3103: 3101: 3095: 3094: 3091: 3090: 3088: 3087: 3082: 3081: 3080: 3075: 3070: 3065: 3060: 3053:Saltwater fish 3050: 3048:Marine reptile 3045: 3039: 3037: 3031: 3030: 3028: 3027: 3022: 3020:Marine viruses 3017: 3012: 3007: 3001: 2999: 2997:Microorganisms 2993: 2992: 2990: 2989: 2987:Wild fisheries 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2943: 2937: 2931: 2930: 2923: 2921: 2919: 2918: 2913: 2908: 2903: 2901:Thorson's rule 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2863: 2858: 2856:Marine biology 2853: 2848: 2843: 2838: 2833: 2827: 2825: 2817: 2816: 2811: 2804: 2803: 2800: 2799: 2796: 2795: 2793: 2792: 2791: 2790: 2785: 2780: 2775: 2767: 2762: 2761: 2760: 2755: 2744: 2742: 2738: 2737: 2735: 2734: 2733: 2732: 2727: 2722: 2717: 2715:Brackish marsh 2712: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2666: 2665: 2655: 2650: 2645: 2643:Lake ecosystem 2640: 2635: 2633:Hyporheic zone 2630: 2625: 2620: 2615: 2609: 2607: 2603: 2602: 2595: 2593: 2591: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2535: 2530: 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2483:Microbial loop 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2435: 2430: 2428:Eutrophication 2425: 2420: 2415: 2410: 2408:Cascade effect 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2354: 2353: 2348: 2343: 2336:Aquatic animal 2333: 2328: 2323: 2318: 2312: 2310: 2302: 2301: 2295: 2288: 2287: 2282: 2280: 2279: 2272: 2265: 2257: 2251: 2250: 2244: 2227: 2224: 2222: 2221: 2182:(2): 249–259. 2162: 2151:(3): 251–256. 2135: 2114:10.1086/381004 2108:(2): 192–211. 2085: 2066:(4): 433–471. 2050: 2015: 2006: 1994: 1944: 1909:(7): 537–546. 1889: 1863:(1): 173–193. 1843: 1826:Aquatic Botany 1812: 1748: 1736: 1716: 1691: 1650: 1643: 1606: 1599: 1576: 1569: 1543: 1536: 1514: 1507: 1468: 1461: 1394: 1387: 1337: 1335: 1332: 1331: 1330: 1325: 1320: 1315: 1309: 1308: 1294: 1291:Ecology portal 1278: 1275: 1251: 1248: 1236:plankton bloom 1220: 1219:Eutrophication 1217: 1192:Sulfur dioxide 1188: 1185: 1183: 1180: 1170: 1167: 1146: 1143: 1141: 1138: 1132: 1129: 1058: 1055: 1049: 1046: 1044: 1041: 1028:trophic levels 1018: 1015: 984: 981: 967:Filter feeders 962: 959: 951:microbial loop 947:trophic levels 933: 930: 926:trophic levels 912: 909: 907: 904: 862: 859: 851:profundal zone 791:Water striders 783: 780: 775:Aquatic plants 753:Aquatic plants 705: 702: 688: 685: 672: 669: 639: 636: 619: 616: 584:poikilothermic 579: 576: 559:photosynthesis 554: 551: 549: 546: 530:profundal zone 504: 503: 501: 500: 493: 486: 478: 475: 474: 473: 472: 470:Wild fisheries 467: 459: 458: 454: 453: 452: 451: 440: 429: 428: 427: 416: 405: 380: 379: 375: 374: 373: 372: 361: 350: 339: 325: 324: 318: 317: 316: 315: 304: 302:Profundal zone 293: 282: 268: 267: 259: 258: 173: 171: 164: 158: 155: 151:eutrophication 147:drainage basin 42:lake ecosystem 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5434: 5423: 5420: 5418: 5415: 5413: 5410: 5409: 5407: 5392: 5389: 5387: 5385: 5381: 5379: 5376: 5374: 5371: 5369: 5368:Swimming hole 5366: 5364: 5361: 5359: 5357: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5321: 5318: 5316: 5315:Body of water 5313: 5311: 5308: 5306: 5303: 5301: 5298: 5297: 5295: 5291: 5285: 5282: 5280: 5277: 5275: 5272: 5271: 5269: 5267: 5263: 5257: 5254: 5252: 5251:Goldfish pond 5249: 5247: 5244: 5242: 5239: 5237: 5234: 5233: 5231: 5229: 5225: 5219: 5216: 5214: 5211: 5209: 5206: 5204: 5201: 5199: 5196: 5195: 5193: 5191: 5187: 5181: 5178: 5176: 5173: 5171: 5170:Swimming pool 5168: 5166: 5163: 5161: 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5141: 5138: 5136: 5135:Infinity pool 5133: 5131: 5128: 5126: 5123: 5122: 5120: 5116: 5111: 5101: 5098: 5096: 5093: 5091: 5088: 5086: 5083: 5081: 5078: 5076: 5073: 5071: 5068: 5066: 5065:Settling pond 5063: 5061: 5060:Sediment pond 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5026: 5023: 5021: 5018: 5016: 5013: 5011: 5008: 5006: 5003: 5001: 4998: 4996: 4993: 4991: 4988: 4986: 4983: 4981: 4978: 4976: 4973: 4971: 4968: 4966: 4963: 4961: 4958: 4956: 4953: 4951: 4948: 4947: 4945: 4943: 4939: 4935: 4932:, pools, and 4931: 4924: 4919: 4917: 4912: 4910: 4905: 4904: 4901: 4891: 4886: 4880: 4877: 4875: 4874:Urban ecology 4872: 4870: 4867: 4865: 4862: 4860: 4857: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4766: 4764: 4760: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4733:Kleiber's law 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4706: 4704: 4701: 4699: 4696: 4694: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4670: 4668: 4666: 4660: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4627: 4624: 4623: 4622: 4619: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4597: 4594: 4593: 4591: 4589: 4585: 4579: 4576: 4574: 4571: 4569: 4567: 4563: 4559: 4557: 4554: 4552: 4549: 4547: 4544: 4542: 4539: 4537: 4534: 4532: 4529: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4506:Foster's rule 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4477: 4474: 4472: 4469: 4468: 4466: 4464: 4458: 4452: 4449: 4447: 4444: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4403: 4401: 4395: 4389: 4386: 4384: 4381: 4379: 4376: 4374: 4371: 4369: 4366: 4364: 4361: 4359: 4356: 4354: 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4334: 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4261: 4259: 4255: 4249: 4246: 4242: 4239: 4237: 4234: 4233: 4232: 4229: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4187: 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4133: 4131: 4129: 4123: 4118: 4114: 4107: 4102: 4100: 4095: 4093: 4088: 4087: 4084: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4033: 4031: 4025: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3944: 3941: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3910: 3908: 3904: 3896: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3866: 3863: 3862: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3837: 3835: 3831: 3825: 3824:Trophic level 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3805: 3802: 3800: 3797: 3796: 3794: 3792: 3788: 3782: 3781:Phage ecology 3779: 3777: 3774: 3772: 3771:Microbial mat 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3726:Bacteriophage 3724: 3722: 3719: 3718: 3716: 3714: 3710: 3704: 3701: 3699: 3696: 3694: 3693:Decomposition 3691: 3689: 3686: 3685: 3683: 3681: 3677: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3640:Mesopredators 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3585:Apex predator 3583: 3582: 3580: 3578: 3574: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3498: 3495: 3494: 3492: 3490: 3486: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3419:Biotic stress 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3386: 3384: 3380: 3375: 3371: 3367: 3360: 3355: 3353: 3348: 3346: 3341: 3340: 3337: 3325: 3317: 3314: 3309: 3303: 3300: 3289: 3288: 3285: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3232: 3230: 3228: 3224: 3218: 3215: 3213: 3210: 3208: 3207:Sponge ground 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3172:Marine biomes 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3104: 3102: 3100: 3096: 3086: 3083: 3079: 3076: 3074: 3073:Demersal fish 3071: 3069: 3068:Deep-sea fish 3066: 3064: 3061: 3059: 3056: 3055: 3054: 3051: 3049: 3046: 3044: 3043:Marine mammal 3041: 3040: 3038: 3036: 3032: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3002: 3000: 2998: 2994: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2944: 2941: 2938: 2936: 2932: 2927: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2828: 2826: 2822: 2818: 2814: 2809: 2805: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2770: 2768: 2766: 2763: 2759: 2756: 2754: 2751: 2750: 2749: 2746: 2745: 2743: 2739: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2707: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2664: 2661: 2660: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2610: 2608: 2604: 2599: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2573:Trophic level 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2538:Sediment trap 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2513:Phytoplankton 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2363:Aquatic plant 2361: 2359: 2356: 2352: 2349: 2347: 2344: 2342: 2339: 2338: 2337: 2334: 2332: 2329: 2327: 2326:Anoxic waters 2324: 2322: 2319: 2317: 2314: 2313: 2311: 2307: 2303: 2299: 2293: 2289: 2285: 2278: 2273: 2271: 2266: 2264: 2259: 2258: 2255: 2247: 2241: 2237: 2236: 2230: 2229: 2225: 2217: 2213: 2208: 2203: 2199: 2195: 2190: 2185: 2181: 2177: 2173: 2166: 2163: 2158: 2154: 2150: 2146: 2139: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2096: 2089: 2086: 2081: 2077: 2073: 2069: 2065: 2061: 2054: 2051: 2046: 2042: 2038: 2034: 2030: 2026: 2019: 2016: 2010: 2007: 2001: 1999: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1948: 1945: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1893: 1890: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1844: 1839: 1835: 1831: 1827: 1823: 1816: 1813: 1801: 1797: 1793: 1789: 1784: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1749: 1743: 1741: 1737: 1733: 1729: 1723: 1721: 1717: 1706: 1705:GreenLeen.Com 1702: 1695: 1692: 1687: 1683: 1678: 1673: 1669: 1665: 1661: 1654: 1651: 1646: 1640: 1636: 1632: 1631: 1623: 1621: 1619: 1617: 1615: 1613: 1611: 1607: 1602: 1596: 1592: 1585: 1583: 1581: 1577: 1572: 1566: 1562: 1558: 1554: 1547: 1544: 1539: 1537:0-412-74050-8 1533: 1529: 1525: 1518: 1515: 1510: 1504: 1500: 1493: 1491: 1489: 1487: 1485: 1483: 1481: 1479: 1477: 1475: 1473: 1469: 1464: 1458: 1454: 1447: 1445: 1443: 1441: 1439: 1437: 1435: 1433: 1431: 1429: 1427: 1425: 1423: 1421: 1419: 1417: 1415: 1413: 1411: 1409: 1407: 1405: 1403: 1401: 1399: 1395: 1390: 1384: 1380: 1373: 1371: 1369: 1367: 1365: 1363: 1361: 1359: 1357: 1355: 1353: 1351: 1349: 1347: 1345: 1343: 1339: 1333: 1329: 1326: 1324: 1321: 1319: 1318:Lake aeration 1316: 1314: 1311: 1310: 1306: 1295: 1292: 1281: 1276: 1274: 1272: 1268: 1264: 1263:hybridization 1260: 1259:ballast water 1256: 1249: 1247: 1245: 1241: 1237: 1233: 1229: 1225: 1218: 1216: 1214: 1210: 1206: 1202: 1197: 1193: 1187:Acidification 1186: 1182:Human impacts 1181: 1179: 1177: 1168: 1166: 1164: 1160: 1156: 1152: 1145:Lake creation 1144: 1139: 1137: 1130: 1128: 1125: 1121: 1117: 1114: 1110: 1106: 1102: 1093: 1089: 1087: 1082: 1078: 1074: 1070: 1068: 1064: 1056: 1054: 1047: 1042: 1040: 1037: 1033: 1029: 1025: 1016: 1014: 1011: 1007: 1003: 999: 995: 991: 982: 980: 977: 972: 968: 960: 958: 954: 952: 948: 944: 939: 938:allochthonous 931: 929: 927: 923: 918: 917:autochthonous 910: 905: 903: 900: 896: 892: 888: 884: 880: 876: 872: 867: 860: 858: 856: 852: 847: 845: 841: 837: 833: 829: 825: 821: 817: 812: 807: 800: 796: 792: 788: 782:Invertebrates 781: 779: 776: 772: 770: 766: 762: 758: 754: 750: 748: 744: 740: 736: 732: 728: 724: 723:phytoplankton 716: 715: 710: 703: 701: 699: 694: 686: 681: 677: 670: 668: 665: 664:remineralized 660: 656: 654: 650: 645: 637: 635: 633: 624: 617: 611: 607: 605: 604:lake turnover 601: 597: 593: 587: 585: 577: 575: 572: 568: 564: 560: 552: 547: 545: 542: 538: 535: 534:riparian zone 531: 527: 523: 522:limnetic zone 519: 515: 511: 510:littoral zone 499: 494: 492: 487: 485: 480: 479: 477: 476: 471: 468: 466: 463: 462: 461: 460: 455: 450: 441: 439: 430: 426: 417: 415: 414:Dimictic lake 406: 404: 395: 394: 393: 384: 383: 382: 381: 376: 371: 362: 360: 351: 349: 340: 338: 329: 328: 327: 326: 323: 319: 314: 305: 303: 294: 292: 291:Limnetic zone 283: 281: 280:Littoral zone 272: 271: 270: 269: 264: 255: 252: 244: 233: 230: 226: 223: 219: 216: 212: 209: 205: 202: â€“  201: 197: 196:Find sources: 190: 186: 180: 179: 174:This section 172: 168: 163: 162: 156: 154: 152: 148: 144: 140: 135: 133: 129: 125: 121: 116: 114: 110: 106: 102: 98: 94: 90: 86: 83: 79: 75: 71: 67: 64:, as well as 63: 59: 55: 51: 47: 43: 32: 19: 5384:Water Lilies 5383: 5378:Water garden 5358:(M C Escher) 5355: 5305:Bakki shower 5283: 5140:Natural pool 5040:Raceway pond 4970:Cooling pond 4960:Ballast pond 4859:Regime shift 4844:Macroecology 4565: 4561: 4501:Edge effects 4471:Biogeography 4416:Commensalism 4264:Biodiversity 4141:Allee effect 3880:kelp forests 3833:Example webs 3698:Detritivores 3537:Organotrophs 3517:Kinetotrophs 3469:Productivity 3227:Conservation 3078:Pelagic fish 3058:Coastal fish 2962:Marine fungi 2700:Water garden 2642: 2583:Water column 2528:Productivity 2503:Pelagic zone 2463:Macrobenthos 2453:Hydrobiology 2423:Ecohydrology 2234: 2179: 2175: 2165: 2148: 2144: 2138: 2105: 2101: 2088: 2063: 2059: 2053: 2031:(1): 75–83. 2028: 2024: 2018: 2009: 1964: 1960: 1947: 1906: 1902: 1892: 1880:. Retrieved 1860: 1856: 1846: 1829: 1825: 1815: 1803:. Retrieved 1783:11343/219728 1768:(1): 17146. 1765: 1761: 1751: 1708:. Retrieved 1704: 1694: 1667: 1663: 1653: 1629: 1590: 1552: 1546: 1523: 1517: 1498: 1452: 1378: 1305:Lakes portal 1267:zebra mussel 1253: 1222: 1190: 1172: 1148: 1134: 1126: 1119: 1118: 1112: 1111: 1091: 1090: 1080: 1079: 1072: 1071: 1062: 1060: 1051: 1020: 1006:detritivores 998:insectivores 986: 964: 955: 935: 922:chlorophylls 914: 868: 864: 848: 804: 773: 768: 764: 760: 756: 751: 739:gas vesicles 720: 712: 690: 657: 647: 629: 588: 581: 556: 539: 526:aphotic zone 514:pelagic zone 507: 449:Amictic lake 313:Benthic zone 247: 238: 228: 221: 214: 207: 195: 183:Please help 178:verification 175: 136: 128:benthic zone 117: 84: 73: 69: 45: 41: 39: 18:Lake ecology 5330:Hydric soil 5218:Seep puddle 5180:Vernal pool 5165:Stream pool 5150:Plunge pool 5015:Kettle pond 4995:Garden pond 4496:Disturbance 4399:interaction 4221:Recruitment 4151:Depensation 3943:Copiotrophs 3814:Energy flow 3736:Lithotrophy 3680:Decomposers 3660:Planktivore 3635:Insectivore 3625:Heterotroph 3590:Bacterivore 3557:Phototrophs 3507:Chemotrophs 3479:Restoration 3429:Competition 3212:Sponge reef 3187:Rocky shore 3182:Oyster reef 3152:Kelp forest 3035:Vertebrates 2935:Marine life 2911:Viral shunt 2876:Marine snow 2778:Maharashtra 2685:Stream pool 2588:Zooplankton 2508:Photic zone 2468:Meiobenthos 2321:Algal bloom 1967:: 257–263. 1832:: 203–212. 1271:sea lamprey 1244:thermocline 1242:, when the 1205:Scandinavia 1199:systems as 1159:oxbow lakes 1103:, and then 875:salamanders 820:Crustaceans 806:Zooplankton 653:respiration 600:thermocline 592:hypolimnion 578:Temperature 518:photic zone 359:Hypolimnion 348:Metalimnion 241:August 2021 120:Lake Baikal 80:, from the 5422:Ecosystems 5406:Categories 5345:Pond liner 5335:Phytotelma 5266:Ecosystems 5236:Beaver dam 5145:Ocean pool 5130:Brine pool 5095:Waste pond 5070:Solar pond 4864:Sexecology 4441:Parasitism 4406:Antibiosis 4241:Resistance 4236:Resilience 4126:Population 4046:Camouflage 3998:Oligotroph 3913:Ascendency 3875:intertidal 3865:cold seeps 3819:Food chain 3620:Herbivores 3595:Carnivores 3522:Mixotrophs 3497:Autotrophs 3376:components 3192:Salt marsh 3127:Coral reef 2916:Whale fall 2896:Photophore 2773:Everglades 2741:Ecoregions 2680:Stream bed 2653:Macrophyte 2606:Freshwater 2438:Food chain 2351:Water bird 1882:13 January 1805:13 January 1732:0521739675 1710:2023-10-05 1644:0632035129 1600:0198549776 1508:0130337757 1462:0198516134 1388:0435606220 1334:References 1207:, western 1002:piscivores 994:Carnivores 990:herbivores 895:alligators 871:amphibians 855:hemoglobin 727:periphyton 659:Phosphorus 642:See also: 596:epilimnion 563:Beer's law 378:Lake types 337:Epilimnion 266:Lake zones 211:newspapers 143:reservoirs 78:freshwater 5325:Full pond 5246:Fish pond 5241:Duck pond 5198:Bird bath 5175:Tide pool 5080:Stew pond 5030:Mill pond 5025:Melt pond 4769:Allometry 4723:Emergence 4451:Symbiosis 4436:Mutualism 4231:Stability 4136:Abundance 3948:Dominance 3906:Processes 3895:tide pool 3791:Food webs 3665:Predation 3650:Omnivores 3577:Consumers 3532:Mycotroph 3489:Producers 3434:Ecosystem 3399:Behaviour 3217:Tide pool 3122:Cold seep 2906:Upwelling 2670:Rheotaxis 2663:Fish pond 2638:Limnology 2563:Substrate 2548:Siltation 2418:Dead zone 2238:. Wiley. 2198:0364-152X 2145:Ecography 1989:0171-8630 1923:1740-1534 1877:0380-1330 1792:2045-2322 1686:2296-665X 1499:Limnology 1323:Limnology 1224:Eutrophic 1201:acid rain 1036:Bottom-up 1010:parasitic 899:waterfowl 765:submersed 743:flagellum 698:commensal 638:Chemistry 132:profundal 52:(living) 48:includes 5256:Koi pond 5085:Tailings 5075:Stepwell 5050:Sag pond 5020:Log pond 5000:Ice pond 4980:Dew pond 4950:Ash pond 4824:Endolith 4753:Xerosere 4665:networks 4481:Ecocline 4027:Defense, 3703:Detritus 3605:Foraging 3474:Resource 3324:Category 3250:HERMIONE 3167:Mangrove 2977:Seagrass 2523:Pleuston 2518:Plankton 2498:Particle 2443:Food web 2216:36318287 2122:14970922 2080:84069604 1931:15953930 1800:30464220 1528:Springer 1277:See also 1209:Scotland 1155:glaciers 1151:tectonic 1105:nitrogen 1024:top-down 976:predator 943:protozoa 932:Bacteria 883:reptiles 836:molluscs 828:crayfish 816:diapause 757:emergent 735:vacuoles 687:Bacteria 541:Wetlands 524:and the 457:See also 97:wetlands 5386:(Monet) 5350:Ponding 5293:Related 5190:Puddles 4934:puddles 4814:Ecopath 4621:Habitat 4491:Ecotype 4486:Ecotone 4463:ecology 4461:Spatial 4397:Species 4257:Species 4128:ecology 4113:Ecology 4061:Mimicry 4029:counter 3973:f-ratio 3721:Archaea 3409:Biomass 3382:General 3374:Trophic 3366:Ecology 3177:Mudflat 3137:Estuary 3107:Bay mud 3085:Seabird 2841:f-ratio 2824:General 2705:Wetland 2493:Neuston 2458:Hypoxia 2403:Biomass 2393:Benthos 2309:General 2226:Sources 2207:9628596 2130:9886026 2045:2844594 1969:Bibcode 1211:, west 1163:fluvial 971:Grazers 891:turtles 811:Daphnia 731:benthos 693:biofilm 571:aphotic 225:scholar 124:pelagic 109:streams 66:abiotic 58:animals 5363:Spring 5356:Puddle 5208:Puddle 3845:Rivers 3741:Marine 3162:Lagoon 2488:Nekton 2346:Mammal 2341:Insect 2242:  2214:  2204:  2196:  2128:  2120:  2078:  2043:  1987:  1939:336473 1937:  1929:  1921:  1875:  1798:  1790:  1730:  1684:  1641:  1597:  1567:  1534:  1505:  1459:  1385:  1120:Winter 1101:silica 1092:Summer 1081:Spring 1073:Winter 1063:et al. 893:, and 887:snakes 885:(e.g. 873:(e.g. 844:snails 838:(e.g. 832:shrimp 830:, and 822:(e.g. 649:Oxygen 567:photic 516:, the 446:  444:  435:  433:  422:  420:  411:  409:  400:  398:  389:  387:  367:  365:  356:  354:  345:  343:  334:  332:  310:  308:  299:  297:  288:  286:  277:  275:  227:  220:  213:  206:  198:  105:rivers 85:lentus 74:lentic 54:plants 50:biotic 5228:Biome 5118:Pools 4942:Ponds 4930:Ponds 4762:Other 4663:Other 4616:Guild 4588:Niche 3840:Lakes 2553:Spawn 2126:S2CID 2098:(PDF) 2076:S2CID 2041:JSTOR 1957:(PDF) 1935:S2CID 1213:Wales 1084:3. A 879:frogs 840:clams 824:crabs 553:Light 232:JSTOR 218:books 157:Zones 139:ponds 93:lakes 89:ponds 82:Latin 5391:Well 5090:Tarn 4965:Beel 3850:Soil 2658:Pond 2240:ISBN 2212:PMID 2194:ISSN 2118:PMID 1985:ISSN 1927:PMID 1919:ISSN 1884:2024 1873:ISSN 1807:2024 1796:PMID 1788:ISSN 1728:ISBN 1682:ISSN 1639:ISBN 1595:ISBN 1565:ISBN 1532:ISBN 1503:ISBN 1457:ISBN 1383:ISBN 1269:and 1194:and 1161:are 1113:Fall 983:Fish 877:and 842:and 737:and 725:and 618:Wind 569:and 204:news 107:and 95:and 60:and 2720:Fen 2710:Bog 2202:PMC 2184:doi 2153:doi 2110:doi 2106:163 2068:doi 2064:106 2033:doi 2029:8 1 1977:doi 1911:doi 1865:doi 1834:doi 1778:hdl 1770:doi 1672:doi 1635:557 1557:doi 1553:eLS 1067:PEG 881:), 834:), 799:m/s 187:by 44:or 5408:: 4311:/ 4115:: 3372:: 3368:: 2210:. 2200:. 2192:. 2180:71 2178:. 2174:. 2149:24 2147:. 2124:. 2116:. 2104:. 2100:. 2074:. 2062:. 2039:. 2027:. 1997:^ 1983:. 1975:. 1965:10 1963:. 1959:. 1933:. 1925:. 1917:. 1905:. 1901:. 1871:. 1861:37 1859:. 1855:. 1830:26 1828:. 1824:. 1794:. 1786:. 1776:. 1764:. 1760:. 1739:^ 1719:^ 1703:. 1680:. 1670:. 1668:11 1666:. 1662:. 1637:. 1609:^ 1579:^ 1563:. 1530:. 1526:. 1471:^ 1397:^ 1341:^ 889:, 826:, 153:. 115:. 91:, 56:, 40:A 4922:e 4915:t 4908:v 4566:K 4564:/ 4562:r 4105:e 4098:t 4091:v 3358:e 3351:t 3344:v 2276:e 2269:t 2262:v 2248:. 2218:. 2186:: 2159:. 2155:: 2132:. 2112:: 2082:. 2070:: 2047:. 2035:: 1991:. 1979:: 1971:: 1941:. 1913:: 1907:3 1886:. 1867:: 1840:. 1836:: 1809:. 1780:: 1772:: 1766:8 1734:. 1713:. 1688:. 1674:: 1647:. 1603:. 1573:. 1559:: 1540:. 1511:. 1465:. 1391:. 801:. 497:e 490:t 483:v 254:) 248:( 243:) 239:( 229:· 222:· 215:· 208:· 181:. 72:( 20:)

Index

Lake ecology

biotic
plants
animals
micro-organisms
abiotic
freshwater
Latin
ponds
lakes
wetlands
lotic ecosystems
rivers
streams
freshwater ecosystems
Lake Baikal
pelagic
benthic zone
profundal
ponds
reservoirs
drainage basin
eutrophication

verification
improve this article
adding citations to reliable sources
"Lake ecosystem"
news

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑