Knowledge (XXG)

Langlands program

Source đź“ť

25: 1033:' proof of modularity of semistable elliptic curves over rationals can be viewed as an instance of the Langlands reciprocity conjecture, since the main idea is to relate the Galois representations arising from elliptic curves to modular forms. Although Wiles' results have been substantially generalized, in many different directions, the full Langlands conjecture for 397:
There are a number of related Langlands conjectures. There are many different groups over many different fields for which they can be stated, and for each field there are several different versions of the conjectures. Some versions of the Langlands conjectures are vague, or depend on objects such as
243:. Simply put, the Langlands philosophy allows a general analysis of structuring the abstractions of numbers. Naturally, this description is at once a reduction and over-generalization of the program's proper theorems, but these mathematical analogues provide the basis of its conceptualization. 1350:
Simply put, the Langlands project implies a deep and powerful framework of solutions, which touches the most fundamental areas of mathematics, through high-order generalizations in exact solutions of algebraic equations, with analytical functions, as embedded in geometric forms. It allows a
1473:
The Langlands Program is now a vast subject. There is a large community of people working on it in different fields: number theory, harmonic analysis, geometry, representation theory, mathematical physics. Although they work with very different objects, they are all observing similar
730:-groups is expected to give a correspondence between automorphic forms (in the global case) or representations (in the local case). Roughly speaking, the Langlands reciprocity conjecture is the special case of the functoriality conjecture when one of the reductive groups is trivial. 1237:
To a lay reader or even nonspecialist mathematician, abstractions within the Langlands program can be somewhat impenetrable. However, there are some strong and clear implications for proof or disproof of the fundamental Langlands conjectures.
1535:
Arinkin, D.; Beraldo, D.; Campbell, J.; Chen, L.; Faergeman, J.; Gaitsgory, D.; Lin, K.; Raskin, S.; Rozenblyum, N. (May 2024). "Proof of the geometric Langlands conjecture II: Kac-Moody localization and the FLE".
1440:-branes, automorphic sheaves... One can get a headache just trying to keep track of them all. Believe me, even among specialists, very few people know the nuts and bolts of all elements of this construction. 307:
What initially was very new in Langlands' work, besides technical depth, was the proposed direct connection to number theory, together with the rich organisational structure hypothesised (so-called
207:
The meaning of such a construction is nuanced, but its specific solutions and generalizations are very powerful. The consequence for proof of existence to such theoretical objects implies an
1070: 324:, should be done for all. Therefore, once the role of some low-dimensional Lie groups such as GL(2) in the theory of modular forms had been recognised, and with hindsight GL(1) in 1027:
Lusztig's classification of the irreducible representations of groups of Lie type over finite fields can be considered an analogue of the Langlands conjectures for finite fields.
1106:
established the global Langlands correspondence (the direction from automorphic forms to Galois representations) for connected reductive groups over global function fields.
646: 1014: 988: 832: 617: 575: 152:
The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the
910:, arises from a geometric reformulation of the usual Langlands program that attempts to relate more than just irreducible representations. In simple cases, it relates 1229:", which was originally conjectured by Langlands and Shelstad in 1983 and being required in the proof of some important conjectures in the Langlands program. 2548: 2280: 681:
Roughly speaking, the reciprocity conjecture gives a correspondence between automorphic representations of a reductive group and homomorphisms from a
710:
of admissible irreducible representations of a reductive group over the local field. For example, over the real numbers, this correspondence is the
2477: 246:
In short, a simplified description for this theory to a non-specialist would be: the construct of a generalised and somewhat unified framework, to
406:-group that has several inequivalent definitions. Moreover, the Langlands conjectures have evolved since Langlands first stated them in 1967. 2181: 2093: 1941: 1837: 1425: 1226: 1216: 153: 1364: 2462: 1297: 46: 2324: 582: 2441: 897: 2507: 1466: 68: 2405: 1557: 2273: 2563: 439:
There are several different ways of stating the Langlands conjectures, which are closely related but not obviously equivalent.
2446: 2431: 1172: 1168: 356: 352: 424:
Automorphic forms on reductive groups over global fields (with subcases corresponding to number fields or function fields).
2543: 2467: 2371: 1296:
can be shown to be well-defined, some very deep results in mathematics could be within reach of proof. Examples include:
141:. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by 793:-functions. This functoriality conjecture implies all the other conjectures presented so far. It is of the nature of an 1389: 781:
He then goes on to formulate a very general "Functoriality Principle". Given two reductive groups and a (well behaved)
2266: 1128: 1115: 39: 33: 2553: 2538: 1933: 1332: 915: 247: 157: 1036: 806: 50: 2201: 2116: 1968: 1731: 1021: 711: 276: 931: 86: 1682: 1222: 370:
In all these approaches there was no shortage of technical methods, often inductive in nature and based on
2436: 2357: 2332: 1270: 1242: 1080: 835: 809:
is contravariant). Attempts to specify a direct construction have only produced some conditional results.
794: 789:-groups, this conjecture relates their automorphic representations in a way that is compatible with their 659: 468: 427:
Finite fields. Langlands did not originally consider this case, but his conjectures have analogues for it.
317: 263: 236: 2472: 2310: 2030: 1514:; Raskin, Sam (May 2024). "Proof of the geometric Langlands conjecture I: construction of the functor". 1328: 1285: 1274: 499: 460: 456: 297: 259: 240: 193: 181: 82: 1761:
Milne, James (2015-09-02). "The Riemann Hypothesis over Finite Fields: From Weil to the Present Day".
2558: 2400: 2315: 2220: 2125: 1977: 686: 586: 549: 529: 378: 293: 177: 146: 126: 1432:
All this stuff, as my dad put it, is quite heavy: we've got Hitchin moduli spaces, mirror symmetry,
1344: 1278: 1266: 1250: 626: 578: 513:
For non-abelian Galois groups and higher-dimensional representations of them, one can still define
382: 251: 212: 208: 997: 971: 815: 600: 558: 374:
amongst other matters, but the field was – and is – very demanding.
2426: 2380: 2236: 2210: 2157: 2047: 2009: 1892: 1762: 1712: 1694: 1644: 1626: 1592: 1580: 1537: 1515: 1336: 1305: 1246: 962: 945:
has announced a proof of the (categorical, unramified) geometric Langlands conjecture leveraging
802: 491: 371: 325: 316:
For example, in the work of Harish-Chandra one finds the principle that what can be done for one
228: 224: 692:. There are numerous variations of this, in part because the definitions of Langlands group and 1665:
La paramétrisation de Langlands globale sur les corps des fonctions (d'après Vincent Lafforgue)
2492: 2177: 2141: 2089: 1993: 1937: 1869: 1833: 1805: 1462: 1421: 1289: 1262: 1103: 1076: 907: 738:
Langlands generalized the idea of functoriality: instead of using the general linear group GL(
452: 360: 216: 1456: 2410: 2362: 2228: 2169: 2133: 2081: 2039: 1985: 1859: 1795: 1704: 1636: 1511: 1486: 1369: 1352: 1317: 1313: 1309: 1301: 1142: 1138: 946: 942: 923: 903: 798: 545: 518: 464: 255: 232: 185: 173: 169: 122: 106: 2153: 2103: 2005: 1951: 1919: 1881: 1817: 1747: 674:
is equal to one arising from an automorphic cuspidal representation. This is known as his "
2149: 2099: 2077: 2001: 1947: 1915: 1877: 1847: 1825: 1813: 1743: 1394: 919: 843: 743: 682: 675: 620: 503: 414: 399: 348: 130: 1663: 1572: 2224: 2129: 1981: 968:
Langlands proved the Langlands conjectures for groups over the archimedean local fields
409:
There are different types of objects for which the Langlands conjectures can be stated:
1888: 1452: 1414: 1409: 1146: 1017: 751: 553: 536:, which would allow the formulation of Artin's statement in this more general setting. 386: 364: 344: 285: 281: 142: 417:
over local fields (with different subcases corresponding to archimedean local fields,
2532: 2341: 2296: 2161: 2013: 1716: 1648: 1200: 1120: 935: 649: 476: 98: 2240: 1864: 1095:. This work continued earlier investigations by Drinfeld, who proved the case GL(2, 670:-function arising from a finite-dimensional representation of the Galois group of a 2517: 2512: 1340: 1258: 1254: 1192: 1030: 881: 864: 774:-functions satisfy a certain functional equation generalizing those of other known 715: 671: 486:
to the one-dimensional representations of this Galois group, and states that these
472: 301: 220: 201: 197: 165: 161: 118: 2021: 1800: 1927: 1614: 1490: 991: 839: 700: 537: 134: 2258: 1573:"Shtukas for reductive groups and Langlands correspondence for function fields" 2289: 2232: 1958:
Henniart, Guy (2000), "Une preuve simple des conjectures de Langlands pour GL(
1708: 1671:. SĂ©minaire Bourbaki 68ème annĂ©e, 2015–2016, no. 1110, Janvier 2016. 1293: 594: 480: 448: 189: 138: 94: 2145: 2069: 2059: 1997: 1873: 1809: 1351:
unification of many distant mathematical fields into a formalism of powerful
1308:. Such proofs would be expected to utilize abstract solutions in objects of 812:
All these conjectures can be formulated for more general fields in place of
585:, which are certain infinite dimensional irreducible representations of the 321: 1989: 1324: 1179:) proved the local Langlands conjectures for the general linear group GL( 1153:) proved the local Langlands conjectures for the general linear group GL( 782: 704: 102: 1891:(2005). "Lectures on the Langlands Program and Conformal Field Theory". 2137: 2085: 2051: 1897: 1640: 666:
to these automorphic representations, and conjectured that every Artin
309: 1907: 430:
More general fields, such as function fields over the complex numbers.
1615:"Chtoucas pour les groupes réductifs et paramétrisation de Langlands" 2043: 1083:
verifying the Langlands conjectures for the general linear group GL(
726:
The functoriality conjecture states that a suitable homomorphism of
363:. It becomes much more technical for bigger Lie groups, because the 2253: 1767: 1585: 1542: 1520: 623:). (This ring simultaneously keeps track of all the completions of 2215: 2191:
Scholze, Peter (2013), "The Local Langlands Correspondence for GL(
1699: 1631: 528:
The insight of Langlands was to find the proper generalization of
274:
In a very broad context, the program built on existing ideas: the
156:
of the project posits a direct connection between the generalized
1323:
Additionally, some connections between the Langlands program and
2262: 1850:(1984), "An elementary introduction to the Langlands program", 506:. The precise correspondence between these different kinds of 377:
And on the side of modular forms, there were examples such as
18: 16:
Far-reaching conjectures connecting number theory and geometry
758:, and then, for every automorphic cuspidal representation of 231:
for the resolution of invariance at the level of generalized
1929:
The geometry and cohomology of some simple Shimura varieties
1273:. This, in turn, yields the capacity for classification of 2076:, Lecture Notes in Math, vol. 170, Berlin, New York: 805:', known in special cases, and so is covariant (whereas a 718:, it should give a parameterization of automorphic forms. 498:
or more general series (that is, certain analogues of the
1908:"Automorphic functions and the theory of representations" 1685:(2010). "Le lemme fondamental pour les algèbres de Lie". 1558:"Monumental Proof Settles Geometric Langlands Conjecture" 1199:) gave another proof. Both proofs use a global argument. 1786:
Arthur, James (2003), "The principle of functoriality",
1912:
Proc. Internat. Congr. Mathematicians (Stockholm, 1962)
421:-adic local fields, and completions of function fields) 235:. This in turn permits a somewhat unified analysis of 2114:-elliptic sheaves and the Langlands correspondence", 1150: 1039: 1000: 974: 818: 629: 603: 561: 1241:
As the program posits a powerful connection between
797:
construction—what in the more traditional theory of
770:-function. One of his conjectures states that these 328:, the way was open at least to speculation about GL( 2491: 2455: 2419: 2393: 2350: 2303: 1914:, Djursholm: Inst. Mittag-Leffler, pp. 74–85, 1413: 1064: 1008: 982: 961:) follow from (and are essentially equivalent to) 826: 714:of representations of real reductive groups. Over 640: 611: 569: 2074:Lectures in modern analysis and applications, III 1736:Publications MathĂ©matiques de l'UniversitĂ© Paris 447:The starting point of the program may be seen as 1932:, Annals of Mathematics Studies, vol. 151, 510:-functions constitutes Artin's reciprocity law. 2110:Laumon, G.; Rapoport, M.; Stuhler, U. (1993), " 1302:topological construction of algebraic varieties 762:and every finite-dimensional representation of 703:this is expected to give a parameterization of 902:The geometric Langlands program, suggested by 880:) is the field of rational functions over the 292:), the work and approach of Harish-Chandra on 172:. This is accomplished through abstraction to 2274: 2070:"Problems in the theory of automorphic forms" 1852:Bulletin of the American Mathematical Society 1788:Bulletin of the American Mathematical Society 1491:"Proof of the geometric Langlands conjecture" 1390:"Math Quartet Joins Forces on Unified Theory" 1335:ways, providing potential exact solutions in 1292:for the posited objects exists, and if their 746:can be used. Furthermore, given such a group 8: 1732:"Les dĂ©buts d'une formule des traces stable" 1619:Journal of the American Mathematical Society 1176: 1161:) for positive characteristic local fields 1065:{\displaystyle {\text{GL}}(2,\mathbb {Q} )} 227:, the Langlands program allows a potential 168:to the automorphic forms under which it is 93:is a web of far-reaching and consequential 2281: 2267: 2259: 1458:Love and Math: The Heart of Hidden Reality 2214: 2176:. Cambridge: Cambridge University Press. 1926:Harris, Michael; Taylor, Richard (2001), 1896: 1863: 1799: 1766: 1698: 1630: 1584: 1541: 1519: 1055: 1054: 1040: 1038: 1002: 1001: 999: 976: 975: 973: 820: 819: 817: 631: 630: 628: 605: 604: 602: 563: 562: 560: 402:, whose existence is unproven, or on the 114: 110: 69:Learn how and when to remove this message 1830:An Introduction to the Langlands Program 1196: 941:A 9-person collaborative project led by 838:(the original and most important case), 32:This article includes a list of general 1381: 1204: 581:). Langlands then generalized these to 289: 1165:. Their proof uses a global argument. 1124: 1024:of their irreducible representations. 1298:rational solutions of elliptic curves 1217:Fundamental lemma (Langlands program) 7: 2463:Birch and Swinnerton-Dyer conjecture 2174:The Genesis of the Langlands Program 1687:Publications MathĂ©matiques de l'IHÉS 1269:allowing an exact quantification of 1187:) for characteristic 0 local fields 957:The Langlands conjectures for GL(1, 583:automorphic cuspidal representations 490:-functions are identical to certain 2549:Representation theory of Lie groups 1131:for the general linear group GL(2, 1742:(13). Paris: UniversitĂ© de Paris. 1265:constructions results in powerful 898:Geometric Langlands correspondence 347:but also had a meaning visible in 280:formulated a few years earlier by 38:it lacks sufficient corresponding 14: 2508:Main conjecture of Iwasawa theory 1560:. Quanta Magazine. July 19, 2024. 254:which underpin numbers and their 223:. As an analogue to the possible 176:, by an equivalence to a certain 2022:"The Langlands Conjecture for Gl 1365:Jacquet–Langlands correspondence 23: 1865:10.1090/S0273-0979-1984-15237-6 1312:, each of which relates to the 552:on the upper half plane of the 188:. Consequently, this allows an 2442:Ramanujan–Petersson conjecture 2432:Generalized Riemann hypothesis 2328:-functions of Hecke characters 1059: 1045: 842:, and function fields (finite 540:had earlier related Dirichlet 343:idea came out of the cusps on 174:higher dimensional integration 121:in algebraic number theory to 1: 2401:Analytic class number formula 2254:The work of Robert Langlands 1801:10.1090/S0273-0979-02-00963-1 1730:Langlands, Robert P. (1983). 1310:generalized analytical series 914:-adic representations of the 641:{\displaystyle \mathbb {Q} ,} 517:-functions in a natural way: 296:, and in technical terms the 2406:Riemann–von Mangoldt formula 1327:have been posited, as their 1277:and further abstractions of 1009:{\displaystyle \mathbb {C} } 983:{\displaystyle \mathbb {R} } 827:{\displaystyle \mathbb {Q} } 785:between their corresponding 612:{\displaystyle \mathbb {Q} } 570:{\displaystyle \mathbb {C} } 225:exact distribution of primes 1734:. U.E.R. de MathĂ©matiques. 1461:, Basic Books, p. 77, 1253:between abstract algebraic 1129:local Langlands conjectures 1116:local Langlands conjectures 1110:Local Langlands conjectures 750:, Langlands constructs the 2582: 2058:Langlands, Robert (1967), 1934:Princeton University Press 1662:Stroh, B. (January 2016). 1339:(as was similarly done in 1214: 1113: 895: 194:invariance transformations 158:fundamental representation 97:about connections between 2233:10.1007/s00222-012-0420-5 2068:Langlands, R. P. (1970), 1709:10.1007/s10240-010-0026-7 807:restricted representation 734:Generalized functoriality 262:which base them. Through 192:construction of powerful 2202:Inventiones Mathematicae 2117:Inventiones Mathematicae 1969:Inventiones Mathematicae 1022:Langlands classification 712:Langlands classification 355:", contrasted with the " 277:philosophy of cusp forms 2358:Dedekind zeta functions 2020:Kutzko, Philip (1980), 1906:Gelfand, I. M. (1963), 1245:and generalizations of 916:Ă©tale fundamental group 836:algebraic number fields 87:algebraic number theory 53:more precise citations. 2564:History of mathematics 1832:. Boston: Birkhäuser. 1613:Lafforgue, V. (2018). 1571:Lafforgue, V. (2018). 1243:analytic number theory 1207:) gave another proof. 1091:) for function fields 1066: 1010: 984: 949:as part of the proof. 828: 795:induced representation 696:-group are not fixed. 676:reciprocity conjecture 642: 613: 571: 469:algebraic number field 239:objects through their 217:fundamental structures 117:), it seeks to relate 2478:Bloch–Kato conjecture 2473:Beilinson conjectures 2456:Algebraic conjectures 2311:Riemann zeta function 2031:Annals of Mathematics 1990:10.1007/s002220050012 1275:diophantine equations 1261:and their analytical 1135:) over local fields. 1067: 1011: 985: 930:-adic sheaves on the 892:Geometric conjectures 829: 643: 614: 577:that satisfy certain 572: 550:holomorphic functions 500:Riemann zeta function 461:Artin reciprocity law 457:quadratic reciprocity 379:Hilbert modular forms 294:semisimple Lie groups 241:automorphic functions 190:analytical functional 127:representation theory 83:representation theory 2544:Zeta and L-functions 2483:Langlands conjecture 2468:Deligne's conjecture 2420:Analytic conjectures 2061:Letter to Prof. Weil 1294:analytical functions 1288:of such generalized 1284:Furthermore, if the 1037: 998: 972: 816: 627: 601: 587:general linear group 579:functional equations 559: 554:complex number plane 455:, which generalizes 383:Siegel modular forms 233:algebraic structures 211:in constructing the 147:grand unified theory 107:Robert Langlands 2437:Lindelöf hypothesis 2225:2013InMat.192..663S 2130:1993InMat.113..217L 1982:2000InMat.139..439H 1398:. December 8, 2015. 1345:monstrous moonshine 1320:of number fields. 1279:algebraic functions 1271:prime distributions 1081:Lafforgue's theorem 906:following ideas of 801:had been called a ' 742:), other connected 658:Langlands attached 502:) constructed from 413:Representations of 372:Levi decompositions 367:are more numerous. 365:parabolic subgroups 357:continuous spectrum 202:algebraic structure 2427:Riemann hypothesis 2351:Algebraic examples 2138:10.1007/BF01244308 2086:10.1007/BFb0079065 2080:, pp. 18–61, 1593:"alternate source" 1353:analytical methods 1337:superstring theory 1306:Riemann hypothesis 1247:algebraic geometry 1169:Michael Harris 1072:remains unproved. 1062: 1006: 980: 963:class field theory 922:to objects of the 824: 638: 609: 567: 326:class field theory 219:for virtually any 182:absolute extension 2554:Automorphic forms 2539:Langlands program 2526: 2525: 2304:Analytic examples 2183:978-1-108-71094-7 2170:Shahidi, Freydoon 2095:978-3-540-05284-5 2026:of a Local Field" 1943:978-0-691-09090-0 1839:978-3-7643-3211-2 1512:Gaitsgory, Dennis 1487:Gaitsgory, Dennis 1427:978-0-465-05074-1 1304:, and the famous 1227:fundamental lemma 1211:Fundamental lemma 1201:Peter Scholze 1139:GĂ©rard Laumon 1121:Philip Kutzko 1104:Vincent Lafforgue 1077:Laurent Lafforgue 1043: 908:Vladimir Drinfeld 799:automorphic forms 546:automorphic forms 361:Eisenstein series 353:discrete spectrum 209:analytical method 154:fundamental lemma 149:of mathematics." 123:automorphic forms 91:Langlands program 79: 78: 71: 2571: 2447:Artin conjecture 2411:Weil conjectures 2283: 2276: 2269: 2260: 2243: 2218: 2187: 2168:Mueller, Julia; 2164: 2106: 2064: 2054: 2016: 1954: 1922: 1902: 1900: 1884: 1867: 1848:Gelbart, Stephen 1843: 1820: 1803: 1773: 1772: 1770: 1758: 1752: 1751: 1727: 1721: 1720: 1702: 1679: 1673: 1672: 1670: 1659: 1653: 1652: 1641:10.1090/jams/897 1634: 1610: 1604: 1603: 1597: 1590: 1588: 1568: 1562: 1561: 1554: 1548: 1547: 1545: 1532: 1526: 1525: 1523: 1508: 1502: 1501: 1499: 1497: 1483: 1477: 1476: 1449: 1443: 1442: 1419: 1406: 1400: 1399: 1386: 1370:Erlangen program 1267:functional tools 1193:Guy Henniart 1143:Michael Rapoport 1099:) in the 1980s. 1071: 1069: 1068: 1063: 1058: 1044: 1041: 1020:) by giving the 1015: 1013: 1012: 1007: 1005: 989: 987: 986: 981: 979: 947:Hecke eigensheaf 943:Dennis Gaitsgory 938:over the curve. 929: 924:derived category 913: 833: 831: 830: 825: 823: 766:, he defines an 744:reductive groups 647: 645: 644: 639: 634: 621:rational numbers 618: 616: 615: 610: 608: 576: 574: 573: 568: 566: 544:-functions with 504:Hecke characters 465:Galois extension 415:reductive groups 400:Langlands groups 178:analytical group 131:algebraic groups 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 2581: 2580: 2574: 2573: 2572: 2570: 2569: 2568: 2529: 2528: 2527: 2522: 2487: 2451: 2415: 2389: 2346: 2299: 2287: 2250: 2199:-adic fields", 2190: 2184: 2172:, eds. (2021). 2167: 2109: 2096: 2078:Springer-Verlag 2067: 2057: 2044:10.2307/1971151 2025: 2019: 1962:) sur un corps 1957: 1944: 1925: 1905: 1889:Frenkel, Edward 1887: 1846: 1840: 1828:, eds. (2003). 1824:Bernstein, J.; 1823: 1785: 1782: 1777: 1776: 1760: 1759: 1755: 1729: 1728: 1724: 1681: 1680: 1676: 1668: 1661: 1660: 1656: 1612: 1611: 1607: 1595: 1591: 1570: 1569: 1565: 1556: 1555: 1551: 1534: 1533: 1529: 1510: 1509: 1505: 1495: 1493: 1485: 1484: 1480: 1469: 1453:Frenkel, Edward 1451: 1450: 1446: 1428: 1416:Love & Math 1410:Frenkel, Edward 1408: 1407: 1403: 1388: 1387: 1383: 1378: 1361: 1255:representations 1251:'Functoriality' 1235: 1219: 1213: 1118: 1112: 1035: 1034: 1018:complex numbers 996: 995: 970: 969: 955: 927: 920:algebraic curve 911: 900: 894: 875: 854: 814: 813: 736: 724: 683:Langlands group 625: 624: 599: 598: 557: 556: 453:reciprocity law 445: 437: 395: 349:spectral theory 320:(or reductive) 272: 166:group extension 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 2579: 2578: 2575: 2567: 2566: 2561: 2556: 2551: 2546: 2541: 2531: 2530: 2524: 2523: 2521: 2520: 2515: 2510: 2504: 2502: 2489: 2488: 2486: 2485: 2480: 2475: 2470: 2465: 2459: 2457: 2453: 2452: 2450: 2449: 2444: 2439: 2434: 2429: 2423: 2421: 2417: 2416: 2414: 2413: 2408: 2403: 2397: 2395: 2391: 2390: 2388: 2387: 2378: 2369: 2360: 2354: 2352: 2348: 2347: 2345: 2344: 2339: 2330: 2322: 2313: 2307: 2305: 2301: 2300: 2288: 2286: 2285: 2278: 2271: 2263: 2257: 2256: 2249: 2248:External links 2246: 2245: 2244: 2209:(3): 663–715, 2188: 2182: 2165: 2124:(2): 217–338, 2107: 2094: 2065: 2055: 2038:(2): 381–412, 2023: 2017: 1976:(2): 439–455, 1955: 1942: 1923: 1903: 1898:hep-th/0512172 1885: 1858:(2): 177–219, 1854:, New Series, 1844: 1838: 1821: 1790:, New Series, 1781: 1778: 1775: 1774: 1753: 1722: 1674: 1654: 1605: 1563: 1549: 1527: 1503: 1478: 1467: 1444: 1426: 1401: 1380: 1379: 1377: 1374: 1373: 1372: 1367: 1360: 1357: 1249:, the idea of 1234: 1231: 1215:Main article: 1212: 1209: 1173:Richard Taylor 1147:Ulrich Stuhler 1145:, and 1114:Main article: 1111: 1108: 1061: 1057: 1053: 1050: 1047: 1004: 978: 954: 953:Current status 951: 936:vector bundles 896:Main article: 893: 890: 871: 850: 822: 752:Langlands dual 735: 732: 723: 720: 637: 633: 607: 565: 444: 441: 436: 433: 432: 431: 428: 425: 422: 394: 391: 345:modular curves 332:) for general 282:Harish-Chandra 271: 268: 145:as "a kind of 143:Edward Frenkel 105:. Proposed by 77: 76: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2577: 2576: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2536: 2534: 2519: 2516: 2514: 2511: 2509: 2506: 2505: 2503: 2501: 2499: 2495: 2490: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2460: 2458: 2454: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2424: 2422: 2418: 2412: 2409: 2407: 2404: 2402: 2399: 2398: 2396: 2392: 2386: 2384: 2379: 2377: 2375: 2370: 2368: 2366: 2361: 2359: 2356: 2355: 2353: 2349: 2343: 2342:Selberg class 2340: 2338: 2336: 2331: 2329: 2327: 2323: 2321: 2319: 2314: 2312: 2309: 2308: 2306: 2302: 2298: 2297:number theory 2294: 2292: 2284: 2279: 2277: 2272: 2270: 2265: 2264: 2261: 2255: 2252: 2251: 2247: 2242: 2238: 2234: 2230: 2226: 2222: 2217: 2212: 2208: 2204: 2203: 2198: 2194: 2189: 2185: 2179: 2175: 2171: 2166: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2118: 2113: 2108: 2105: 2101: 2097: 2091: 2087: 2083: 2079: 2075: 2071: 2066: 2063: 2062: 2056: 2053: 2049: 2045: 2041: 2037: 2033: 2032: 2027: 2018: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1970: 1965: 1961: 1956: 1953: 1949: 1945: 1939: 1935: 1931: 1930: 1924: 1921: 1917: 1913: 1909: 1904: 1899: 1894: 1890: 1886: 1883: 1879: 1875: 1871: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1835: 1831: 1827: 1822: 1819: 1815: 1811: 1807: 1802: 1797: 1793: 1789: 1784: 1783: 1779: 1769: 1764: 1757: 1754: 1749: 1745: 1741: 1737: 1733: 1726: 1723: 1718: 1714: 1710: 1706: 1701: 1696: 1692: 1688: 1684: 1683:Châu, NgĂ´ Bảo 1678: 1675: 1667: 1666: 1658: 1655: 1650: 1646: 1642: 1638: 1633: 1628: 1624: 1620: 1616: 1609: 1606: 1601: 1594: 1587: 1582: 1578: 1574: 1567: 1564: 1559: 1553: 1550: 1544: 1539: 1531: 1528: 1522: 1517: 1513: 1507: 1504: 1492: 1488: 1482: 1479: 1475: 1470: 1468:9780465069958 1464: 1460: 1459: 1454: 1448: 1445: 1441: 1439: 1435: 1429: 1423: 1418: 1417: 1411: 1405: 1402: 1397: 1396: 1391: 1385: 1382: 1375: 1371: 1368: 1366: 1363: 1362: 1358: 1356: 1354: 1348: 1346: 1342: 1338: 1334: 1330: 1326: 1321: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1282: 1280: 1276: 1272: 1268: 1264: 1260: 1259:number fields 1256: 1252: 1248: 1244: 1239: 1232: 1230: 1228: 1224: 1218: 1210: 1208: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1171: and 1170: 1166: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1134: 1130: 1127:) proved the 1126: 1122: 1117: 1109: 1107: 1105: 1100: 1098: 1094: 1090: 1086: 1082: 1078: 1073: 1051: 1048: 1032: 1028: 1025: 1023: 1019: 993: 966: 964: 960: 952: 950: 948: 944: 939: 937: 933: 925: 921: 917: 909: 905: 904:GĂ©rard Laumon 899: 891: 889: 887: 883: 879: 874: 870: 866: 862: 858: 853: 849: 845: 841: 837: 810: 808: 804: 800: 796: 792: 788: 784: 779: 777: 773: 769: 765: 761: 757: 753: 749: 745: 741: 733: 731: 729: 722:Functoriality 721: 719: 717: 716:global fields 713: 709: 707: 702: 697: 695: 691: 689: 684: 679: 677: 673: 669: 665: 663: 656: 654: 653:-adic numbers 652: 635: 622: 596: 592: 588: 584: 580: 555: 551: 547: 543: 539: 535: 533: 526: 524: 522: 516: 511: 509: 505: 501: 497: 495: 489: 485: 483: 479:; it assigns 478: 474: 470: 466: 463:applies to a 462: 458: 454: 450: 442: 440: 434: 429: 426: 423: 420: 416: 412: 411: 410: 407: 405: 401: 392: 390: 388: 384: 380: 375: 373: 368: 366: 362: 358: 354: 350: 346: 342: 337: 335: 331: 327: 323: 319: 314: 312: 311: 310:functoriality 305: 303: 299: 298:trace formula 295: 291: 287: 283: 279: 278: 269: 267: 265: 261: 258:... thus the 257: 253: 249: 244: 242: 238: 234: 230: 226: 222: 218: 214: 210: 205: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 128: 124: 120: 119:Galois groups 116: 112: 108: 104: 100: 99:number theory 96: 92: 88: 84: 73: 70: 62: 52: 48: 42: 41: 35: 30: 21: 20: 2518:Euler system 2513:Selmer group 2497: 2493: 2482: 2382: 2373: 2364: 2334: 2333:Automorphic 2325: 2317: 2290: 2206: 2200: 2196: 2192: 2173: 2121: 2115: 2111: 2073: 2060: 2035: 2029: 1973: 1967: 1963: 1959: 1928: 1911: 1855: 1851: 1829: 1794:(1): 39–53, 1791: 1787: 1756: 1739: 1735: 1725: 1690: 1686: 1677: 1664: 1657: 1622: 1618: 1608: 1600:math.cnrs.fr 1599: 1576: 1566: 1552: 1530: 1506: 1494:. Retrieved 1481: 1472: 1457: 1447: 1437: 1433: 1431: 1415: 1404: 1393: 1384: 1349: 1341:group theory 1322: 1283: 1240: 1236: 1233:Implications 1225:proved the " 1223:NgĂ´ Bảo Châu 1220: 1188: 1184: 1180: 1167: 1162: 1158: 1154: 1137: 1132: 1119: 1101: 1096: 1092: 1088: 1084: 1074: 1031:Andrew Wiles 1029: 1026: 992:real numbers 967: 958: 956: 940: 932:moduli stack 901: 885: 882:finite field 877: 872: 868: 860: 856: 851: 847: 840:local fields 811: 790: 786: 780: 778:-functions. 775: 771: 767: 763: 759: 755: 747: 739: 737: 727: 725: 705: 701:local fields 698: 693: 687: 680: 672:number field 667: 661: 660:automorphic 657: 650: 590: 541: 531: 527: 520: 514: 512: 507: 493: 487: 481: 473:Galois group 446: 438: 418: 408: 403: 396: 387:theta-series 376: 369: 340: 338: 333: 329: 315: 308: 306: 304:and others. 275: 273: 256:abstractions 248:characterise 245: 229:general tool 221:number field 206: 198:number field 162:finite field 151: 135:local fields 90: 80: 65: 56: 37: 2559:Conjectures 2372:Hasse–Weil 1826:Gelbart, S. 1625:: 719–891. 1577:icm2018.org 1331:connect in 1286:reciprocity 888:elements). 593:) over the 443:Reciprocity 435:Conjectures 215:mapping of 200:to its own 95:conjectures 51:introducing 2533:Categories 2500:-functions 2385:-functions 2376:-functions 2367:-functions 2337:-functions 2320:-functions 2316:Dirichlet 2293:-functions 1966:-adique", 1780:References 1768:1509.00797 1586:1803.03791 1543:2405.03648 1521:2405.03599 1496:August 19, 1474:phenomena. 1333:nontrivial 1318:structures 1314:invariance 844:extensions 664:-functions 595:adele ring 534:-functions 530:Dirichlet 523:-functions 492:Dirichlet 484:-functions 449:Emil Artin 318:semisimple 270:Background 264:analytical 260:invariants 252:structures 237:arithmetic 34:references 2216:1010.1540 2162:124557672 2146:0020-9910 2014:120799103 1998:0020-9910 1874:0002-9904 1810:0002-9904 1717:118103635 1700:0801.0446 1693:: 1–169. 1649:118317537 1632:1209.5352 1436:-branes, 1329:dualities 1221:In 2008, 1102:In 2018, 1075:In 1998, 341:cusp form 322:Lie group 266:methods. 213:categoric 170:invariant 164:with its 59:June 2022 2394:Theorems 2381:Motivic 2241:15124490 1455:(2013), 1412:(2013). 1359:See also 1343:through 1325:M theory 1290:algebras 859:) where 783:morphism 708:-packets 336:> 2. 103:geometry 2221:Bibcode 2195:) over 2154:1228127 2126:Bibcode 2104:0302614 2052:1971151 2006:1738446 1978:Bibcode 1952:1876802 1920:0175997 1882:0733692 1818:1943132 1748:0697567 1316:within 1203: ( 1195: ( 1175: ( 1149: ( 1123: ( 1079:proved 803:lifting 496:-series 477:abelian 393:Objects 359:" from 302:Selberg 288: ( 286:Gelfand 186:algebra 184:of its 109: ( 47:improve 2496:-adic 2363:Artin 2239:  2180:  2160:  2152:  2144:  2102:  2092:  2050:  2012:  2004:  1996:  1950:  1940:  1918:  1880:  1872:  1836:  1816:  1808:  1746:  1715:  1647:  1465:  1424:  1395:Quanta 1141:, 994:) and 918:of an 754:group 690:-group 685:to an 519:Artin 471:whose 467:of an 459:. The 385:, and 196:for a 180:as an 139:adeles 89:, the 36:, but 2237:S2CID 2211:arXiv 2158:S2CID 2048:JSTOR 2010:S2CID 1893:arXiv 1763:arXiv 1713:S2CID 1695:arXiv 1669:(PDF) 1645:S2CID 1627:arXiv 1596:(PDF) 1581:arXiv 1538:arXiv 1516:arXiv 1376:Notes 1263:prime 1016:(the 990:(the 884:with 865:prime 863:is a 699:Over 619:(the 538:Hecke 160:of a 133:over 2178:ISBN 2142:ISSN 2090:ISBN 1994:ISSN 1938:ISBN 1870:ISSN 1834:ISBN 1806:ISSN 1498:2024 1463:ISBN 1422:ISBN 1205:2013 1197:2000 1177:2001 1151:1993 1125:1980 867:and 648:see 398:the 351:as " 339:The 290:1963 284:and 250:the 137:and 125:and 115:1970 111:1967 101:and 85:and 2295:in 2229:doi 2207:192 2134:doi 2122:113 2082:doi 2040:doi 2036:112 1986:doi 1974:139 1860:doi 1796:doi 1740:VII 1705:doi 1691:111 1637:doi 1347:). 1257:of 934:of 926:of 846:of 678:". 655:.) 597:of 589:GL( 475:is 451:'s 313:). 300:of 129:of 81:In 2535:: 2235:, 2227:, 2219:, 2205:, 2156:, 2150:MR 2148:, 2140:, 2132:, 2120:, 2100:MR 2098:, 2088:, 2072:, 2046:, 2034:, 2028:, 2008:, 2002:MR 2000:, 1992:, 1984:, 1972:, 1948:MR 1946:, 1936:, 1916:MR 1910:, 1878:MR 1876:, 1868:, 1856:10 1814:MR 1812:, 1804:, 1792:40 1744:MR 1738:. 1711:. 1703:. 1689:. 1643:. 1635:. 1623:31 1621:. 1617:. 1598:. 1579:. 1575:. 1489:. 1471:, 1430:. 1420:. 1392:. 1355:. 1300:, 1281:. 1191:. 1183:, 1157:, 1087:, 1042:GL 965:. 834:: 525:. 389:. 381:, 204:. 113:, 2498:L 2494:p 2383:L 2374:L 2365:L 2335:L 2326:L 2318:L 2291:L 2282:e 2275:t 2268:v 2231:: 2223:: 2213:: 2197:p 2193:n 2186:. 2136:: 2128:: 2112:D 2084:: 2042:: 2024:2 1988:: 1980:: 1964:p 1960:n 1901:. 1895:: 1862:: 1842:. 1798:: 1771:. 1765:: 1750:. 1719:. 1707:: 1697:: 1651:. 1639:: 1629:: 1602:. 1589:. 1583:: 1546:. 1540:: 1524:. 1518:: 1500:. 1438:B 1434:A 1189:K 1185:K 1181:n 1163:K 1159:K 1155:n 1133:K 1097:K 1093:K 1089:K 1085:n 1060:) 1056:Q 1052:, 1049:2 1046:( 1003:C 977:R 959:K 928:l 912:l 886:p 878:t 876:( 873:p 869:F 861:p 857:t 855:( 852:p 848:F 821:Q 791:L 787:L 776:L 772:L 768:L 764:G 760:G 756:G 748:G 740:n 728:L 706:L 694:L 688:L 668:L 662:L 651:p 636:, 632:Q 606:Q 591:n 564:C 548:( 542:L 532:L 521:L 515:L 508:L 494:L 488:L 482:L 419:p 404:L 334:n 330:n 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
representation theory
algebraic number theory
conjectures
number theory
geometry
Robert Langlands
1967
1970
Galois groups
automorphic forms
representation theory
algebraic groups
local fields
adeles
Edward Frenkel
grand unified theory
fundamental lemma
fundamental representation
finite field
group extension
invariant
higher dimensional integration
analytical group
absolute extension
algebra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑