Knowledge (XXG)

Laws of thermodynamics

Source đź“ť

2687:. For two given macroscopically specified states of a system, there is a mathematically defined quantity called the 'difference of information entropy between them'. This defines how much additional microscopic physical information is needed to specify one of the macroscopically specified states, given the macroscopic specification of the other – often a conveniently chosen reference state which may be presupposed to exist rather than explicitly stated. A final condition of a natural process always contains microscopically specifiable effects which are not fully and exactly predictable from the macroscopic specification of the initial condition of the process. This is why entropy increases in natural processes – the increase tells how much extra microscopic information is needed to distinguish the initial macroscopically specified state from the final macroscopically specified state. Equivalently, in a thermodynamic process, energy spreads. 2712: 42: 1612: 3669: 1837:, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by 2323:
For example, when a machine (not a part of the system) lifts a system upwards, some energy is transferred from the machine to the system. The system's energy increases as work is done on the system and in this particular case, the energy increase of the system is manifested as an increase in the system's
1864:
with entropy increases. Gradually, this resolved itself and a zeroth law was later added to allow for a self-consistent definition of temperature. Additional laws have been suggested, but have not achieved the generality of the four accepted laws, and are generally not discussed in standard textbooks.
1863:
over the period 1906–1912. While the numbering of the laws is universal today, various textbooks throughout the 20th century have numbered the laws differently. In some fields, the second law was considered to deal with the efficiency of heat engines only, whereas what was called the third law dealt
2322:
is a process of transferring energy to or from a system in ways that can be described by macroscopic mechanical forces acting between the system and its surroundings. The work done by the system can come from its overall kinetic energy, from its overall potential energy, or from its internal energy.
2669:
While reversible processes are a useful and convenient theoretical limiting case, all natural processes are irreversible. A prime example of this irreversibility is the transfer of heat by conduction or radiation. It was known long before the discovery of the notion of entropy that when two bodies,
2495:
Combining these principles leads to one traditional statement of the first law of thermodynamics: it is not possible to construct a machine which will perpetually output work without an equal amount of energy input to that machine. Or more briefly, a perpetual motion machine of the first kind is
1888:
Though this version of the law is one of the most commonly stated versions, it is only one of a diversity of statements that are labeled as "the zeroth law". Some statements go further, so as to supply the important physical fact that temperature is one-dimensional and that one can conceptually
2508:
indicates the irreversibility of natural processes, and in many cases, the tendency of natural processes to lead towards spatial homogeneity of matter and energy, especially of temperature. It can be formulated in a variety of interesting and important ways. One of the simplest is the Clausius
3072: 1725:
Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.
2528:
of the initially isolated systems is less than or equal to the total entropy of the final combination. Equality occurs just when the two original systems have all their respective intensive variables (temperature, pressure) equal; then the final system also has the same
2715:
a) Single possible configuration for a system at absolute zero, i.e., only one microstate is accessible. b) At temperatures greater than absolute zero, multiple microstates are accessible due to atomic vibration (exaggerated in the
2315: 1331: 2921: 2410: 2732:) the residual entropy of a system is typically close to zero. However, it reaches zero only when the system has a unique ground state (i.e., the state with the minimum thermal energy has only one configuration, or 3317:
Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August
3150: 2676:
may also be viewed as a physical measure concerning the microscopic details of the motion and configuration of a system, when only the macroscopic states are known. Such details are often referred to as
2796: 2149: 2533:
The second law is applicable to a wide variety of processes, both reversible and irreversible. According to the second law, in a reversible heat transfer, an element of heat transferred,
2042: 2490: 2161:, which says that energy can be neither created nor destroyed, but can only change form. A particular consequence of this is that the total energy of an isolated system does not change. 1896:
in the 1930s, long after the first, second, and third laws were widely recognized. The law allows the definition of temperature in a non-circular way without reference to entropy, its
1892:
These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by
2664: 1737:
and forms a basis for the definition of temperature: If two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.
2183: 1166: 1111: 1056: 863: 816: 731: 684: 596: 549: 2860: 2554: 1641: 767: 635: 1001: 2737: 1342: 2597: 2333: 500: 2670:
initially of different temperatures, come into direct thermal connection, then heat immediately and spontaneously flows from the hotter body to the colder one.
2621: 2574: 1230: 839: 792: 707: 660: 572: 525: 2524:
with itself but not necessarily with each other, are then allowed to interact, they will eventually reach a mutual thermodynamic equilibrium. The sum of the
2432:
is a form of energy transfer. Heat transfer is the natural process of moving energy to or from a system, other than by work or the transfer of matter. In a
1806: 464: 2180:. The establishment of the concept of internal energy distinguishes the first law of thermodynamics from the more general law of conservation of energy. 1802: 1320: 3067:{\displaystyle {\frac {\mathrm {d} J_{k}}{\mathrm {d} F_{i}}}{\bigg |}_{F_{i}=0}~=~{\frac {\mathrm {d} J_{i}}{\mathrm {d} F_{k}}}{\bigg |}_{F_{k}=0}} 2330:
When matter is transferred into a system, the internal energy and potential energy associated with it are transferred into the new combined system.
1842: 1353: 2168:
and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed
3548: 3478: 923: 2904: 1897: 1634: 1221: 457: 335: 890: 2824:= 1 as all the atoms are identical for a pure substance, and as a result all orders are identical as there is only one combination) and 273: 3627: 3613: 3094: 2733: 1405: 1379: 900: 354: 3655: 3641: 3425: 3391: 3370: 3349: 3325: 3274: 3253: 3225: 1852: 306: 2081: 1783:
never decreases. A common corollary of the statement is that heat does not spontaneously pass from a colder body to a warmer body.
1458: 1985: 3673: 3195: 929: 328: 2753: 2744:
with fewer microstates are less probable. In general, entropy is related to the number of possible microstates according to the
2439: 3689: 1627: 2875: 2324: 1558: 90: 2874:
have been considered the fourth law of thermodynamics. They describe the relation between thermodynamic flows and forces in
1838: 1453: 1533: 1306: 283: 1884:
If two systems are both in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.
3453: 2871: 2505: 1873: 1768: 1730: 918: 121: 111: 2736:). Microstates are used here to describe the probability of a system being in a specific state, as each microstate is 2696: 2051:
When two initially isolated systems are combined into a new system, then the total internal energy of the new system,
1969: 1915: 1787: 1741: 126: 116: 2915:(related to their related intrinsic parameters, such as temperature and pressure), the Onsager theorem states that 2682: 1824: 1448: 1410: 1374: 86: 1876:
provides for the foundation of temperature as an empirical parameter in thermodynamic systems and establishes the
2887: 2879: 2521: 1880:
between the temperatures of multiple bodies in thermal equilibrium. The law may be stated in the following form:
1818: 1683: 1203: 951: 397: 210: 200: 2418:
denotes the internal energy per unit mass of the transferred matter, as measured while in the surroundings; and
3694: 3577: 3164: 1615: 1443: 1240: 943: 882: 418: 407: 73: 1930:
is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.
2158: 1919: 1761: 1548: 1468: 1265: 349: 78: 1938:(i.e. there is no transfer of matter into or out of the system), the first law states that the change in 3190: 2883: 2319: 1772: 1745: 1691: 1687: 1483: 1060: 373: 219: 68: 3179: 2629: 3500: 1834: 1780: 1679: 1563: 1488: 1478: 278: 152: 140: 2745: 1909: 1877: 1856: 1734: 1508: 1503: 1270: 292: 258: 253: 166: 3174: 2813: 1830: 1597: 1260: 1208: 1121: 1066: 1011: 440: 424: 311: 263: 248: 238: 47: 41: 2711: 1255: 845: 798: 713: 666: 578: 531: 3651: 3637: 3623: 3609: 3554: 3544: 3516: 3474: 3421: 3387: 3366: 3345: 3321: 3270: 3249: 3221: 2827: 2741: 2720:
At absolute zero temperature, the system is in the state with the minimum thermal energy, the
2536: 1922:, adapted for thermodynamic processes. In general, the conservation law states that the total 1663: 1592: 1553: 1543: 1115: 913: 749: 741: 614: 243: 233: 175: 2878:, under the assumption that thermodynamic variables can be defined locally in a condition of 1801:
The first and second laws prohibit two kinds of perpetual motion machines, respectively: the
3508: 2725: 2173: 1703: 1513: 1498: 1438: 1433: 1250: 1245: 971: 895: 363: 228: 3543:. Steve Campbell, Institute of Physics. San Rafael, CA: Morgan & Claypool Publishers. 3540:
Quantum thermodynamics : an introduction to the thermodynamics of quantum information
2433: 2177: 2165: 1939: 1927: 1893: 1848: 1757: 1463: 1311: 965: 606: 429: 190: 157: 3303:, edited by F. Bopp, J. Meixner, translated by J. Kestin, Academic Press, New York, p. 1. 2576:), both of the system and of the sources or destination of the heat, with the increment ( 1790:
states that a system's entropy approaches a constant value as the temperature approaches
3504: 3444:, original publication 1957, reprint 1966, Cambridge University Press, Cambridge, p. 10. 2579: 482: 2891: 2606: 2559: 2169: 1860: 1707: 1659: 1518: 1288: 824: 777: 692: 645: 557: 510: 388: 268: 205: 195: 63: 33: 17: 3683: 3437: 2704: 2520:
When two initially isolated systems in separate but nearby regions of space, each in
1935: 1791: 1699: 1587: 905: 474: 435: 147: 3572: 2310:{\displaystyle E_{\rm {total}}=KE_{\rm {system}}+PE_{\rm {system}}+U_{\rm {system}}} 3601: 3491:
Wendt, Richard P. (1974). "Simplified transport theory for electrolyte solutions".
3337: 3312: 2724:. The constant value (not necessarily zero) of entropy at this point is called the 2721: 2436:
system, the internal energy can only be changed by the transfer of energy as heat:
1711: 1538: 1523: 1473: 956: 2047:
For processes that include the transfer of matter, a further statement is needed.
2820:
the number of microstates. At absolute zero there is only 1 microstate possible (
2509:
statement, that heat does not spontaneously pass from a colder to a hotter body.
2060:, will be equal to the sum of the internal energies of the two initial systems, 1859:(or Nernst's postulate), which is now known as the third law, was formulated by 1667: 1493: 301: 3558: 1702:
that form a basis of precluding the possibility of certain phenomena, such as
1582: 1528: 3520: 2703:
A system's entropy approaches a constant value as its temperature approaches
3185: 180: 3538: 3340:(1986). Chapter 1, 'An Outline of Thermodynamical Structure', pp. 3–32, in 2405:{\displaystyle \left(u\,\Delta M\right)_{\rm {in}}=\Delta U_{\rm {system}}} 1855:, what are now known as the first and second laws were established. Later, 3668: 3320:, edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, 3169: 1719: 1296: 1213: 1005: 413: 185: 3365:, (first edition 1968), third edition 1983, Cambridge University Press, 2327:. Work added to the system increases the potential energy of the system. 1798:), the entropy of a system at absolute zero is typically close to zero. 2673: 2600: 2525: 2513: 1776: 1715: 1675: 402: 3512: 3471:
A Farewell to Entropy: Statistical Thermodynamics Based on Information
1952:) is equal to the difference between the heat supplied to the system ( 3442:
Elements of Classical Thermodynamics for Advanced Students of Physics
2516:
of a thermodynamic system. In terms of this quantity it implies that
1923: 1753: 1671: 1829:
The history of thermodynamics is fundamentally interwoven with the
2729: 2728:
of the system. With the exception of non-crystalline solids (e.g.
2710: 1809:
which spontaneously converts thermal energy into mechanical work.
1795: 3634:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
3218:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
3460:, Cambridge University Press, London, pp. 4, 8, 68, 86, 97, 311. 3145:{\displaystyle J_{i}={\frac {\mathrm {d} X_{i}}{\mathrm {d} t}}} 2429: 1889:
arrange bodies in a real number sequence from colder to hotter.
1749: 1695: 378: 2176:(energy resulting from an externally imposed force field), and 3420:, translated by E.S. Halberstadt, Wiley–Interscience, London, 3407:, Cambridge University Press, London, pp. 30, 34ff, 46f, 83. 1847:. By 1860, as formalized in the works of scientists such as 1744:
states that, when energy passes into or out of a system (as
2903:(energy, mass, entropy, number of particles and so on) and 1900:. Such a temperature definition is said to be 'empirical'. 2791:{\displaystyle S=k_{\mathrm {B} }\,\mathrm {ln} \,\Omega } 3240: 3238: 3236: 3234: 2681:
on a microscopic or molecular scale, and less often as
1698:, and establish relationships between them. They state 3097: 2924: 2830: 2756: 2632: 2609: 2582: 2562: 2539: 2442: 2336: 2186: 2172:(energy due to the motion of the system as a whole), 2084: 1988: 1124: 1069: 1014: 974: 848: 827: 801: 780: 752: 716: 695: 669: 648: 617: 581: 560: 534: 513: 485: 3144: 3066: 2854: 2790: 2658: 2615: 2591: 2568: 2548: 2512:It implies the existence of a quantity called the 2484: 2404: 2309: 2143: 2036: 1805:which produces work with no energy input, and the 1160: 1105: 1050: 995: 857: 833: 810: 786: 761: 725: 701: 678: 654: 629: 590: 566: 543: 519: 494: 3386:, American Institute of Physics Press, New York, 3212: 3210: 3088:index every parameter and its related force, and 3040: 2966: 1794:. With the exception of non-crystalline solids ( 3248:, second edition, W.H. Freeman, San Francisco, 2701: 2518: 2049: 1932: 1882: 1718:in general and are applicable in other natural 2740:to have the same probability of occurring, so 2154:The First Law encompasses several principles: 3220:, seventh edition, North Holland, Amsterdam, 2144:{\displaystyle U_{\rm {system}}=U_{1}+U_{2}.} 1635: 8: 3499:(10). American Chemical Society (ACS): 646. 2037:{\displaystyle \Delta U_{\rm {system}}=Q-W.} 3315:(1978). The concepts of thermodynamics, in 1807:perpetual motion machine of the second kind 1686:. The laws also use various parameters for 2599:) of the system's conjugate variable, its 2485:{\displaystyle \Delta U_{\rm {system}}=Q.} 1968:the system on its surroundings. (Note, an 1803:perpetual motion machine of the first kind 1642: 1628: 1191: 343: 162: 40: 29: 3344:, edited by J. Serrin, Springer, Berlin, 3131: 3123: 3114: 3111: 3102: 3096: 3050: 3045: 3039: 3038: 3028: 3019: 3011: 3002: 2999: 2976: 2971: 2965: 2964: 2954: 2945: 2937: 2928: 2925: 2923: 2829: 2784: 2776: 2775: 2768: 2767: 2755: 2652: 2645: 2631: 2608: 2581: 2561: 2538: 2451: 2450: 2441: 2380: 2379: 2359: 2358: 2346: 2335: 2285: 2284: 2255: 2254: 2222: 2221: 2192: 2191: 2185: 2132: 2119: 2090: 2089: 2083: 1997: 1996: 1987: 1972:, not used in this article, is to define 1123: 1068: 1013: 973: 847: 826: 800: 779: 751: 715: 694: 668: 647: 616: 580: 559: 533: 512: 484: 3618:Goldstein, Martin & Inge F. (1993). 3458:Thermodynamics and Statistical Mechanics 3405:The Concepts of Classical Thermodynamics 3297:Thermodynamics and Statistical Mechanics 3206: 2894:). Given a set of extensive parameters 2425:denotes the amount of transferred mass. 1844:Reflections on the Motive Power of Fire 1388: 1365: 1319: 1279: 1229: 1194: 387: 362: 291: 218: 165: 32: 3182:(Parody of the laws of thermodynamics) 1760:changes in accordance with the law of 3532: 3530: 2556:, is the product of the temperature ( 27:Observational basis of thermodynamics 7: 3155:are called the thermodynamic flows. 2882:. These relations are derived from 3342:New Perspectives in Thermodynamics 3132: 3115: 3020: 3003: 2946: 2929: 2785: 2780: 2777: 2769: 2467: 2464: 2461: 2458: 2455: 2452: 2443: 2396: 2393: 2390: 2387: 2384: 2381: 2372: 2363: 2360: 2347: 2301: 2298: 2295: 2292: 2289: 2286: 2271: 2268: 2265: 2262: 2259: 2256: 2238: 2235: 2232: 2229: 2226: 2223: 2205: 2202: 2199: 2196: 2193: 2106: 2103: 2100: 2097: 2094: 2091: 2013: 2010: 2007: 2004: 2001: 1998: 1989: 849: 802: 717: 670: 582: 535: 355:Intensive and extensive properties 25: 3620:The Refrigerator and the Universe 3606:Four Laws That Drive the Universe 3573:"Lars Onsager – American chemist" 2659:{\displaystyle \delta Q=T\,dS\,.} 1982:the system by its surroundings): 1710:, they are important fundamental 3667: 3473:, World Scientific, New Jersey, 3196:Table of thermodynamic equations 1611: 1610: 930:Table of thermodynamic equations 3301:Lectures on Theoretical Physics 3244:Kittel, C. Kroemer, H. (1980). 1406:Maxwell's thermodynamic surface 2876:non-equilibrium thermodynamics 2843: 2837: 2805:is the entropy of the system, 2325:gravitational potential energy 1706:. In addition to their use in 1140: 1128: 1085: 1073: 1030: 1018: 990: 978: 1: 3493:Journal of Chemical Education 3286:Guggenheim (1985), p. 8. 1307:Mechanical equivalent of heat 3295:Sommerfeld, A. (1951/1955). 2890:(in the absence of external 2872:Onsager reciprocal relations 2506:second law of thermodynamics 1874:zeroth law of thermodynamics 1769:second law of thermodynamics 1731:zeroth law of thermodynamics 919:Onsager reciprocal relations 3537:Deffner, Sebastian (2019). 2697:third law of thermodynamics 1918:is a version of the law of 1916:first law of thermodynamics 1788:third law of thermodynamics 1742:first law of thermodynamics 1411:Entropy as energy dispersal 1222:"Perpetual motion" machines 1161:{\displaystyle G(T,p)=H-TS} 1106:{\displaystyle A(T,V)=U-TS} 1051:{\displaystyle H(S,p)=U+pV} 3711: 3648:Equilibrium Thermodynamics 3384:A Survey of Thermodynamics 3363:Equilibrium Thermodynamics 3361:Adkins, C.J. (1968/1983). 3267:Equilibrium Thermodynamics 1907: 1825:Timeline of thermodynamics 1822: 1816: 858:{\displaystyle \partial T} 811:{\displaystyle \partial V} 726:{\displaystyle \partial p} 679:{\displaystyle \partial V} 591:{\displaystyle \partial T} 544:{\displaystyle \partial S} 3632:Guggenheim, E.A. (1985). 3216:Guggenheim, E.A. (1985). 2888:microscopic reversibility 2522:thermodynamic equilibrium 1970:alternate sign convention 1819:History of thermodynamics 1771:states that in a natural 1684:thermodynamic equilibrium 1332:An Inquiry Concerning the 3578:Encyclopaedia Britannica 3418:Classical Thermodynamics 2855:{\displaystyle \ln(1)=0} 2549:{\displaystyle \delta Q} 1662:which define a group of 1345:Heterogeneous Substances 762:{\displaystyle \alpha =} 630:{\displaystyle \beta =-} 3622:. Harvard Univ. Press. 3403:Buchdahl, H.A. (1966), 3269:, McGraw-Hill, London, 3165:Chemical thermodynamics 2886:under the principle of 1688:thermodynamic processes 3690:Laws of thermodynamics 3674:Laws of thermodynamics 3646:Adkins, C. J., (1968) 3146: 3068: 2856: 2792: 2717: 2709: 2660: 2617: 2593: 2570: 2550: 2531: 2486: 2406: 2311: 2159:Conservation of energy 2152: 2145: 2045: 2038: 1920:conservation of energy 1886: 1762:conservation of energy 1656:laws of thermodynamics 1162: 1107: 1052: 997: 996:{\displaystyle U(S,V)} 859: 835: 812: 788: 763: 727: 703: 680: 656: 631: 592: 568: 545: 521: 496: 475:Specific heat capacity 79:Quantum thermodynamics 18:Laws of Thermodynamics 3469:Ben-Naim, A. (2008). 3416:*MĂĽnster, A. (1970), 3265:Adkins, C.J. (1968). 3191:Statistical mechanics 3147: 3069: 2884:statistical mechanics 2857: 2793: 2714: 2661: 2618: 2594: 2571: 2551: 2487: 2407: 2312: 2146: 2039: 1781:thermodynamic systems 1773:thermodynamic process 1680:thermodynamic systems 1343:On the Equilibrium of 1163: 1108: 1061:Helmholtz free energy 1053: 998: 860: 836: 813: 789: 764: 728: 704: 681: 657: 632: 593: 569: 546: 522: 497: 3676:at Wikimedia Commons 3095: 2922: 2905:thermodynamic forces 2828: 2754: 2630: 2607: 2580: 2560: 2537: 2440: 2334: 2184: 2082: 1986: 1841:in 1824 in his book 1835:history of chemistry 1678:, that characterize 1356:Motive Power of Fire 1122: 1067: 1012: 972: 924:Bridgman's equations 901:Fundamental relation 846: 825: 799: 778: 750: 714: 693: 667: 646: 615: 579: 558: 532: 511: 483: 3636:, seventh edition. 3505:1974JChEd..51..646W 3382:Bailyn, M. (1994). 2746:Boltzmann principle 2684:dispersal of energy 1910:Thermodynamic cycle 1878:transitive relation 1779:of the interacting 1735:thermal equilibrium 1664:physical quantities 1334:Source ... Friction 1266:Loschmidt's paradox 458:Material properties 336:Conjugate variables 3180:Ginsberg's theorem 3175:Entropy production 3142: 3064: 2852: 2814:Boltzmann constant 2788: 2742:macroscopic states 2718: 2699:can be stated as: 2656: 2613: 2592:{\displaystyle dS} 2589: 2566: 2546: 2482: 2402: 2307: 2141: 2034: 1898:conjugate variable 1831:history of physics 1692:thermodynamic work 1598:Order and disorder 1354:Reflections on the 1261:Heat death paradox 1158: 1103: 1048: 993: 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 495:{\displaystyle c=} 492: 465:Property databases 441:Reduced properties 425:Chemical potential 389:Functions of state 312:Thermal efficiency 48:Carnot heat engine 3672:Media related to 3550:978-1-64327-658-8 3513:10.1021/ed051p646 3479:978-981-270-706-2 3140: 3035: 2998: 2992: 2961: 2880:local equilibrium 2866:Onsager relations 2616:{\displaystyle S} 2569:{\displaystyle T} 1978:as the work done 1775:, the sum of the 1652: 1651: 1593:Self-organization 1418: 1417: 1116:Gibbs free energy 914:Maxwell relations 872: 871: 868: 867: 834:{\displaystyle V} 787:{\displaystyle 1} 742:Thermal expansion 736: 735: 702:{\displaystyle V} 655:{\displaystyle 1} 601: 600: 567:{\displaystyle N} 520:{\displaystyle T} 448: 447: 364:Process functions 350:Property diagrams 329:System properties 319: 318: 284:Endoreversibility 176:Equation of state 16:(Redirected from 3702: 3671: 3590: 3589: 3587: 3586: 3569: 3563: 3562: 3534: 3525: 3524: 3488: 3482: 3467: 3461: 3451: 3445: 3435: 3429: 3414: 3408: 3401: 3395: 3380: 3374: 3359: 3353: 3335: 3329: 3310: 3304: 3293: 3287: 3284: 3278: 3263: 3257: 3242: 3229: 3214: 3151: 3149: 3148: 3143: 3141: 3139: 3135: 3129: 3128: 3127: 3118: 3112: 3107: 3106: 3087: 3073: 3071: 3070: 3065: 3063: 3062: 3055: 3054: 3044: 3043: 3036: 3034: 3033: 3032: 3023: 3017: 3016: 3015: 3006: 3000: 2996: 2990: 2989: 2988: 2981: 2980: 2970: 2969: 2962: 2960: 2959: 2958: 2949: 2943: 2942: 2941: 2932: 2926: 2914: 2902: 2861: 2859: 2858: 2853: 2797: 2795: 2794: 2789: 2783: 2774: 2773: 2772: 2726:residual entropy 2665: 2663: 2662: 2657: 2622: 2620: 2619: 2614: 2598: 2596: 2595: 2590: 2575: 2573: 2572: 2567: 2555: 2553: 2552: 2547: 2491: 2489: 2488: 2483: 2472: 2471: 2470: 2424: 2417: 2411: 2409: 2408: 2403: 2401: 2400: 2399: 2368: 2367: 2366: 2357: 2353: 2316: 2314: 2313: 2308: 2306: 2305: 2304: 2276: 2275: 2274: 2243: 2242: 2241: 2210: 2209: 2208: 2174:potential energy 2150: 2148: 2147: 2142: 2137: 2136: 2124: 2123: 2111: 2110: 2109: 2077: 2068: 2059: 2043: 2041: 2040: 2035: 2018: 2017: 2016: 1977: 1963: 1958:) and the work ( 1957: 1951: 1857:Nernst's theorem 1756:), the system's 1704:perpetual motion 1644: 1637: 1630: 1614: 1613: 1321:Key publications 1302: 1301:("living force") 1251:Brownian ratchet 1246:Entropy and life 1241:Entropy and time 1192: 1167: 1165: 1164: 1159: 1112: 1110: 1109: 1104: 1057: 1055: 1054: 1049: 1002: 1000: 999: 994: 896:Clausius theorem 891:Carnot's theorem 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 793: 791: 790: 785: 772: 771: 768: 766: 765: 760: 732: 730: 729: 724: 708: 706: 705: 700: 685: 683: 682: 677: 661: 659: 658: 653: 640: 639: 636: 634: 633: 628: 597: 595: 594: 589: 573: 571: 570: 565: 550: 548: 547: 542: 526: 524: 523: 518: 505: 504: 501: 499: 498: 493: 471: 470: 344: 163: 44: 30: 21: 3710: 3709: 3705: 3704: 3703: 3701: 3700: 3699: 3695:Scientific laws 3680: 3679: 3664: 3598: 3596:Further reading 3593: 3584: 3582: 3571: 3570: 3566: 3551: 3536: 3535: 3528: 3490: 3489: 3485: 3468: 3464: 3452: 3448: 3436: 3432: 3415: 3411: 3402: 3398: 3381: 3377: 3360: 3356: 3336: 3332: 3311: 3307: 3294: 3290: 3285: 3281: 3264: 3260: 3246:Thermal Physics 3243: 3232: 3215: 3208: 3204: 3161: 3130: 3119: 3113: 3098: 3093: 3092: 3078: 3046: 3037: 3024: 3018: 3007: 3001: 2972: 2963: 2950: 2944: 2933: 2927: 2920: 2919: 2912: 2907: 2900: 2895: 2892:magnetic fields 2868: 2826: 2825: 2811: 2763: 2752: 2751: 2693: 2628: 2627: 2605: 2604: 2578: 2577: 2558: 2557: 2535: 2534: 2502: 2446: 2438: 2437: 2419: 2413: 2375: 2342: 2338: 2337: 2332: 2331: 2280: 2250: 2217: 2187: 2182: 2181: 2178:internal energy 2166:internal energy 2164:The concept of 2128: 2115: 2085: 2080: 2079: 2076: 2070: 2067: 2061: 2058: 2052: 1992: 1984: 1983: 1973: 1959: 1953: 1950: 1943: 1942:of the system ( 1940:internal energy 1928:isolated system 1912: 1906: 1894:Ralph H. Fowler 1870: 1853:William Thomson 1849:Rudolf Clausius 1827: 1821: 1815: 1758:internal energy 1700:empirical facts 1660:scientific laws 1648: 1603: 1602: 1578: 1570: 1569: 1568: 1428: 1420: 1419: 1398: 1384: 1359: 1355: 1348: 1344: 1337: 1333: 1300: 1293: 1275: 1256:Maxwell's demon 1218: 1189: 1188: 1172: 1171: 1170: 1120: 1119: 1118: 1065: 1064: 1063: 1010: 1009: 1008: 970: 969: 968: 966:Internal energy 961: 946: 936: 935: 910: 885: 875: 874: 873: 844: 843: 823: 822: 797: 796: 776: 775: 748: 747: 712: 711: 691: 690: 665: 664: 644: 643: 613: 612: 607:Compressibility 577: 576: 556: 555: 530: 529: 509: 508: 481: 480: 460: 450: 449: 430:Particle number 383: 342: 331: 321: 320: 279:Irreversibility 191:State of matter 158:Isolated system 143: 133: 132: 131: 106: 96: 95: 91:Non-equilibrium 83: 58: 50: 28: 23: 22: 15: 12: 11: 5: 3708: 3706: 3698: 3697: 3692: 3682: 3681: 3678: 3677: 3663: 3662:External links 3660: 3659: 3658: 3650:. McGraw-Hill 3644: 3630: 3628:978-0674753259 3616: 3614:978-0199232369 3608:. OUP Oxford. 3597: 3594: 3592: 3591: 3564: 3549: 3526: 3483: 3462: 3446: 3430: 3409: 3396: 3375: 3354: 3330: 3305: 3288: 3279: 3258: 3230: 3205: 3203: 3200: 3199: 3198: 3193: 3188: 3183: 3177: 3172: 3167: 3160: 3157: 3153: 3152: 3138: 3134: 3126: 3122: 3117: 3110: 3105: 3101: 3075: 3074: 3061: 3058: 3053: 3049: 3042: 3031: 3027: 3022: 3014: 3010: 3005: 2995: 2987: 2984: 2979: 2975: 2968: 2957: 2953: 2948: 2940: 2936: 2931: 2910: 2898: 2867: 2864: 2851: 2848: 2845: 2842: 2839: 2836: 2833: 2809: 2799: 2798: 2787: 2782: 2779: 2771: 2766: 2762: 2759: 2692: 2689: 2667: 2666: 2655: 2651: 2648: 2644: 2641: 2638: 2635: 2612: 2588: 2585: 2565: 2545: 2542: 2501: 2498: 2493: 2492: 2481: 2478: 2475: 2469: 2466: 2463: 2460: 2457: 2454: 2449: 2445: 2426: 2398: 2395: 2392: 2389: 2386: 2383: 2378: 2374: 2371: 2365: 2362: 2356: 2352: 2349: 2345: 2341: 2328: 2317: 2303: 2300: 2297: 2294: 2291: 2288: 2283: 2279: 2273: 2270: 2267: 2264: 2261: 2258: 2253: 2249: 2246: 2240: 2237: 2234: 2231: 2228: 2225: 2220: 2216: 2213: 2207: 2204: 2201: 2198: 2195: 2190: 2170:kinetic energy 2162: 2140: 2135: 2131: 2127: 2122: 2118: 2114: 2108: 2105: 2102: 2099: 2096: 2093: 2088: 2074: 2065: 2056: 2033: 2030: 2027: 2024: 2021: 2015: 2012: 2009: 2006: 2003: 2000: 1995: 1991: 1948: 1905: 1902: 1869: 1866: 1861:Walther Nernst 1817:Main article: 1814: 1811: 1708:thermodynamics 1650: 1649: 1647: 1646: 1639: 1632: 1624: 1621: 1620: 1619: 1618: 1605: 1604: 1601: 1600: 1595: 1590: 1585: 1579: 1576: 1575: 1572: 1571: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1430: 1429: 1426: 1425: 1422: 1421: 1416: 1415: 1414: 1413: 1408: 1400: 1399: 1397: 1396: 1393: 1389: 1386: 1385: 1383: 1382: 1377: 1375:Thermodynamics 1371: 1368: 1367: 1363: 1362: 1361: 1360: 1351: 1349: 1340: 1338: 1329: 1324: 1323: 1317: 1316: 1315: 1314: 1309: 1304: 1292: 1291: 1289:Caloric theory 1285: 1282: 1281: 1277: 1276: 1274: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1234: 1233: 1227: 1226: 1225: 1224: 1217: 1216: 1211: 1206: 1200: 1197: 1196: 1190: 1187: 1186: 1183: 1179: 1178: 1177: 1174: 1173: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1113: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1058: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1003: 992: 989: 986: 983: 980: 977: 962: 960: 959: 954: 948: 947: 942: 941: 938: 937: 934: 933: 926: 921: 916: 909: 908: 903: 898: 893: 887: 886: 881: 880: 877: 876: 870: 869: 866: 865: 854: 851: 841: 830: 819: 818: 807: 804: 794: 783: 769: 758: 755: 745: 738: 737: 734: 733: 722: 719: 709: 698: 687: 686: 675: 672: 662: 651: 637: 626: 623: 620: 610: 603: 602: 599: 598: 587: 584: 574: 563: 552: 551: 540: 537: 527: 516: 502: 491: 488: 478: 469: 468: 467: 461: 456: 455: 452: 451: 446: 445: 444: 443: 438: 433: 422: 411: 392: 391: 385: 384: 382: 381: 376: 370: 367: 366: 360: 359: 358: 357: 352: 333: 332: 327: 326: 323: 322: 317: 316: 315: 314: 309: 304: 296: 295: 289: 288: 287: 286: 281: 276: 271: 269:Free expansion 266: 261: 256: 251: 246: 241: 236: 231: 223: 222: 216: 215: 214: 213: 208: 206:Control volume 203: 198: 196:Phase (matter) 193: 188: 183: 178: 170: 169: 161: 160: 155: 150: 144: 139: 138: 135: 134: 130: 129: 124: 119: 114: 108: 107: 102: 101: 98: 97: 94: 93: 82: 81: 76: 71: 66: 60: 59: 56: 55: 52: 51: 46:The classical 45: 37: 36: 34:Thermodynamics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3707: 3696: 3693: 3691: 3688: 3687: 3685: 3675: 3670: 3666: 3665: 3661: 3657: 3656:0-07-084057-1 3653: 3649: 3645: 3643: 3642:0-444-86951-4 3639: 3635: 3631: 3629: 3625: 3621: 3617: 3615: 3611: 3607: 3603: 3602:Atkins, Peter 3600: 3599: 3595: 3580: 3579: 3574: 3568: 3565: 3560: 3556: 3552: 3546: 3542: 3541: 3533: 3531: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3487: 3484: 3480: 3476: 3472: 3466: 3463: 3459: 3455: 3450: 3447: 3443: 3440:(1957/1966). 3439: 3438:Pippard, A.B. 3434: 3431: 3427: 3426:0-471-62430-6 3423: 3419: 3413: 3410: 3406: 3400: 3397: 3393: 3392:0-88318-797-3 3389: 3385: 3379: 3376: 3372: 3371:0-521-25445-0 3368: 3364: 3358: 3355: 3351: 3350:3-540-15931-2 3347: 3343: 3339: 3334: 3331: 3328:, pp. 411–51. 3327: 3326:0-444-85166-6 3323: 3319: 3314: 3309: 3306: 3302: 3298: 3292: 3289: 3283: 3280: 3276: 3275:0-07-084057-1 3272: 3268: 3262: 3259: 3255: 3254:0-7167-1088-9 3251: 3247: 3241: 3239: 3237: 3235: 3231: 3227: 3226:0-444-86951-4 3223: 3219: 3213: 3211: 3207: 3201: 3197: 3194: 3192: 3189: 3187: 3184: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3162: 3158: 3156: 3136: 3124: 3120: 3108: 3103: 3099: 3091: 3090: 3089: 3085: 3081: 3059: 3056: 3051: 3047: 3029: 3025: 3012: 3008: 2993: 2985: 2982: 2977: 2973: 2955: 2951: 2938: 2934: 2918: 2917: 2916: 2913: 2906: 2901: 2893: 2889: 2885: 2881: 2877: 2873: 2865: 2863: 2849: 2846: 2840: 2834: 2831: 2823: 2819: 2815: 2808: 2804: 2764: 2760: 2757: 2750: 2749: 2748: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2713: 2708: 2706: 2705:absolute zero 2700: 2698: 2690: 2688: 2686: 2685: 2680: 2675: 2671: 2653: 2649: 2646: 2642: 2639: 2636: 2633: 2626: 2625: 2624: 2610: 2602: 2586: 2583: 2563: 2543: 2540: 2530: 2527: 2523: 2517: 2515: 2510: 2507: 2499: 2497: 2479: 2476: 2473: 2447: 2435: 2431: 2427: 2423: 2416: 2376: 2369: 2354: 2350: 2343: 2339: 2329: 2326: 2321: 2318: 2281: 2277: 2251: 2247: 2244: 2218: 2214: 2211: 2188: 2179: 2175: 2171: 2167: 2163: 2160: 2157: 2156: 2155: 2151: 2138: 2133: 2129: 2125: 2120: 2116: 2112: 2086: 2073: 2064: 2055: 2048: 2044: 2031: 2028: 2025: 2022: 2019: 1993: 1981: 1976: 1971: 1967: 1962: 1956: 1947: 1941: 1937: 1936:closed system 1931: 1929: 1925: 1921: 1917: 1911: 1903: 1901: 1899: 1895: 1890: 1885: 1881: 1879: 1875: 1867: 1865: 1862: 1858: 1854: 1850: 1846: 1845: 1840: 1836: 1832: 1826: 1820: 1812: 1810: 1808: 1804: 1799: 1797: 1793: 1792:absolute zero 1789: 1784: 1782: 1778: 1774: 1770: 1765: 1763: 1759: 1755: 1751: 1747: 1743: 1738: 1736: 1732: 1727: 1723: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1658:are a set of 1657: 1645: 1640: 1638: 1633: 1631: 1626: 1625: 1623: 1622: 1617: 1609: 1608: 1607: 1606: 1599: 1596: 1594: 1591: 1589: 1588:Self-assembly 1586: 1584: 1581: 1580: 1574: 1573: 1565: 1562: 1560: 1559:van der Waals 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1484:von Helmholtz 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1424: 1423: 1412: 1409: 1407: 1404: 1403: 1402: 1401: 1394: 1391: 1390: 1387: 1381: 1378: 1376: 1373: 1372: 1370: 1369: 1364: 1358: 1357: 1350: 1347: 1346: 1339: 1336: 1335: 1328: 1327: 1326: 1325: 1322: 1318: 1313: 1310: 1308: 1305: 1303: 1299: 1295: 1294: 1290: 1287: 1286: 1284: 1283: 1278: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1235: 1232: 1228: 1223: 1220: 1219: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1198: 1193: 1184: 1181: 1180: 1176: 1175: 1155: 1152: 1149: 1146: 1143: 1137: 1134: 1131: 1125: 1117: 1114: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1076: 1070: 1062: 1059: 1045: 1042: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1007: 1004: 987: 984: 981: 975: 967: 964: 963: 958: 955: 953: 950: 949: 945: 940: 939: 932: 931: 927: 925: 922: 920: 917: 915: 912: 911: 907: 906:Ideal gas law 904: 902: 899: 897: 894: 892: 889: 888: 884: 879: 878: 852: 842: 828: 821: 820: 805: 795: 781: 774: 773: 770: 756: 753: 746: 743: 740: 739: 720: 710: 696: 689: 688: 673: 663: 649: 642: 641: 638: 624: 621: 618: 611: 608: 605: 604: 585: 575: 561: 554: 553: 538: 528: 514: 507: 506: 503: 489: 486: 479: 476: 473: 472: 466: 463: 462: 459: 454: 453: 442: 439: 437: 436:Vapor quality 434: 432: 431: 426: 423: 421: 420: 415: 412: 409: 405: 404: 399: 396: 395: 394: 393: 390: 386: 380: 377: 375: 372: 371: 369: 368: 365: 361: 356: 353: 351: 348: 347: 346: 345: 341: 337: 330: 325: 324: 313: 310: 308: 305: 303: 300: 299: 298: 297: 294: 290: 285: 282: 280: 277: 275: 274:Reversibility 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 217: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 173: 172: 171: 168: 164: 159: 156: 154: 151: 149: 148:Closed system 146: 145: 142: 137: 136: 128: 125: 123: 120: 118: 115: 113: 110: 109: 105: 100: 99: 92: 88: 85: 84: 80: 77: 75: 72: 70: 67: 65: 62: 61: 54: 53: 49: 43: 39: 38: 35: 31: 19: 3647: 3633: 3619: 3605: 3583:. Retrieved 3576: 3567: 3539: 3496: 3492: 3486: 3470: 3465: 3457: 3454:Wilson, H.A. 3449: 3441: 3433: 3417: 3412: 3404: 3399: 3383: 3378: 3373:, pp. 18–20. 3362: 3357: 3341: 3333: 3316: 3308: 3300: 3299:, vol. 5 of 3296: 3291: 3282: 3266: 3261: 3245: 3217: 3154: 3083: 3079: 3076: 2908: 2896: 2869: 2821: 2817: 2806: 2802: 2800: 2722:ground state 2719: 2702: 2694: 2683: 2678: 2672: 2668: 2532: 2519: 2511: 2503: 2496:impossible. 2494: 2428:The flow of 2421: 2414: 2153: 2071: 2062: 2053: 2050: 2046: 1979: 1974: 1965: 1960: 1954: 1945: 1933: 1913: 1891: 1887: 1883: 1871: 1843: 1828: 1800: 1785: 1766: 1739: 1728: 1724: 1655: 1653: 1449:CarathĂ©odory 1380:Heat engines 1352: 1341: 1330: 1312:Motive power 1297: 957:Free entropy 928: 428: 427: / 417: 416: / 408:introduction 401: 400: / 339: 302:Heat engines 103: 89: / 3581:(biography) 3086:= 1,2,3,... 1839:Sadi Carnot 1668:temperature 1271:Synergetics 952:Free energy 398:Temperature 259:Quasistatic 254:Isenthalpic 211:Instruments 201:Equilibrium 153:Open system 87:Equilibrium 69:Statistical 3684:Categories 3585:2021-03-10 3559:1112388794 3338:Serrin, J. 3313:Serrin, J. 3202:References 2734:microstate 2500:Second law 2434:diathermal 1908:See also: 1868:Zeroth law 1823:See also: 1690:, such as 1666:, such as 1583:Nucleation 1427:Scientists 1231:Philosophy 944:Potentials 307:Heat pumps 264:Polytropic 249:Isentropic 239:Isothermal 3521:0021-9584 3186:H-theorem 2835:⁡ 2786:Ω 2691:Third law 2634:δ 2541:δ 2526:entropies 2444:Δ 2373:Δ 2348:Δ 2026:− 1990:Δ 1904:First law 1777:entropies 1564:Waterston 1514:von Mayer 1469:de Donder 1459:Clapeyron 1439:Boltzmann 1434:Bernoulli 1395:Education 1366:Timelines 1150:− 1095:− 883:Equations 850:∂ 803:∂ 754:α 718:∂ 671:∂ 625:− 619:β 583:∂ 536:∂ 244:Adiabatic 234:Isochoric 220:Processes 181:Ideal gas 64:Classical 3604:(2007). 3456:(1966). 3428:, p. 22. 3394:, p. 26. 3170:Enthalpy 3159:See also 2716:figure). 2679:disorder 1833:and the 1733:defines 1720:sciences 1616:Category 1554:Thompson 1464:Clausius 1444:Bridgman 1298:Vis viva 1280:Theories 1214:Gas laws 1006:Enthalpy 414:Pressure 229:Isobaric 186:Real gas 74:Chemical 57:Branches 3501:Bibcode 2812:is the 2738:assumed 2674:Entropy 2601:entropy 2529:values. 2514:entropy 1964:) done 1813:History 1796:glasses 1716:physics 1676:entropy 1539:Smeaton 1534:Rankine 1524:Onsager 1509:Maxwell 1504:Massieu 1209:Entropy 1204:General 1195:History 1185:Culture 1182:History 406: ( 403:Entropy 340:italics 141:Systems 3654:  3640:  3626:  3612:  3557:  3547:  3519:  3477:  3424:  3390:  3369:  3348:  3324:  3273:  3252:  3224:  3077:where 2997:  2991:  2816:, and 2801:where 2412:where 2057:system 1949:system 1926:of an 1924:energy 1754:matter 1674:, and 1672:energy 1529:Planck 1519:Nernst 1494:Kelvin 1454:Carnot 744:  609:  477:  419:Volume 334:Note: 293:Cycles 122:Second 112:Zeroth 2730:glass 1934:In a 1752:, or 1577:Other 1544:Stahl 1499:Lewis 1489:Joule 1479:Gibbs 1474:Duhem 167:State 127:Third 117:First 3652:ISBN 3638:ISBN 3624:ISBN 3610:ISBN 3555:OCLC 3545:ISBN 3517:ISSN 3475:ISBN 3422:ISBN 3388:ISBN 3367:ISBN 3346:ISBN 3322:ISBN 3318:1977 3271:ISBN 3250:ISBN 3222:ISBN 2870:The 2695:The 2504:The 2430:heat 2320:Work 2069:and 1914:The 1872:The 1851:and 1786:The 1767:The 1750:heat 1746:work 1740:The 1729:The 1712:laws 1696:heat 1694:and 1654:The 1549:Tait 379:Heat 374:Work 104:Laws 3509:doi 2623:): 1714:of 1682:in 1392:Art 338:in 3686:: 3575:. 3553:. 3529:^ 3515:. 3507:. 3497:51 3495:. 3233:^ 3209:^ 3082:, 2862:. 2832:ln 2078:: 1980:on 1966:by 1764:. 1748:, 1722:. 1670:, 3588:. 3561:. 3523:. 3511:: 3503:: 3481:. 3352:. 3277:. 3256:. 3228:. 3137:t 3133:d 3125:i 3121:X 3116:d 3109:= 3104:i 3100:J 3084:k 3080:i 3060:0 3057:= 3052:k 3048:F 3041:| 3030:k 3026:F 3021:d 3013:i 3009:J 3004:d 2994:= 2986:0 2983:= 2978:i 2974:F 2967:| 2956:i 2952:F 2947:d 2939:k 2935:J 2930:d 2911:i 2909:F 2899:i 2897:X 2850:0 2847:= 2844:) 2841:1 2838:( 2822:Ω 2818:Ω 2810:B 2807:k 2803:S 2781:n 2778:l 2770:B 2765:k 2761:= 2758:S 2707:. 2654:. 2650:S 2647:d 2643:T 2640:= 2637:Q 2611:S 2603:( 2587:S 2584:d 2564:T 2544:Q 2480:. 2477:Q 2474:= 2468:m 2465:e 2462:t 2459:s 2456:y 2453:s 2448:U 2422:M 2420:Δ 2415:u 2397:m 2394:e 2391:t 2388:s 2385:y 2382:s 2377:U 2370:= 2364:n 2361:i 2355:) 2351:M 2344:u 2340:( 2302:m 2299:e 2296:t 2293:s 2290:y 2287:s 2282:U 2278:+ 2272:m 2269:e 2266:t 2263:s 2260:y 2257:s 2252:E 2248:P 2245:+ 2239:m 2236:e 2233:t 2230:s 2227:y 2224:s 2219:E 2215:K 2212:= 2206:l 2203:a 2200:t 2197:o 2194:t 2189:E 2139:. 2134:2 2130:U 2126:+ 2121:1 2117:U 2113:= 2107:m 2104:e 2101:t 2098:s 2095:y 2092:s 2087:U 2075:2 2072:U 2066:1 2063:U 2054:U 2032:. 2029:W 2023:Q 2020:= 2014:m 2011:e 2008:t 2005:s 2002:y 1999:s 1994:U 1975:W 1961:W 1955:Q 1946:U 1944:Δ 1643:e 1636:t 1629:v 1156:S 1153:T 1147:H 1144:= 1141:) 1138:p 1135:, 1132:T 1129:( 1126:G 1101:S 1098:T 1092:U 1089:= 1086:) 1083:V 1080:, 1077:T 1074:( 1071:A 1046:V 1043:p 1040:+ 1037:U 1034:= 1031:) 1028:p 1025:, 1022:S 1019:( 1016:H 991:) 988:V 985:, 982:S 979:( 976:U 853:T 829:V 806:V 782:1 757:= 721:p 697:V 674:V 650:1 622:= 586:T 562:N 539:S 515:T 490:= 487:c 410:) 20:)

Index

Laws of Thermodynamics
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑