Knowledge (XXG)

Lambert's cosine law

Source 📝

242:(energy or photons /time/area) landing on that area element will be proportional to the cosine of the angle between the illuminating source and the normal. A Lambertian scatterer will then scatter this light according to the same cosine law as a Lambertian emitter. This means that although the radiance of the surface depends on the angle from the normal to the illuminating source, it will not depend on the angle from the normal to the observer. For example, if the 1140: 296: 284: 831: 43: 1135:{\displaystyle {\begin{aligned}F_{\text{tot}}&=\int _{0}^{2\pi }\int _{0}^{\pi /2}\cos(\theta )\,I_{\max }\,\sin(\theta )\,d\theta \,d\phi \\&=2\pi \cdot I_{\max }\int _{0}^{\pi /2}\cos(\theta )\sin(\theta )\,d\theta \\&=2\pi \cdot I_{\max }\int _{0}^{\pi /2}{\frac {\sin(2\theta )}{2}}\,d\theta \end{aligned}}} 229:
when viewed from any angle. This means, for example, that to the human eye it has the same apparent brightness. It has the same radiance because, although the emitted power from a given area element is reduced by the cosine of the emission angle, the solid angle, subtended by surface visible to the
747: 1373:
Example: A surface with a luminance of say 100 cd/m (= 100 nits, typical PC monitor) will, if it is a perfect Lambert emitter, have a luminous emittance of 100π lm/m. If its area is 0.1 m (~19" monitor) then the total light emitted, or luminous flux, would thus be 31.4 lm.
427:Ω was chosen arbitrarily, for convenience we may assume without loss of generality that it coincides with the solid angle subtended by the aperture when "viewed" from the locus of the emitting area element dA. Thus the normal observer will then be recording the same 765:
of a point on a surface varies by direction; for a Lambertian surface, that distribution is defined by the cosine law, with peak luminous intensity in the normal direction. Thus when the Lambertian assumption holds, we can calculate the total
584: 523: 1198: 250:
due to the increased angle at which sunlight hit the surface. The fact that it does not diminish illustrates that the moon is not a Lambertian scatterer, and in fact tends to scatter more light into the
836: 230:
viewer, is reduced by the very same amount. Because the ratio between power and solid angle is constant, radiance (power per unit solid angle per unit projected source area) stays the same.
1315: 1344: 258:
The emission of a Lambertian radiator does not depend on the amount of incident radiation, but rather from radiation originating in the emitting body itself. For example, if the
795: 1233: 1268: 826: 287:
Figure 1: Emission rate (photons/s) in a normal and off-normal direction. The number of photons/sec directed into any wedge is proportional to the area of the wedge.
339:Ω, of an arbitrarily chosen size, and for a Lambertian surface, the number of photons per second emitted into each wedge is proportional to the area of the wedge. 319:
The situation for a Lambertian surface (emitting or scattering) is illustrated in Figures 1 and 2. For conceptual clarity we will think in terms of
60: 742:{\displaystyle I_{0}={\frac {I\cos(\theta )\,d\Omega \,dA}{d\Omega _{0}\,\cos(\theta )\,dA_{0}}}={\frac {I\,d\Omega \,dA}{d\Omega _{0}\,dA_{0}}}} 404:
Figure 2 represents what an observer sees. The observer directly above the area element will be seeing the scene through an aperture of area
446: 1148: 262:
were a Lambertian radiator, one would expect to see a constant brightness across the entire solar disc. The fact that the sun exhibits
1505: 107: 126: 79: 86: 1453: 64: 1520: 1393: 93: 75: 53: 246:
were a Lambertian scatterer, one would expect to see its scattered brightness appreciably diminish towards the
31: 1277: 1370:. Radians and steradians are, of course, dimensionless and so "rad" and "sr" are included only for clarity. 201: 218: 1320: 160: 423:, which is a portion of the observer's total angular field-of-view of the scene. Since the wedge size 773: 100: 1525: 1515: 1510: 1206: 1351: 798: 762: 247: 156: 152: 1246: 804: 366: photons/(s·m·sr) and the number of photons per second emitted into the vertical wedge is 310:Ω is the solid angle subtended by the aperture from the viewpoint of the emitting area element. 1449: 1367: 1355: 238:
When an area element is radiating as a result of being illuminated by an external source, the
172: 148: 27:
Description in optics of the angular dependency of the radiant intensity of a radiant surface
1236: 328: 263: 1470: 299:
Figure 2: Observed intensity (photons/(s·m·sr)) for a normal and off-normal observer;
1499: 1445: 1438: 1383: 767: 252: 295: 283: 1388: 1359: 17: 1317:
of the total radiated luminous flux. For Lambertian surfaces, the same factor of
1240: 351: 206: 42: 267: 239: 1347: 1271: 226: 1426:
Modern Optical Engineering, Warren J. Smith, McGraw-Hill, p. 228, 256
266:
in the visible region illustrates that it is not a Lambertian radiator. A
1398: 1363: 533:
to the normal will be seeing the scene through the same aperture of area
440:
photons per second emission derived above and will measure a radiance of
359: 343: 222: 518:{\displaystyle I_{0}={\frac {I\,d\Omega \,dA}{d\Omega _{0}\,dA_{0}}}} 332: 324: 320: 164: 140: 1472:
Photometria, sive de mensura et gradibus luminis, colorum et umbrae
379:. The number of photons per second emitted into the wedge at angle 294: 282: 1193:{\displaystyle F_{\text{tot}}=\pi \,\mathrm {sr} \cdot I_{\max }} 243: 259: 36: 30:"Lambert's law" redirects here. For the concept in logic, see 578:
photons per second, and so will be measuring a radiance of
544:Ω wedge) and from this oblique vantage the area element 1323: 1280: 1249: 1209: 1151: 834: 807: 776: 587: 548:
is foreshortened and will subtend a (solid) angle of
449: 67:. Unsourced material may be challenged and removed. 1437: 1338: 1309: 1262: 1227: 1192: 1134: 820: 789: 757:Relating peak luminous intensity and luminous flux 741: 517: 213:A surface which obeys Lambert's law is said to be 1255: 1185: 1066: 977: 918: 813: 354:is along the normal, and diminishes to zero for 350:). The maximum rate of photon emission per unit 342:The length of each wedge is the product of the 171:between the observer's line of sight and the 8: 753:which is the same as the normal observer. 306:is the area of the observing aperture and 1328: 1327: 1322: 1296: 1295: 1284: 1279: 1254: 1248: 1208: 1184: 1169: 1168: 1156: 1150: 1121: 1094: 1084: 1080: 1075: 1065: 1035: 995: 991: 986: 976: 946: 939: 923: 917: 912: 887: 883: 878: 865: 860: 843: 835: 833: 812: 806: 781: 775: 730: 722: 716: 700: 693: 687: 675: 667: 651: 645: 629: 622: 601: 592: 586: 506: 498: 492: 476: 469: 463: 454: 448: 127:Learn how and when to remove this message 1274:. Similarly, the peak intensity will be 270:is an example of a Lambertian radiator. 1410: 1310:{\displaystyle 1/(\pi \,\mathrm {sr} )} 1487:Fundamentals of Heat and Mass Transfer 159:surface or ideal diffuse radiator is 7: 1417:RCA Electro-Optics Handbook, p.18 ff 560:). This observer will be recording 65:adding citations to reliable sources 1339:{\displaystyle \pi \,\mathrm {sr} } 234:Lambertian scatterers and radiators 1332: 1329: 1300: 1297: 1173: 1170: 713: 697: 642: 626: 489: 473: 358:= 90°. In mathematical terms, the 274:Details of equal brightness effect 25: 1469:Lambert, Johann Heinrich (1760). 828:, by integrating the cosine law: 1436:Pedrotti & Pedrotti (1993). 415:will subtend a (solid) angle of 41: 192:. The law is also known as the 52:needs additional citations for 1304: 1289: 1222: 1216: 1112: 1103: 1032: 1026: 1017: 1011: 936: 930: 909: 903: 790:{\displaystyle F_{\text{tot}}} 664: 658: 619: 613: 335:each represent an equal angle 221:. Such a surface has the same 1: 1394:Passive solar building design 1228:{\displaystyle \sin(\theta )} 255:than a Lambertian scatterer. 1542: 1235:is the determinant of the 540:(still corresponding to a 29: 1506:Eponymous laws of physics 1263:{\displaystyle I_{\max }} 821:{\displaystyle I_{\max }} 202:Johann Heinrich Lambert 155:observed from an ideal 1485:Incropera and DeWitt, 1440:Introduction to Optics 1340: 1311: 1264: 1229: 1194: 1136: 822: 791: 743: 529:The observer at angle 519: 346:of the circle and cos( 311: 288: 219:Lambertian reflectance 198:Lambert's emission law 76:"Lambert's cosine law" 1341: 1312: 1270:is luminous flux per 1265: 1243:, and realizing that 1230: 1195: 1137: 823: 792: 744: 520: 411:and the area element 298: 286: 210:, published in 1760. 161:directly proportional 32:Lambert's law (logic) 1521:3D computer graphics 1321: 1278: 1247: 1207: 1149: 832: 805: 774: 585: 447: 362:along the normal is 331:. The wedges in the 200:. It is named after 157:diffusely reflecting 145:Lambert's cosine law 61:improve this article 1093: 1004: 896: 873: 194:cosine emission law 1352:luminous emittance 1336: 1307: 1260: 1225: 1190: 1132: 1130: 1071: 982: 874: 856: 818: 799:luminous intensity 787: 763:luminous intensity 739: 515: 312: 289: 153:luminous intensity 18:Lambertian emitter 1489:, 5th ed., p.710. 1475:. Eberhard Klett. 1368:radiant emittance 1356:radiant intensity 1159: 1119: 846: 784: 749:photons/(s·m·sr), 737: 682: 525:photons/(s·m·sr). 513: 316: 315: 149:radiant intensity 137: 136: 129: 111: 16:(Redirected from 1533: 1490: 1483: 1477: 1476: 1466: 1460: 1459: 1443: 1433: 1427: 1424: 1418: 1415: 1345: 1343: 1342: 1337: 1335: 1316: 1314: 1313: 1308: 1303: 1288: 1269: 1267: 1266: 1261: 1259: 1258: 1234: 1232: 1231: 1226: 1199: 1197: 1196: 1191: 1189: 1188: 1176: 1161: 1160: 1157: 1141: 1139: 1138: 1133: 1131: 1120: 1115: 1095: 1092: 1088: 1079: 1070: 1069: 1045: 1003: 999: 990: 981: 980: 956: 922: 921: 895: 891: 882: 872: 864: 848: 847: 844: 827: 825: 824: 819: 817: 816: 797:, from the peak 796: 794: 793: 788: 786: 785: 782: 761:In general, the 748: 746: 745: 740: 738: 736: 735: 734: 721: 720: 707: 688: 683: 681: 680: 679: 650: 649: 636: 602: 597: 596: 577: 524: 522: 521: 516: 514: 512: 511: 510: 497: 496: 483: 464: 459: 458: 439: 400: 378: 279: 278: 191: 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 1541: 1540: 1536: 1535: 1534: 1532: 1531: 1530: 1496: 1495: 1494: 1493: 1484: 1480: 1468: 1467: 1463: 1456: 1435: 1434: 1430: 1425: 1421: 1416: 1412: 1407: 1380: 1319: 1318: 1276: 1275: 1250: 1245: 1244: 1237:Jacobian matrix 1205: 1204: 1180: 1152: 1147: 1146: 1129: 1128: 1096: 1061: 1043: 1042: 972: 954: 953: 913: 849: 839: 830: 829: 808: 803: 802: 777: 772: 771: 759: 726: 712: 708: 689: 671: 641: 637: 603: 588: 583: 582: 561: 555: 539: 502: 488: 484: 465: 450: 445: 444: 428: 422: 410: 384: 367: 329:luminous energy 317: 305: 276: 236: 217:, and exhibits 186: 176: 133: 122: 116: 113: 70: 68: 58: 46: 35: 28: 23: 22: 15: 12: 11: 5: 1539: 1537: 1529: 1528: 1523: 1518: 1513: 1508: 1498: 1497: 1492: 1491: 1478: 1461: 1454: 1428: 1419: 1409: 1408: 1406: 1403: 1402: 1401: 1396: 1391: 1386: 1379: 1376: 1334: 1331: 1326: 1306: 1302: 1299: 1294: 1291: 1287: 1283: 1257: 1253: 1224: 1221: 1218: 1215: 1212: 1201: 1200: 1187: 1183: 1179: 1175: 1172: 1167: 1164: 1155: 1127: 1124: 1118: 1114: 1111: 1108: 1105: 1102: 1099: 1091: 1087: 1083: 1078: 1074: 1068: 1064: 1060: 1057: 1054: 1051: 1048: 1046: 1044: 1041: 1038: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1002: 998: 994: 989: 985: 979: 975: 971: 968: 965: 962: 959: 957: 955: 952: 949: 945: 942: 938: 935: 932: 929: 926: 920: 916: 911: 908: 905: 902: 899: 894: 890: 886: 881: 877: 871: 868: 863: 859: 855: 852: 850: 842: 838: 837: 815: 811: 780: 758: 755: 751: 750: 733: 729: 725: 719: 715: 711: 706: 703: 699: 696: 692: 686: 678: 674: 670: 666: 663: 660: 657: 654: 648: 644: 640: 635: 632: 628: 625: 621: 618: 615: 612: 609: 606: 600: 595: 591: 553: 537: 527: 526: 509: 505: 501: 495: 491: 487: 482: 479: 475: 472: 468: 462: 457: 453: 420: 408: 314: 313: 303: 291: 290: 277: 275: 272: 264:limb darkening 253:oblique angles 235: 232: 184: 173:surface normal 147:says that the 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1538: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1503: 1501: 1488: 1482: 1479: 1474: 1473: 1465: 1462: 1457: 1451: 1447: 1446:Prentice Hall 1442: 1441: 1432: 1429: 1423: 1420: 1414: 1411: 1404: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1384:Transmittance 1382: 1381: 1377: 1375: 1371: 1369: 1365: 1361: 1357: 1353: 1349: 1324: 1292: 1285: 1281: 1273: 1251: 1242: 1238: 1219: 1213: 1210: 1181: 1177: 1165: 1162: 1153: 1145: 1144: 1143: 1125: 1122: 1116: 1109: 1106: 1100: 1097: 1089: 1085: 1081: 1076: 1072: 1062: 1058: 1055: 1052: 1049: 1047: 1039: 1036: 1029: 1023: 1020: 1014: 1008: 1005: 1000: 996: 992: 987: 983: 973: 969: 966: 963: 960: 958: 950: 947: 943: 940: 933: 927: 924: 914: 906: 900: 897: 892: 888: 884: 879: 875: 869: 866: 861: 857: 853: 851: 840: 809: 800: 778: 769: 768:luminous flux 764: 756: 754: 731: 727: 723: 717: 709: 704: 701: 694: 690: 684: 676: 672: 668: 661: 655: 652: 646: 638: 633: 630: 623: 616: 610: 607: 604: 598: 593: 589: 581: 580: 579: 576: 572: 568: 564: 559: 551: 547: 543: 536: 532: 507: 503: 499: 493: 485: 480: 477: 470: 466: 460: 455: 451: 443: 442: 441: 438: 434: 431: 426: 418: 414: 407: 402: 399: 395: 391: 387: 382: 377: 373: 370: 365: 361: 357: 353: 349: 345: 340: 338: 334: 330: 326: 322: 309: 302: 297: 293: 292: 285: 281: 280: 273: 271: 269: 265: 261: 256: 254: 249: 245: 241: 233: 231: 228: 224: 220: 216: 211: 209: 208: 203: 199: 195: 190: 183: 179: 174: 170: 167:of the angle 166: 162: 158: 154: 150: 146: 142: 131: 128: 120: 117:December 2009 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: –  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 19: 1486: 1481: 1471: 1464: 1439: 1431: 1422: 1413: 1389:Reflectivity 1372: 1360:radiant flux 1202: 760: 752: 574: 570: 566: 562: 557: 549: 545: 541: 534: 530: 528: 436: 432: 429: 424: 416: 412: 405: 403: 397: 393: 389: 385: 380: 375: 371: 368: 363: 355: 347: 341: 336: 323:rather than 318: 307: 300: 257: 237: 214: 212: 205: 197: 193: 188: 181: 177: 168: 144: 138: 123: 114: 104: 97: 90: 83: 71: 59:Please help 54:verification 51: 1241:unit sphere 352:solid angle 207:Photometria 204:, from his 1526:Scattering 1516:Photometry 1511:Radiometry 1500:Categories 1455:0135015456 1405:References 556: cos( 268:black body 248:terminator 240:irradiance 215:Lambertian 87:newspapers 1348:luminance 1325:π 1293:π 1272:steradian 1220:θ 1214:⁡ 1178:⋅ 1166:π 1126:θ 1110:θ 1101:⁡ 1082:π 1073:∫ 1059:⋅ 1056:π 1040:θ 1030:θ 1024:⁡ 1015:θ 1009:⁡ 993:π 984:∫ 970:⋅ 967:π 951:ϕ 944:θ 934:θ 928:⁡ 907:θ 901:⁡ 885:π 876:∫ 870:π 858:∫ 714:Ω 698:Ω 662:θ 656:⁡ 643:Ω 627:Ω 617:θ 611:⁡ 490:Ω 474:Ω 227:luminance 1399:Sun path 1378:See also 1364:radiance 1346:relates 1239:for the 360:radiance 344:diameter 223:radiance 1142:and so 321:photons 163:to the 101:scholar 1452:  1362:, and 1203:where 333:circle 325:energy 165:cosine 141:optics 103:  96:  89:  82:  74:  108:JSTOR 94:books 1450:ISBN 565:cos( 388:cos( 244:moon 187:cos 80:news 1366:to 1358:to 1350:to 1256:max 1211:sin 1186:max 1158:tot 1098:sin 1067:max 1021:sin 1006:cos 978:max 925:sin 919:max 898:cos 845:tot 814:max 783:tot 653:cos 608:cos 383:is 327:or 260:sun 196:or 151:or 139:In 63:by 1502:: 1448:. 1444:. 1354:, 801:, 770:, 575:dA 573:Ω 569:) 546:dA 535:dA 437:dA 435:Ω 413:dA 406:dA 401:. 398:dA 396:Ω 392:) 376:dA 374:Ω 301:dA 180:= 175:; 143:, 1458:. 1333:r 1330:s 1305:) 1301:r 1298:s 1290:( 1286:/ 1282:1 1252:I 1223:) 1217:( 1182:I 1174:r 1171:s 1163:= 1154:F 1123:d 1117:2 1113:) 1107:2 1104:( 1090:2 1086:/ 1077:0 1063:I 1053:2 1050:= 1037:d 1033:) 1027:( 1018:) 1012:( 1001:2 997:/ 988:0 974:I 964:2 961:= 948:d 941:d 937:) 931:( 915:I 910:) 904:( 893:2 889:/ 880:0 867:2 862:0 854:= 841:F 810:I 779:F 732:0 728:A 724:d 718:0 710:d 705:A 702:d 695:d 691:I 685:= 677:0 673:A 669:d 665:) 659:( 647:0 639:d 634:A 631:d 624:d 620:) 614:( 605:I 599:= 594:0 590:I 571:d 567:θ 563:I 558:θ 554:0 552:Ω 550:d 542:d 538:0 531:θ 508:0 504:A 500:d 494:0 486:d 481:A 478:d 471:d 467:I 461:= 456:0 452:I 433:d 430:I 425:d 421:0 419:Ω 417:d 409:0 394:d 390:θ 386:I 381:θ 372:d 369:I 364:I 356:θ 348:θ 337:d 308:d 304:0 225:/ 189:θ 185:0 182:I 178:I 169:θ 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Lambertian emitter
Lambert's law (logic)

verification
improve this article
adding citations to reliable sources
"Lambert's cosine law"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
optics
radiant intensity
luminous intensity
diffusely reflecting
directly proportional
cosine
surface normal
Johann Heinrich Lambert
Photometria
Lambertian reflectance
radiance
luminance
irradiance
moon
terminator
oblique angles
sun

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.