Knowledge (XXG)

Landau–Zener formula

Source 📝

1021: 1329:) can be applied to Landau–Zener systems which are coupled to baths composed of infinite many oscillators and/or spin baths (dissipative Landau–Zener transitions). They provide exact expressions for transition probabilities averaged over final bath states if the evolution begins from the ground state at zero temperature, see in Ref. for oscillator baths and for universal results including spin baths in Ref. 75: 728: 25: 1016:{\displaystyle {\begin{aligned}P_{\rm {D}}&=e^{-2\pi \Gamma }\\\Gamma &={a^{2}/\hbar \over \left|{\frac {\partial }{\partial t}}(E_{2}-E_{1})\right|}={a^{2}/\hbar \over \left|{\frac {dq}{dt}}{\frac {\partial }{\partial q}}(E_{2}-E_{1})\right|}\\&={a^{2} \over \hbar |\alpha |}\end{aligned}}} 1303:
Landau–Zener transitions in infinite linear chains. This class contains the systems with formally infinite number of interacting states. Although most known their instances can be obtained as limits of the finite size models (such as the Tavis–Cummings model), there are also cases that do not belong
1182:
Demkov–Osherov model that describes a single level that crosses a band of parallel levels. A surprising fact about the solution of this model is coincidence of the exactly obtained transition probability matrix with its form obtained with a simple semiclassical independent crossing approximation.
181:
The first simplification makes this a semi-classical treatment. In the case of an atom in a magnetic field, the field strength becomes a classical variable which can be precisely measured during the transition. This requirement is quite restrictive as a linear change will not, in general, be the
1313:
Applications of the Landau–Zener solution to the problems of quantum state preparation and manipulation with discrete degrees of freedom stimulated the study of noise and decoherence effects on the transition probability in a driven two-state system. Several compact analytical results have been
1209:
with a bosonic mode in a linearly time-dependent magnetic field. This is the richest known solved system. It has combinatorial complexity: the dimension of its state vector space is growing exponentially with the number of spins N. The transition probabilities in this model are described by the
140:
If the system starts, in the infinite past, in the lower energy eigenstate, we wish to calculate the probability of finding the system in the upper energy eigenstate in the infinite future (a so-called Landau–Zener transition). For infinitely slow variation of the energy difference (that is, a
1165:
matrices with time-independent elements. The goal of the multistate Landau–Zener theory is to determine elements of the scattering matrix and the transition probabilities between states of this model after evolution with such a Hamiltonian from negative infinite to positive infinite time. The
595: 1317:
Using the Schwinger–Keldysh Green's function, a rather complete and comprehensive study on the effect of quantum noise in all parameter regimes were performed by Ao and Rammer in late 1980s, from weak to strong coupling, low to high temperature, slow to fast passage, etc. Concise analytical
1169:
There are exact formulas, called hierarchy constraints, that provide analytical expressions for special elements of the scattering matrix in any multi-state Landau–Zener model. Special cases of these relations are known as the Brundobler–Elser (BE) formula,), and the
1299:
are constant parameters. This is the earliest known solvable system, which was discussed by Majorana in 1932. Among the other examples there are models of a pair of degenerate level crossing, and the 1D quantum Ising chain in a linearly changing magnetic
145:
tells us that no such transition will take place, as the system will always be in an instantaneous eigenstate of the Hamiltonian at that moment in time. At non-zero velocities, transitions occur with probability as described by the Landau–Zener formula.
1318:
expressions were obtained in various limits, showing the rich behaviors of such problem. The effects of nuclear spin bath and heat bath coupling on the Landau–Zener process was explored by Sinitsyn and Prokof'ev and Pokrovsky and Sun, respectively.
1217:
Reducible (or composite) multistate Landau–Zener models. This class consists of systems that can be decoupled to subsets of other solvable and simpler models by a symmetry transformation. The notable example is an arbitrary spin Hamiltonian
1177:
There are also integrability conditions that, when they are satisfied, lead to exact expressions for the entire scattering matrices in multistate Landau–Zener models. Numerous such completely solvable models have been identified, including:
1213:
Spin clusters interacting with time-dependent magnetic fields. This class of models shows relatively complex behavior of the transition probabilities due to the path interference effects in the semiclassical independent crossing
417:
The details of Zener's solution are somewhat opaque, relying on a set of substitutions to put the equation of motion into the form of the Weber equation and using the known solution. A more transparent solution is provided by
435: 166:
fields. In order that the equations of motion for the system might be solved analytically, a set of simplifications are made, known collectively as the Landau–Zener approximation. The simplifications are as follows:
266: 1314:
derived to describe these effects, including the Kayanuma formula for a strong diagonal noise, and Pokrovsky–Sinitsyn formula for the coupling to a fast colored noise with off-diagonal components.
733: 1186:
Generalized bow-tie model. The model describes coupling of two (or one in the degenerate case limit) levels to a set of otherwise noninteracting diabatic states that cross at a single point.
43: 1271: 688: 1088: 720: 374:
The final simplification requires that the time–dependent perturbation does not couple the diabatic states; rather, the coupling must be due to a static deviation from a
1143: 341: 305: 1050:
of the two-level system's Hamiltonian coupling the bases, and as such it is half the distance between the two unperturbed eigenenergies at the avoided crossing, when
365: 656: 629: 400: 1044: 1401: 2174:
R. Malla; V. Y. Chernyak; C. Sun; N. A. Sinitsyn (2022). "Coherent Reaction between Molecular and Atomic Bose-Einstein Condensates: Integrable Model".
590:{\displaystyle v_{\rm {LZ}}={{\frac {\partial }{\partial t}}|E_{2}-E_{1}| \over {\frac {\partial }{\partial q}}|E_{2}-E_{1}|}\approx {\frac {dq}{dt}},} 3079:
K. Saito; M. Wubs; S. Kohler; Y. Kayanuma; P. Hanggi (2007). "Dissipative Landau-Zener transitions of a qubit: Bath-specific and universal behavior".
1990:
Yu. N. Demkov; V. I. Osherov (1968). "Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration".
2695: 154:
Such transitions occur between states of the entire system; hence any description of the system must include all external influences, including
1543: 1338: 2995:
D. Sun; A. Abanov; V. L. Pokrovsky (2009). "Static and Dynamic properties of a Fermi-gas of cooled atoms near a wide Feshbach resonance".
1183:
With some generalizations, this property appears in almost all solvable Landau–Zener systems with a finite number of interacting states.
3016:
M. Wubs; K. Saito; S. Kohler; P. Hanggi; Y. Kayanuma (2006). "Gauging a quantum heat bath with dissipative Landau-Zener transitions".
2019:
Yu. N. Demkov; V. N. Ostrovsky (2001). "The exact solution of the multistate Landau–Zener type model: the generalized bow-tie model".
61: 191: 113:
varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a
2940:
D. Sun; A. Abanov; V. L. Pokrovsky (2008). "Molecular production at a broad Feshbach resonance in a Fermi gas of cooled atoms".
1688:
B. Dobrescu; N. A. Sinitsyn (2006). "Comment on 'Exact results for survival probability in the multistate Landau–Zener model'".
1561: 1380: 604:
is the perturbation variable (electric or magnetic field, molecular bond-length, or any other perturbation to the system), and
367:
is a constant. For the case of an atom in a magnetic field this corresponds to a linear change in magnetic field. For a linear
110: 423: 1780:
N. A. Sinitsyn (2004). "Counterintuitive transitions in the multistate Landau–Zener problem with linear level crossings".
1304:
to this classification. For example, there are solvable infinite chains with nonzero couplings between non-nearest states.
1174:,. Discrete symmetries often lead to constraints that reduce the number of independent elements of the scattering matrix. 1596:
N. A. Sinitsyn; J. Lin; V. Y. Chernyak (2017). "Constraints on scattering amplitudes in multistate Landau-Zener theory".
2693:
Y. Kayanuma (1984). "Nonadiabatic Transitions in Level Crossing with Energy Fluctuation. I. Analytical Investigations".
1210:
q-deformed binomial statistics. This solution has found practical applications in physics of Bose-Einstein condensates.
86:(which may be vary in time). The dashed lines represent the energies of the diabatic states, which cross each other at 1835:
M. V. Volkov; V. N. Ostrovsky (2005). "No-go theorem for bands of potential curves in multistate Landau–Zener model".
1098:
The simplest generalization of the two-state Landau–Zener model is a multistate system with a Hamiltonian of the form
1743:
M. V. Volkov; V. N. Ostrovsky (2004). "Exact results for survival probability in the multistate Landau–Zener model".
3140: 2119:
C. Sun; N. A. Sinitsyn (2016). "Landau-Zener extension of the Tavis-Cummings model: Structure of the solution".
1358: 106: 2840:
N. A. Sinitsyn; N. Prokof'ev (2003). "Nuclear spin bath effects on Landau–Zener transitions in nanomagnets".
3018: 2514: 2176: 114: 2512:
J. Dziarmaga (2005). "Dynamics of a Quantum Phase Transition: Exact Solution of the Quantum Ising Model".
1454: 2402:
G. S. Vasilev; S. S. Ivanov; N. V. Vitanov (2007). "Degenerate Landau-Zener model: Analytical solution".
2457:
R. W. Cherng; L. S. Levitov (2006). "Entropy and correlation functions of a driven quantum spin chain".
3100: 3037: 2961: 2898: 2851: 2806: 2752: 2704: 2651: 2596: 2533: 2478: 2423: 2368: 2349: 2313: 2258: 2195: 2140: 2085: 2064:
N. A. Sinitsyn; F. Li (2016). "Solvable multistate model of Landau-Zener transitions in cavity QED".
2030: 2021: 2001: 1956: 1901: 1846: 1837: 1801: 1782: 1745: 1709: 1690: 1662: 1653: 1617: 1492: 1410: 1047: 1880:
N. A. Sinitsyn (2015). "Exact results for models of multichannel quantum nonadiabatic transitions".
93:, and the full lines represent the energy of the adiabatic states (eigenvalues of the Hamiltonian). 3145: 2347:
A. Patra; E. A. Yuzbashyan (2015). "Quantum integrability in the multistate Landau–Zener problem".
1992: 1221: 661: 3116: 3090: 3061: 3027: 2996: 2977: 2951: 2922: 2888: 2776: 2742: 2675: 2641: 2612: 2586: 2557: 2523: 2494: 2468: 2439: 2413: 2384: 2358: 2329: 2303: 2274: 2248: 2219: 2185: 2156: 2130: 2101: 2075: 2046: 1972: 1946: 1917: 1891: 1862: 1817: 1791: 1762: 1725: 1699: 1633: 1607: 1508: 1434: 1426: 1053: 696: 130: 2795:
P. Ao; J. Rammer (1991). "Quantum Dynamics of a Two-State System in a Dissipative Environment".
1326: 1104: 3081: 3053: 2879: 2842: 2822: 2797: 2733: 2632: 2577: 2549: 2459: 2404: 2294: 2239: 2237:
V. Y. Chernyak; N. A. Sinitsyn; C. Sun (2019). "Dynamic spin localization and gamma-magnets".
2211: 2121: 2066: 1882: 1598: 1578: 1539: 1535: 1528: 1343: 402: 310: 274: 142: 118: 102: 350: 3108: 3045: 2969: 2914: 2906: 2859: 2814: 2768: 2760: 2712: 2667: 2659: 2604: 2541: 2486: 2431: 2376: 2321: 2266: 2203: 2148: 2093: 2038: 1964: 1937: 1909: 1854: 1809: 1754: 1717: 1670: 1625: 1570: 1500: 1483: 1463: 1418: 79: 634: 607: 2292:
N. A. Sinitsyn (2002). "Multiparticle Landau–Zener problem: Application to quantum dots".
134: 2380: 1935:
F. Li; N. A. Sinitsyn (2016). "Dynamic Symmetries and Quantum Nonadiabatic Transitions".
377: 3104: 3041: 2965: 2902: 2855: 2810: 2756: 2708: 2655: 2600: 2537: 2482: 2427: 2372: 2317: 2262: 2199: 2144: 2089: 2034: 2005: 1960: 1905: 1850: 1805: 1713: 1666: 1621: 1496: 1414: 1353: 1348: 1166:
transition probabilities are the absolute value squared of scattering matrix elements.
1029: 406: 163: 159: 126: 2630:
V. L. Pokrovsky; N. A. Sinitsyn (2002). "Landau–Zener transitions in a linear chain".
2042: 1813: 1758: 3134: 2942: 2877:
V. L. Pokrovsky; D. Sun (2007). "Fast quantum noise in the Landau–Zener transition".
2616: 2498: 2388: 2333: 2278: 2223: 2160: 2105: 2050: 1976: 1921: 1866: 1858: 1766: 1729: 1721: 1674: 1512: 1438: 1322: 1171: 368: 3120: 3065: 2981: 2926: 2780: 2679: 2561: 2443: 1637: 2973: 2207: 1968: 1821: 3049: 2545: 1452:
E. C. G. Stueckelberg (1932). "Theorie der unelastischen Stösse zwischen Atomen".
2731:
V. L. Pokrovsky; N. A. Sinitsyn (2004). "Fast noise in the Landau–Zener theory".
1651:
S. Brundobler; V. Elser (1993). "S-matrix for generalized Landau–Zener problem".
171:
The perturbation parameter in the Hamiltonian is a known, linear function of time
2270: 419: 16:
Formula for the probability that a system will change between two energy states.
3112: 2910: 2863: 2764: 2663: 2608: 2490: 2435: 2325: 2152: 2097: 1913: 1629: 74: 122: 2818: 155: 3057: 2553: 2215: 1582: 1422: 2826: 3095: 3032: 2918: 2893: 2772: 2747: 2671: 2646: 2528: 2473: 2308: 1796: 1704: 1467: 2716: 121:) transition between the two energy states, was published separately by 1504: 429:
The key figure of merit in this approach is the Landau–Zener velocity:
1574: 177:
The coupling in the diabatic Hamiltonian matrix is independent of time
174:
The energy separation of the diabatic states varies linearly with time
1430: 1481:
E. Majorana (1932). "Atomi orientati in campo magnetico variabile".
82:. The graph represents the energies of the system along a parameter 2253: 2190: 2135: 2080: 1951: 1612: 690:
results in a large diabatic transition probability and vice versa.
3001: 2956: 2591: 2418: 2363: 1896: 105:
to the equations of motion governing the transition dynamics of a
73: 658:
are the energies of the two diabatic (crossing) states. A large
347:, given by the diagonal elements of the Hamiltonian matrix, and 182:
optimal profile to achieve the desired transition probability.
18: 2575:
N. A. Sinitsyn (2013). "Landau-Zener Transitions in Chains".
185:
The second simplification allows us to make the substitution
1399:
C. Zener (1932). "Non-Adiabatic Crossing of Energy Levels".
1378:
L. Landau (1932). "Zur Theorie der Energieubertragung. II".
261:{\displaystyle \Delta E=E_{2}(t)-E_{1}(t)\equiv \alpha t,\,} 39: 1224: 1189:
Driven Tavis–Cummings model describes interaction of
1107: 1056: 1032: 731: 699: 664: 637: 610: 438: 380: 353: 313: 277: 194: 34:
may be too technical for most readers to understand
1527: 1265: 1137: 1082: 1038: 1015: 714: 682: 650: 623: 589: 394: 359: 335: 299: 260: 1321:Exact results in multistate Landau–Zener theory ( 693:Using the Landau–Zener formula the probability, 1559:C. Wittig (2005). "The Landau–Zener Formula". 8: 1402:Proceedings of the Royal Society of London A 1534:(9 ed.). Dover Publications. pp.  343:are the energies of the two states at time 3094: 3031: 3000: 2955: 2892: 2746: 2645: 2590: 2527: 2472: 2417: 2362: 2307: 2252: 2189: 2134: 2079: 1950: 1895: 1795: 1703: 1611: 1381:Physikalische Zeitschrift der Sowjetunion 1257: 1238: 1223: 1106: 1074: 1061: 1055: 1031: 1001: 993: 983: 977: 951: 938: 916: 896: 882: 876: 869: 850: 837: 815: 801: 795: 788: 759: 741: 740: 732: 730: 705: 704: 698: 670: 669: 663: 642: 636: 615: 609: 564: 553: 547: 534: 525: 510: 503: 497: 484: 475: 460: 457: 444: 443: 437: 384: 379: 352: 318: 312: 282: 276: 257: 230: 208: 193: 62:Learn how and when to remove this message 46:, without removing the technical details. 2696:Journal of the Physical Society of Japan 1370: 990: 887: 806: 722:, of a diabatic transition is given by 1526:Abramowitz, M.; I. A. Stegun (1976). 44:make it understandable to non-experts 7: 1339:Nonadiabatic transition state theory 371:this follows directly from point 1. 141:Landau–Zener velocity of zero), the 1530:Handbook of Mathematical Functions 922: 918: 821: 817: 778: 769: 742: 706: 674: 671: 516: 512: 466: 462: 448: 445: 195: 14: 23: 1562:Journal of Physical Chemistry B 2381:10.1088/1751-8113/48/24/245303 2208:10.1103/PhysRevLett.129.033201 1969:10.1016/j.chemphys.2016.05.029 1117: 1111: 1002: 994: 957: 931: 856: 830: 554: 526: 504: 476: 330: 324: 294: 288: 242: 236: 220: 214: 1: 3050:10.1103/PhysRevLett.97.200404 2546:10.1103/PhysRevLett.95.245701 1266:{\textstyle H=gS_{x}+btS_{z}} 683:{\displaystyle v_{\rm {LZ}}} 150:Conditions and approximation 2271:10.1103/PhysRevB.100.224304 2043:10.1088/0953-4075/34/12/309 1814:10.1088/0305-4470/37/44/016 1759:10.1088/0953-4075/37/20/003 1083:{\displaystyle E_{1}=E_{2}} 715:{\displaystyle P_{\rm {D}}} 3162: 3113:10.1103/PhysRevB.75.214308 2974:10.1209/0295-5075/83/16003 2911:10.1103/PhysRevB.76.024310 2864:10.1103/PhysRevB.67.134403 2765:10.1103/PhysRevB.67.144303 2664:10.1103/PhysRevB.65.153105 2609:10.1103/PhysRevA.87.032701 2491:10.1103/PhysRevA.73.043614 2436:10.1103/PhysRevA.75.013417 2326:10.1103/PhysRevB.66.205303 2153:10.1103/PhysRevA.94.033808 2098:10.1103/PhysRevA.93.063859 1914:10.1103/PhysRevA.90.062509 1859:10.1088/0953-4075/38/7/011 1722:10.1088/0953-4075/39/5/N01 1675:10.1088/0305-4470/26/5/037 1630:10.1103/PhysRevA.95.012140 405:, commonly described by a 1138:{\displaystyle H(t)=A+Bt} 2819:10.1103/PhysRevB.43.5397 1359:Froissart-Stora equation 1287:are spin operators, and 336:{\displaystyle E_{2}(t)} 300:{\displaystyle E_{1}(t)} 109:, with a time-dependent 107:two-state quantum system 3019:Physical Review Letters 2515:Physical Review Letters 2177:Physical Review Letters 360:{\displaystyle \alpha } 1455:Helvetica Physica Acta 1423:10.1098/rspa.1932.0165 1267: 1139: 1084: 1040: 1017: 716: 684: 652: 625: 591: 396: 361: 337: 301: 262: 94: 1268: 1140: 1085: 1041: 1018: 717: 685: 653: 651:{\displaystyle E_{2}} 626: 624:{\displaystyle E_{1}} 592: 397: 362: 338: 302: 263: 77: 2350:Journal of Physics A 2022:Journal of Physics B 1838:Journal of Physics B 1783:Journal of Physics A 1746:Journal of Physics B 1691:Journal of Physics B 1654:Journal of Physics A 1468:10.5169/seals-110177 1222: 1105: 1054: 1048:off-diagonal element 1030: 729: 697: 662: 635: 608: 436: 378: 351: 311: 275: 192: 99:Landau–Zener formula 3105:2007PhRvB..75u4308S 3042:2006PhRvL..97t0404W 2966:2008EL.....8316003S 2903:2007PhRvB..76b4310P 2856:2003PhRvB..67m4403S 2811:1991PhRvB..43.5397A 2757:2003PhRvB..67n4303P 2717:10.1143/JPSJ.53.108 2709:1984JPSJ...53..108K 2656:2002PhRvB..65o3105P 2601:2013PhRvA..87c2701S 2538:2005PhRvL..95x5701D 2483:2006PhRvA..73d3614C 2428:2007PhRvA..75a3417V 2373:2015JPhA...48x5303P 2318:2002PhRvB..66t5303S 2263:2019PhRvB.100v4304C 2200:2022PhRvL.129c3201M 2145:2016PhRvA..94c3808S 2090:2016PhRvA..93f3859S 2035:2001JPhB...34.2419D 2006:1968JETP...26..916D 1993:Soviet Physics JETP 1961:2016CP....481...28L 1906:2014PhRvA..90f2509S 1851:2005JPhB...38..907V 1806:2004JPhA...3710691S 1790:(44): 10691–10697. 1714:2006JPhB...39.1253D 1667:1993JPhA...26.1211B 1622:2017PhRvA..95a2140S 1497:1932NCim....9...43M 1415:1932RSPSA.137..696Z 424:contour integration 395:{\displaystyle 1/r} 1505:10.1007/BF02960953 1263: 1135: 1094:Multistate problem 1080: 1036: 1013: 1011: 712: 680: 648: 621: 587: 392: 357: 333: 297: 258: 131:Ernst Stueckelberg 95: 3141:Quantum mechanics 3082:Physical Review B 2880:Physical Review B 2843:Physical Review B 2798:Physical Review B 2734:Physical Review B 2633:Physical Review B 2578:Physical Review A 2460:Physical Review A 2405:Physical Review A 2295:Physical Review B 2240:Physical Review B 2122:Physical Review A 2067:Physical Review A 1883:Physical Review A 1599:Physical Review A 1575:10.1021/jp040627u 1569:(17): 8428–8430. 1545:978-0-486-61272-0 1344:Adiabatic theorem 1039:{\displaystyle a} 1007: 965: 929: 914: 864: 828: 582: 559: 523: 473: 403:Coulomb potential 143:adiabatic theorem 103:analytic solution 72: 71: 64: 3153: 3125: 3124: 3098: 3096:cond-mat/0703596 3076: 3070: 3069: 3035: 3033:cond-mat/0608333 3013: 3007: 3006: 3004: 2992: 2986: 2985: 2959: 2937: 2931: 2930: 2896: 2894:cond-mat/0702476 2874: 2868: 2867: 2837: 2831: 2830: 2805:(7): 5497–5518. 2791: 2785: 2784: 2750: 2748:cond-mat/0212016 2727: 2721: 2720: 2690: 2684: 2683: 2649: 2647:cond-mat/0112419 2627: 2621: 2620: 2594: 2572: 2566: 2565: 2531: 2529:cond-mat/0509490 2509: 2503: 2502: 2476: 2474:cond-mat/0512689 2454: 2448: 2447: 2421: 2399: 2393: 2392: 2366: 2344: 2338: 2337: 2311: 2309:cond-mat/0212017 2289: 2283: 2282: 2256: 2234: 2228: 2227: 2193: 2171: 2165: 2164: 2138: 2116: 2110: 2109: 2083: 2061: 2055: 2054: 2016: 2010: 2009: 1987: 1981: 1980: 1954: 1938:Chemical Physics 1932: 1926: 1925: 1899: 1877: 1871: 1870: 1832: 1826: 1825: 1799: 1797:quant-ph/0403113 1777: 1771: 1770: 1740: 1734: 1733: 1707: 1705:cond-mat/0505571 1685: 1679: 1678: 1648: 1642: 1641: 1615: 1593: 1587: 1586: 1556: 1550: 1549: 1533: 1523: 1517: 1516: 1484:Il Nuovo Cimento 1478: 1472: 1471: 1449: 1443: 1442: 1396: 1390: 1389: 1375: 1272: 1270: 1269: 1264: 1262: 1261: 1243: 1242: 1208: 1206: 1205: 1202: 1199: 1144: 1142: 1141: 1136: 1089: 1087: 1086: 1081: 1079: 1078: 1066: 1065: 1045: 1043: 1042: 1037: 1022: 1020: 1019: 1014: 1012: 1008: 1006: 1005: 997: 988: 987: 978: 970: 966: 964: 960: 956: 955: 943: 942: 930: 928: 917: 915: 913: 905: 897: 890: 886: 881: 880: 870: 865: 863: 859: 855: 854: 842: 841: 829: 827: 816: 809: 805: 800: 799: 789: 773: 772: 747: 746: 745: 721: 719: 718: 713: 711: 710: 709: 689: 687: 686: 681: 679: 678: 677: 657: 655: 654: 649: 647: 646: 630: 628: 627: 622: 620: 619: 603: 596: 594: 593: 588: 583: 581: 573: 565: 560: 558: 557: 552: 551: 539: 538: 529: 524: 522: 511: 508: 507: 502: 501: 489: 488: 479: 474: 472: 461: 458: 453: 452: 451: 401: 399: 398: 393: 388: 366: 364: 363: 358: 346: 342: 340: 339: 334: 323: 322: 306: 304: 303: 298: 287: 286: 267: 265: 264: 259: 235: 234: 213: 212: 80:avoided crossing 67: 60: 56: 53: 47: 27: 26: 19: 3161: 3160: 3156: 3155: 3154: 3152: 3151: 3150: 3131: 3130: 3129: 3128: 3078: 3077: 3073: 3015: 3014: 3010: 2994: 2993: 2989: 2939: 2938: 2934: 2876: 2875: 2871: 2839: 2838: 2834: 2794: 2792: 2788: 2730: 2728: 2724: 2692: 2691: 2687: 2629: 2628: 2624: 2574: 2573: 2569: 2511: 2510: 2506: 2456: 2455: 2451: 2401: 2400: 2396: 2346: 2345: 2341: 2291: 2290: 2286: 2236: 2235: 2231: 2173: 2172: 2168: 2118: 2117: 2113: 2063: 2062: 2058: 2018: 2017: 2013: 1989: 1988: 1984: 1934: 1933: 1929: 1879: 1878: 1874: 1834: 1833: 1829: 1779: 1778: 1774: 1742: 1741: 1737: 1687: 1686: 1682: 1650: 1649: 1645: 1595: 1594: 1590: 1558: 1557: 1553: 1546: 1525: 1524: 1520: 1480: 1479: 1475: 1451: 1450: 1446: 1398: 1397: 1393: 1377: 1376: 1372: 1367: 1335: 1311: 1285: 1278: 1253: 1234: 1220: 1219: 1203: 1200: 1197: 1196: 1194: 1103: 1102: 1096: 1070: 1057: 1052: 1051: 1028: 1027: 1010: 1009: 989: 979: 968: 967: 947: 934: 921: 906: 898: 895: 891: 872: 871: 846: 833: 820: 814: 810: 791: 790: 781: 775: 774: 755: 748: 736: 727: 726: 700: 695: 694: 665: 660: 659: 638: 633: 632: 611: 606: 605: 601: 574: 566: 543: 530: 515: 509: 493: 480: 465: 459: 439: 434: 433: 415: 376: 375: 349: 348: 344: 314: 309: 308: 278: 273: 272: 226: 204: 190: 189: 152: 135:Ettore Majorana 92: 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 3159: 3157: 3149: 3148: 3143: 3133: 3132: 3127: 3126: 3089:(21): 214308. 3071: 3026:(20): 200404. 3008: 2987: 2932: 2869: 2850:(13): 134403. 2832: 2786: 2741:(14): 045603. 2722: 2703:(1): 108–117. 2685: 2640:(15): 153105. 2622: 2567: 2522:(24): 245701. 2504: 2449: 2394: 2357:(24): 245303. 2339: 2302:(20): 205303. 2284: 2247:(22): 224304. 2229: 2166: 2111: 2056: 2011: 1982: 1927: 1872: 1827: 1772: 1735: 1680: 1643: 1606:(1): 0112140. 1588: 1551: 1544: 1518: 1473: 1444: 1409:(6): 696–702. 1391: 1369: 1368: 1366: 1363: 1362: 1361: 1356: 1354:Bond hardening 1351: 1349:Bond softening 1346: 1341: 1334: 1331: 1310: 1309:Study of noise 1307: 1306: 1305: 1301: 1283: 1276: 1260: 1256: 1252: 1249: 1246: 1241: 1237: 1233: 1230: 1227: 1215: 1214:approximation. 1211: 1187: 1184: 1157:are Hermitian 1147: 1146: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1095: 1092: 1077: 1073: 1069: 1064: 1060: 1035: 1024: 1023: 1004: 1000: 996: 992: 986: 982: 976: 973: 971: 969: 963: 959: 954: 950: 946: 941: 937: 933: 927: 924: 920: 912: 909: 904: 901: 894: 889: 885: 879: 875: 868: 862: 858: 853: 849: 845: 840: 836: 832: 826: 823: 819: 813: 808: 804: 798: 794: 787: 784: 782: 780: 777: 776: 771: 768: 765: 762: 758: 754: 751: 749: 744: 739: 735: 734: 708: 703: 676: 673: 668: 645: 641: 618: 614: 598: 597: 586: 580: 577: 572: 569: 563: 556: 550: 546: 542: 537: 533: 528: 521: 518: 514: 506: 500: 496: 492: 487: 483: 478: 471: 468: 464: 456: 450: 447: 442: 414: 411: 407:quantum defect 391: 387: 383: 356: 332: 329: 326: 321: 317: 296: 293: 290: 285: 281: 269: 268: 256: 253: 250: 247: 244: 241: 238: 233: 229: 225: 222: 219: 216: 211: 207: 203: 200: 197: 179: 178: 175: 172: 151: 148: 127:Clarence Zener 90: 70: 69: 52:September 2018 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 3158: 3147: 3144: 3142: 3139: 3138: 3136: 3122: 3118: 3114: 3110: 3106: 3102: 3097: 3092: 3088: 3084: 3083: 3075: 3072: 3067: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3034: 3029: 3025: 3021: 3020: 3012: 3009: 3003: 2998: 2991: 2988: 2983: 2979: 2975: 2971: 2967: 2963: 2958: 2953: 2949: 2945: 2944: 2936: 2933: 2928: 2924: 2920: 2919:1969.1/127339 2916: 2912: 2908: 2904: 2900: 2895: 2890: 2887:(2): 024310. 2886: 2882: 2881: 2873: 2870: 2865: 2861: 2857: 2853: 2849: 2845: 2844: 2836: 2833: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2799: 2790: 2787: 2782: 2778: 2774: 2773:1969.1/127315 2770: 2766: 2762: 2758: 2754: 2749: 2744: 2740: 2736: 2735: 2726: 2723: 2718: 2714: 2710: 2706: 2702: 2698: 2697: 2689: 2686: 2681: 2677: 2673: 2672:1969.1/146790 2669: 2665: 2661: 2657: 2653: 2648: 2643: 2639: 2635: 2634: 2626: 2623: 2618: 2614: 2610: 2606: 2602: 2598: 2593: 2588: 2585:(3): 032701. 2584: 2580: 2579: 2571: 2568: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2530: 2525: 2521: 2517: 2516: 2508: 2505: 2500: 2496: 2492: 2488: 2484: 2480: 2475: 2470: 2467:(4): 043614. 2466: 2462: 2461: 2453: 2450: 2445: 2441: 2437: 2433: 2429: 2425: 2420: 2415: 2412:(1): 013417. 2411: 2407: 2406: 2398: 2395: 2390: 2386: 2382: 2378: 2374: 2370: 2365: 2360: 2356: 2352: 2351: 2343: 2340: 2335: 2331: 2327: 2323: 2319: 2315: 2310: 2305: 2301: 2297: 2296: 2288: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2255: 2250: 2246: 2242: 2241: 2233: 2230: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2192: 2187: 2184:(3): 033201. 2183: 2179: 2178: 2170: 2167: 2162: 2158: 2154: 2150: 2146: 2142: 2137: 2132: 2129:(3): 033808. 2128: 2124: 2123: 2115: 2112: 2107: 2103: 2099: 2095: 2091: 2087: 2082: 2077: 2074:(6): 063859. 2073: 2069: 2068: 2060: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2023: 2015: 2012: 2007: 2003: 1999: 1995: 1994: 1986: 1983: 1978: 1974: 1970: 1966: 1962: 1958: 1953: 1948: 1944: 1940: 1939: 1931: 1928: 1923: 1919: 1915: 1911: 1907: 1903: 1898: 1893: 1890:(7): 062509. 1889: 1885: 1884: 1876: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1839: 1831: 1828: 1823: 1819: 1815: 1811: 1807: 1803: 1798: 1793: 1789: 1785: 1784: 1776: 1773: 1768: 1764: 1760: 1756: 1752: 1748: 1747: 1739: 1736: 1731: 1727: 1723: 1719: 1715: 1711: 1706: 1701: 1697: 1693: 1692: 1684: 1681: 1676: 1672: 1668: 1664: 1660: 1656: 1655: 1647: 1644: 1639: 1635: 1631: 1627: 1623: 1619: 1614: 1609: 1605: 1601: 1600: 1592: 1589: 1584: 1580: 1576: 1572: 1568: 1564: 1563: 1555: 1552: 1547: 1541: 1537: 1532: 1531: 1522: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1485: 1477: 1474: 1469: 1465: 1461: 1457: 1456: 1448: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1403: 1395: 1392: 1387: 1383: 1382: 1374: 1371: 1364: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1336: 1332: 1330: 1328: 1324: 1323:no-go theorem 1319: 1315: 1308: 1302: 1298: 1294: 1290: 1286: 1279: 1258: 1254: 1250: 1247: 1244: 1239: 1235: 1231: 1228: 1225: 1216: 1212: 1192: 1188: 1185: 1181: 1180: 1179: 1175: 1173: 1172:no-go theorem 1167: 1164: 1160: 1156: 1152: 1132: 1129: 1126: 1123: 1120: 1114: 1108: 1101: 1100: 1099: 1093: 1091: 1075: 1071: 1067: 1062: 1058: 1049: 1033: 1026:The quantity 998: 984: 980: 974: 972: 961: 952: 948: 944: 939: 935: 925: 910: 907: 902: 899: 892: 883: 877: 873: 866: 860: 851: 847: 843: 838: 834: 824: 811: 802: 796: 792: 785: 783: 766: 763: 760: 756: 752: 750: 737: 725: 724: 723: 701: 691: 666: 643: 639: 616: 612: 584: 578: 575: 570: 567: 561: 548: 544: 540: 535: 531: 519: 498: 494: 490: 485: 481: 469: 454: 440: 432: 431: 430: 427: 425: 421: 412: 410: 408: 404: 389: 385: 381: 372: 370: 354: 327: 319: 315: 291: 283: 279: 254: 251: 248: 245: 239: 231: 227: 223: 217: 209: 205: 201: 198: 188: 187: 186: 183: 176: 173: 170: 169: 168: 165: 161: 158:and external 157: 149: 147: 144: 138: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 89: 85: 81: 78:Sketch of an 76: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 3086: 3080: 3074: 3023: 3017: 3011: 2990: 2950:(1): 16003. 2947: 2941: 2935: 2884: 2878: 2872: 2847: 2841: 2835: 2802: 2796: 2789: 2738: 2732: 2725: 2700: 2694: 2688: 2637: 2631: 2625: 2582: 2576: 2570: 2519: 2513: 2507: 2464: 2458: 2452: 2409: 2403: 2397: 2354: 2348: 2342: 2299: 2293: 2287: 2244: 2238: 2232: 2181: 2175: 2169: 2126: 2120: 2114: 2071: 2065: 2059: 2029:(12): 2419. 2026: 2020: 2014: 1997: 1991: 1985: 1942: 1936: 1930: 1887: 1881: 1875: 1842: 1836: 1830: 1787: 1781: 1775: 1753:(20): 4069. 1750: 1744: 1738: 1695: 1689: 1683: 1658: 1652: 1646: 1603: 1597: 1591: 1566: 1560: 1554: 1529: 1521: 1491:(2): 43–50. 1488: 1482: 1476: 1459: 1453: 1447: 1406: 1400: 1394: 1385: 1379: 1373: 1320: 1316: 1312: 1296: 1292: 1288: 1281: 1274: 1190: 1176: 1168: 1162: 1158: 1154: 1150: 1148: 1097: 1025: 692: 599: 428: 416: 373: 369:Zeeman shift 270: 184: 180: 153: 139: 98: 96: 87: 83: 58: 49: 33: 2793:Table I in 1698:(5): 1253. 1661:(5): 1211. 420:Curt Wittig 137:, in 1932. 111:Hamiltonian 3146:Lev Landau 3135:Categories 2729:Eq. 42 in 2254:1905.05287 2191:2112.12302 2136:1606.08430 2081:1602.03136 1952:1604.00106 1845:(7): 907. 1613:1609.06285 1365:References 1327:BE-formula 156:collisions 123:Lev Landau 3002:0902.2178 2957:0707.3630 2617:119321544 2592:1212.2907 2499:115915571 2419:0909.5396 2389:117049526 2364:1412.4926 2334:119101393 2279:153312716 2224:245425087 2161:119317114 2106:119331736 2051:250846731 1977:119167653 1945:: 28–33. 1922:119211541 1897:1411.4307 1867:122560197 1767:250804220 1730:118943836 1513:122738040 1439:120348552 1291:>1/2; 999:α 991:ℏ 945:− 923:∂ 919:∂ 888:ℏ 844:− 822:∂ 818:∂ 807:ℏ 779:Γ 770:Γ 767:π 761:− 562:≈ 541:− 517:∂ 513:∂ 491:− 467:∂ 463:∂ 355:α 249:α 246:≡ 224:− 196:Δ 119:adiabatic 3121:16905765 3066:13008030 3058:17155667 2982:54044811 2927:28133130 2781:15014229 2680:29899890 2562:20437466 2554:16384394 2444:52213633 2216:35905368 1638:73696036 1583:16851989 1388:: 46–51. 1333:See also 1273:, where 164:magnetic 160:electric 115:diabatic 3101:Bibcode 3038:Bibcode 2962:Bibcode 2899:Bibcode 2852:Bibcode 2827:9997936 2807:Bibcode 2753:Bibcode 2705:Bibcode 2652:Bibcode 2597:Bibcode 2534:Bibcode 2479:Bibcode 2424:Bibcode 2369:Bibcode 2314:Bibcode 2259:Bibcode 2196:Bibcode 2141:Bibcode 2086:Bibcode 2031:Bibcode 2002:Bibcode 2000:: 916. 1957:Bibcode 1902:Bibcode 1847:Bibcode 1822:8268705 1802:Bibcode 1710:Bibcode 1663:Bibcode 1618:Bibcode 1493:Bibcode 1462:: 369. 1411:Bibcode 1207:⁠ 1195:⁠ 1046:is the 413:Formula 38:Please 3119:  3064:  3056:  2980:  2925:  2825:  2779:  2678:  2615:  2560:  2552:  2497:  2442:  2387:  2332:  2277:  2222:  2214:  2159:  2104:  2049:  1975:  1920:  1865:  1820:  1765:  1728:  1636:  1581:  1542:  1511:  1437:  1429:  1300:field. 1193:spins- 1149:where 600:where 422:using 271:where 133:, and 101:is an 3117:S2CID 3091:arXiv 3062:S2CID 3028:arXiv 2997:arXiv 2978:S2CID 2952:arXiv 2923:S2CID 2889:arXiv 2777:S2CID 2743:arXiv 2676:S2CID 2642:arXiv 2613:S2CID 2587:arXiv 2558:S2CID 2524:arXiv 2495:S2CID 2469:arXiv 2440:S2CID 2414:arXiv 2385:S2CID 2359:arXiv 2330:S2CID 2304:arXiv 2275:S2CID 2249:arXiv 2220:S2CID 2186:arXiv 2157:S2CID 2131:arXiv 2102:S2CID 2076:arXiv 2047:S2CID 1973:S2CID 1947:arXiv 1918:S2CID 1892:arXiv 1863:S2CID 1818:S2CID 1792:arXiv 1763:S2CID 1726:S2CID 1700:arXiv 1634:S2CID 1608:arXiv 1509:S2CID 1435:S2CID 1431:96038 1427:JSTOR 117:(not 3054:PMID 2823:PMID 2550:PMID 2212:PMID 1579:PMID 1540:ISBN 1325:and 1295:and 1280:and 1153:and 631:and 307:and 162:and 97:The 3109:doi 3046:doi 2970:doi 2943:EPL 2915:hdl 2907:doi 2860:doi 2815:doi 2769:hdl 2761:doi 2713:doi 2668:hdl 2660:doi 2605:doi 2542:doi 2487:doi 2432:doi 2377:doi 2322:doi 2267:doi 2204:doi 2182:128 2149:doi 2094:doi 2039:doi 1965:doi 1943:481 1910:doi 1855:doi 1810:doi 1755:doi 1718:doi 1671:doi 1626:doi 1571:doi 1567:109 1536:498 1501:doi 1464:doi 1419:doi 1407:137 42:to 3137:: 3115:. 3107:. 3099:. 3087:75 3085:. 3060:. 3052:. 3044:. 3036:. 3024:97 3022:. 2976:. 2968:. 2960:. 2948:83 2946:. 2921:. 2913:. 2905:. 2897:. 2885:76 2883:. 2858:. 2848:67 2846:. 2821:. 2813:. 2803:43 2801:. 2775:. 2767:. 2759:. 2751:. 2739:67 2737:. 2711:. 2701:53 2699:. 2674:. 2666:. 2658:. 2650:. 2638:65 2636:. 2611:. 2603:. 2595:. 2583:87 2581:. 2556:. 2548:. 2540:. 2532:. 2520:95 2518:. 2493:. 2485:. 2477:. 2465:73 2463:. 2438:. 2430:. 2422:. 2410:75 2408:. 2383:. 2375:. 2367:. 2355:48 2353:. 2328:. 2320:. 2312:. 2300:66 2298:. 2273:. 2265:. 2257:. 2245:10 2243:. 2218:. 2210:. 2202:. 2194:. 2180:. 2155:. 2147:. 2139:. 2127:94 2125:. 2100:. 2092:. 2084:. 2072:93 2070:. 2045:. 2037:. 2027:34 2025:. 1998:24 1996:. 1971:. 1963:. 1955:. 1941:. 1916:. 1908:. 1900:. 1888:90 1886:. 1861:. 1853:. 1843:38 1841:. 1816:. 1808:. 1800:. 1788:37 1786:. 1761:. 1751:37 1749:. 1724:. 1716:. 1708:. 1696:39 1694:. 1669:. 1659:26 1657:. 1632:. 1624:. 1616:. 1604:95 1602:. 1577:. 1565:. 1538:. 1507:. 1499:. 1487:. 1458:. 1433:. 1425:. 1417:. 1405:. 1384:. 1090:. 426:. 409:. 129:, 125:, 3123:. 3111:: 3103:: 3093:: 3068:. 3048:: 3040:: 3030:: 3005:. 2999:: 2984:. 2972:: 2964:: 2954:: 2929:. 2917:: 2909:: 2901:: 2891:: 2866:. 2862:: 2854:: 2829:. 2817:: 2809:: 2783:. 2771:: 2763:: 2755:: 2745:: 2719:. 2715:: 2707:: 2682:. 2670:: 2662:: 2654:: 2644:: 2619:. 2607:: 2599:: 2589:: 2564:. 2544:: 2536:: 2526:: 2501:. 2489:: 2481:: 2471:: 2446:. 2434:: 2426:: 2416:: 2391:. 2379:: 2371:: 2361:: 2336:. 2324:: 2316:: 2306:: 2281:. 2269:: 2261:: 2251:: 2226:. 2206:: 2198:: 2188:: 2163:. 2151:: 2143:: 2133:: 2108:. 2096:: 2088:: 2078:: 2053:. 2041:: 2033:: 2008:. 2004:: 1979:. 1967:: 1959:: 1949:: 1924:. 1912:: 1904:: 1894:: 1869:. 1857:: 1849:: 1824:. 1812:: 1804:: 1794:: 1769:. 1757:: 1732:. 1720:: 1712:: 1702:: 1677:. 1673:: 1665:: 1640:. 1628:: 1620:: 1610:: 1585:. 1573:: 1548:. 1515:. 1503:: 1495:: 1489:9 1470:. 1466:: 1460:5 1441:. 1421:: 1413:: 1386:2 1297:g 1293:b 1289:S 1284:x 1282:S 1277:z 1275:S 1259:z 1255:S 1251:t 1248:b 1245:+ 1240:x 1236:S 1232:g 1229:= 1226:H 1204:2 1201:/ 1198:1 1191:N 1163:N 1161:x 1159:N 1155:B 1151:A 1145:, 1133:t 1130:B 1127:+ 1124:A 1121:= 1118:) 1115:t 1112:( 1109:H 1076:2 1072:E 1068:= 1063:1 1059:E 1034:a 1003:| 995:| 985:2 981:a 975:= 962:| 958:) 953:1 949:E 940:2 936:E 932:( 926:q 911:t 908:d 903:q 900:d 893:| 884:/ 878:2 874:a 867:= 861:| 857:) 852:1 848:E 839:2 835:E 831:( 825:t 812:| 803:/ 797:2 793:a 786:= 764:2 757:e 753:= 743:D 738:P 707:D 702:P 675:Z 672:L 667:v 644:2 640:E 617:1 613:E 602:q 585:, 579:t 576:d 571:q 568:d 555:| 549:1 545:E 536:2 532:E 527:| 520:q 505:| 499:1 495:E 486:2 482:E 477:| 470:t 455:= 449:Z 446:L 441:v 390:r 386:/ 382:1 345:t 331:) 328:t 325:( 320:2 316:E 295:) 292:t 289:( 284:1 280:E 255:, 252:t 243:) 240:t 237:( 232:1 228:E 221:) 218:t 215:( 210:2 206:E 202:= 199:E 91:c 88:z 84:z 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

avoided crossing
analytic solution
two-state quantum system
Hamiltonian
diabatic
adiabatic
Lev Landau
Clarence Zener
Ernst Stueckelberg
Ettore Majorana
adiabatic theorem
collisions
electric
magnetic
Zeeman shift
Coulomb potential
quantum defect
Curt Wittig
contour integration
off-diagonal element
no-go theorem
no-go theorem
BE-formula
Nonadiabatic transition state theory
Adiabatic theorem
Bond softening

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.