Knowledge (XXG)

Leading-order term

Source đź“ť

256:
boundaries where terms are to be regarded as approximately leading-order and where not. Instead the terms fade in and out, as the variables change. Deciding whether terms in a model are leading-order (or approximately leading-order), and if not, whether they are small enough to be regarded as negligible, (two different questions), is often a matter of investigation and judgement, and will depend on the context.
446: = 0.001 – this is just its main behaviour in the vicinity of this point. It may be that retaining only the leading-order (or approximately leading-order) terms, and regarding all the other smaller terms as negligible, is insufficient (when using the model for future prediction, for example), and so it may be necessary to also retain the set of next largest terms. These can be called the 301: 58:(regarding the other smaller terms as negligible). This gives the main behaviour – the true behaviour is only small deviations away from this. This main behaviour may be captured sufficiently well by just the strictly leading-order terms, or it may be decided that slightly smaller terms should also be included. In which case, the phrase 264:
Equations with only one leading-order term are possible, but rare. For example, the equation 100 = 1 + 1 + 1 + ... + 1, (where the right hand side comprises one hundred 1's). For any particular combination of values for the variables and parameters, an equation will typically contain at least two
57:
A common and powerful way of simplifying and understanding a wide variety of complicated mathematical models is to investigate which terms are the largest (and therefore most important), for particular sizes of the variables and parameters, and analyse the behaviour produced by just these terms
255:
is that two terms that are within a factor of 10 (one order of magnitude) of each other should be regarded as of about the same order, and two terms that are not within a factor of 100 (two orders of magnitude) of each other should not. However, in between is a grey area, so there are no fixed
499:
Various differential equations may be locally simplified by considering only the leading-order components. Machine learning algorithms can partition simulation or observational data into localized partitions with leading-order equation terms for aerodynamics, ocean dynamics, tumor-induced
269:
terms. In this case, by making the assumption that the lower-order terms, and the parts of the leading-order terms that are the same size as the lower-order terms (perhaps the second or third
379:
and 0.1 terms may be regarded as negligible, and dropped, along with any values in the third significant figure onwards in the two remaining terms. This gives the leading-order balance
297:
of the model for these values of the variables and parameters. The size of the error in making this approximation is normally roughly the size of the largest neglected term.
356:
terms may be regarded as negligible, and dropped, along with any values in the third decimal places onwards in the two remaining terms. This gives the leading-order balance
273:
onwards), are negligible, a new equation may be formed by dropping all these lower-order terms and parts of the leading-order terms. The remaining terms provide the
426:
Note that this description of finding leading-order balances and behaviours gives only an outline description of the process – it is not mathematically rigorous.
1224: 686: 468: 62:
might be used informally to mean this whole group of terms. The behaviour produced by just the group of leading-order terms is called the
565: 1075:
Catani, S.; Seymour, M.H. (1996). "The Dipole Formalism for the Calculation of QCD Jet Cross Sections at Next-to-Leading Order".
1022:
Campbell, J.; Ellis, R.K. (2002). "Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders".
647: 1278: 1341: 1336: 480: 1128:
Kidonakis, N.; Vogt, R. (2003). "Next-to-next-to-leading order soft-gluon corrections in top quark hadroproduction".
969:
Kruczenski, M.; Oxman, L.E.; Zaldarriaga, M. (1999). "Large squeezing behaviour of cosmological entropy generation".
35: 794:"Diffusion-Limited Binary Reactions: The Hierarchy of Nonclassical Regimes for Correlated Initial Conditions" 1255: 51: 728:
Gorshkov, A. V.; et al. (2008). "Coherent Quantum Optical Control with Subwavelength Resolution".
714: 1291: 544: 228:, the table shows the sizes of the four terms in this equation, and which terms are leading-order. As 1239: 1197: 1147: 1094: 1041: 988: 943: 892: 839: 747: 698: 659: 618: 574: 509: 934:
HĂĽseyin, A. (1980). "The leading-order behaviour of the two-photon scattering amplitudes in QCD".
483:
may be considerably simplified by considering only the leading-order components. For example, the
1313: 1163: 1137: 1110: 1084: 1057: 1031: 1004: 978: 916: 882: 771: 737: 488: 270: 47: 39: 244:
decreases and then becomes more and more negative, which terms are leading-order again changes.
793: 908: 855: 763: 1303: 1247: 1205: 1155: 1102: 1049: 996: 951: 900: 847: 808: 789: 755: 706: 667: 626: 582: 873:
Horowitz, G. T.; Tseytlin, A. A. (1994). "Extremal black holes as exact string solutions".
826:Żenczykowski, P. (1988). "Kobayashi–Maskawa matrix from the leading-order solution of the 471:, when the accurate approximate solution in each subdomain is the leading-order solution. 1243: 1201: 1151: 1098: 1045: 992: 947: 896: 843: 751: 702: 663: 622: 578: 411:. The leading-order behaviour is more complicated when more terms are leading-order. At 1182: 603: 293:
to the original equation. Analysing the behaviour given by this new equation gives the
1251: 1330: 1317: 1209: 1106: 1061: 1000: 955: 252: 1114: 1008: 920: 533: 450:(NLO) terms or corrections. The next set of terms down after that can be called the 1308: 1167: 775: 759: 43: 687:"The role of surface tension in the dominant balance in the die swell singularity" 247:
There is no strict cut-off for when two terms should or should not be regarded as
1183:"Vortex motion in the spatially inhomogeneous conservative Ginzburg–Landau model" 340:
Suppose we want to understand the leading-order behaviour of the example above.
904: 484: 300: 28: 1159: 1053: 631: 415:
there is a leading-order balance between the cubic and linear dependencies of
1290:
Kaiser, Bryan E.; Saenz, Juan A.; Sonnewald, Maike; Livescu, Daniel (2022).
851: 912: 767: 587: 560: 859: 467:
Leading-order simplification techniques are used in conjunction with the
50:. The sizes of the different terms in the equation(s) will change as the 31: 812: 561:"A model of carbon dioxide dissolution and mineral carbonation kinetics" 1142: 1089: 1036: 887: 360: = 0.1. Thus the leading-order behaviour of this equation at 983: 16:
Terms in a mathematical expression with the largest order of magnitude
710: 671: 648:"Onset of Superconductivity in Decreasing Fields for General Domains" 285:, and creating a new equation just involving these terms is known as 604:"A multi-scale model for solute transport in a wavy-walled channel" 742: 299: 54:
change, and hence, which terms are leading-order may also change.
87: + 0.1. (Leading-order terms highlighted in pink.) 495:
Simplification of differential equations by machine learning
316: + 0.1. The leading order, or main, behaviour at 1292:"Automated identification of dominant physical processes" 479:
For particular fluid flow scenarios, the (very general)
387:. Thus the leading-order behaviour of this equation at 530:
Asymptotic Analysis and Singular Perturbation Theory
289:. The solutions to this new equation are called the 1296:
Engineering Applications of Artificial Intelligence
232:increases further, the leading-order terms stay as 534:http://www.math.ucdavis.edu/~hunter/notes/asy.pdf 512:, an algebraic generalization of "leading order" 500:angiogenesis, and synthetic data applications. 224: + 0.1. For five different values of 8: 487:equations. Also, the thin film equations of 251:the same order, or magnitude. One possible 554: 552: 1307: 1141: 1088: 1035: 982: 886: 741: 630: 586: 407:may thus be investigated at any value of 73: 1181:Rubinstein, B.Y.; Pismen, L.M. (1994). 521: 475:Simplifying the Navier–Stokes equations 469:method of matched asymptotic expansions 646:Sternberg, P.; Bernoff, A. J. (1998). 1225:"Dynamics of optical vortex solitons" 602:Woollard, H. F.; et al. (2008). 559:Mitchell, M. J.; et al. (2010). 7: 1223:Kivshar, Y.S.; et al. (1998). 685:Salamon, T.R.; et al. (1995). 287:taking an equation to leading-order 611:Journal of Engineering Mathematics 566:Proceedings of the Royal Society A 14: 75:Sizes of the individual terms in 652:Journal of Mathematical Physics 265:leading-order terms, and other 1309:10.1016/j.engappai.2022.105496 1190:Physica D: Nonlinear Phenomena 760:10.1103/PhysRevLett.100.093005 1: 1252:10.1016/S0030-4018(98)00149-7 971:Classical and Quantum Gravity 830:-generation Fritzsch model". 801:Journal of Physical Chemistry 463:Matched asymptotic expansions 454:(NNLO) terms or corrections. 452:next-to-next-to-leading order 1210:10.1016/0167-2789(94)00119-7 1107:10.1016/0370-2693(96)00425-X 956:10.1016/0550-3213(80)90411-3 905:10.1103/PhysRevLett.73.3351 320: = 0.001 is that 1358: 1160:10.1103/PhysRevD.68.114014 1054:10.1103/PhysRevD.65.113007 1001:10.1088/0264-9381/11/9/013 632:10.1007/s10665-008-9239-x 395:increases cubically with 332:increases cubically with 1279:Cornell University notes 348: = 0.001, the 328: = 10 is that 875:Physical Review Letters 852:10.1103/PhysRevD.38.332 730:Physical Review Letters 481:Navier–Stokes equations 442:completely constant at 295:leading-order behaviour 291:leading-order solutions 260:Leading-order behaviour 64:leading-order behaviour 792:; et al. (1994). 588:10.1098/rspa.2009.0349 403:The main behaviour of 375: = 10, the 5 337: 275:leading-order equation 212:Consider the equation 1232:Optics Communications 448:next-to-leading order 430:Next-to-leading order 303: 279:leading-order balance 324:is constant, and at 1342:Asymptotic analysis 1337:Orders of magnitude 1244:1998OptCo.152..198K 1202:1994PhyD...78....1R 1152:2003PhRvD..68k4014K 1099:1996PhLB..378..287C 1046:2002PhRvD..65k3007C 993:1994CQGra..11.2317K 948:1980NuPhB.163..453A 897:1994PhRvL..73.3351H 844:1988PhRvD..38..332Z 813:10.1021/j100064a020 752:2008PhRvL.100i3005G 703:1995PhFl....7.2328S 664:1998JMP....39.1272B 623:2009JEnMa..64...25W 579:2010RSPSA.466.1265M 573:(2117): 1265–1290. 88: 60:leading-order terms 21:leading-order terms 489:lubrication theory 338: 271:significant figure 74: 48:order of magnitude 1130:Physical Review D 1077:Physics Letters B 1024:Physical Review D 936:Nuclear Physics B 881:(25): 3351–3354. 832:Physical Review D 807:(13): 3389–3397. 697:(10): 2328–2344. 691:Physics of Fluids 210: 209: 46:with the largest 1349: 1322: 1321: 1311: 1287: 1281: 1276: 1270: 1269: 1267: 1266: 1260: 1254:. Archived from 1229: 1220: 1214: 1213: 1187: 1178: 1172: 1171: 1145: 1125: 1119: 1118: 1092: 1072: 1066: 1065: 1039: 1019: 1013: 1012: 986: 977:(9): 2317–2329. 966: 960: 959: 931: 925: 924: 890: 870: 864: 863: 823: 817: 816: 798: 786: 780: 779: 745: 725: 719: 718: 713:. Archived from 711:10.1063/1.868746 682: 676: 675: 672:10.1063/1.532379 658:(3): 1272–1284. 643: 637: 636: 634: 608: 599: 593: 592: 590: 556: 547: 545:NYU course notes 542: 536: 526: 371:Similarly, when 283:dominant balance 89: 1357: 1356: 1352: 1351: 1350: 1348: 1347: 1346: 1327: 1326: 1325: 1289: 1288: 1284: 1277: 1273: 1264: 1262: 1258: 1227: 1222: 1221: 1217: 1185: 1180: 1179: 1175: 1127: 1126: 1122: 1074: 1073: 1069: 1021: 1020: 1016: 968: 967: 963: 933: 932: 928: 872: 871: 867: 825: 824: 820: 796: 788: 787: 783: 727: 726: 722: 684: 683: 679: 645: 644: 640: 606: 601: 600: 596: 558: 557: 550: 543: 539: 527: 523: 519: 506: 497: 477: 465: 460: 432: 262: 72: 17: 12: 11: 5: 1355: 1353: 1345: 1344: 1339: 1329: 1328: 1324: 1323: 1282: 1271: 1238:(1): 198–206. 1215: 1173: 1143:hep-ph/0308222 1136:(11): 114014. 1120: 1090:hep-ph/9602277 1083:(1): 287–301. 1067: 1037:hep-ph/0202176 1030:(11): 113007. 1014: 961: 926: 888:hep-th/9408040 865: 838:(1): 332–336. 818: 790:Lindenberg, K. 781: 720: 717:on 2013-07-08. 677: 638: 594: 548: 537: 520: 518: 515: 514: 513: 505: 502: 496: 493: 476: 473: 464: 461: 459: 456: 431: 428: 401: 400: 369: 312: + 5 261: 258: 220: + 5 208: 207: 204: 201: 198: 195: 192: 184: 183: 180: 177: 174: 171: 168: 162: 161: 158: 155: 152: 149: 146: 137: 136: 133: 130: 127: 124: 121: 113: 112: 109: 106: 103: 100: 97: 83: + 5 71: 68: 66:of the model. 15: 13: 10: 9: 6: 4: 3: 2: 1354: 1343: 1340: 1338: 1335: 1334: 1332: 1319: 1315: 1310: 1305: 1301: 1297: 1293: 1286: 1283: 1280: 1275: 1272: 1261:on 2013-04-21 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1219: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1177: 1174: 1169: 1165: 1161: 1157: 1153: 1149: 1144: 1139: 1135: 1131: 1124: 1121: 1116: 1112: 1108: 1104: 1100: 1096: 1091: 1086: 1082: 1078: 1071: 1068: 1063: 1059: 1055: 1051: 1047: 1043: 1038: 1033: 1029: 1025: 1018: 1015: 1010: 1006: 1002: 998: 994: 990: 985: 984:gr-qc/9403024 980: 976: 972: 965: 962: 957: 953: 949: 945: 941: 937: 930: 927: 922: 918: 914: 910: 906: 902: 898: 894: 889: 884: 880: 876: 869: 866: 861: 857: 853: 849: 845: 841: 837: 833: 829: 822: 819: 814: 810: 806: 802: 795: 791: 785: 782: 777: 773: 769: 765: 761: 757: 753: 749: 744: 739: 735: 731: 724: 721: 716: 712: 708: 704: 700: 696: 692: 688: 681: 678: 673: 669: 665: 661: 657: 653: 649: 642: 639: 633: 628: 624: 620: 616: 612: 605: 598: 595: 589: 584: 580: 576: 572: 568: 567: 562: 555: 553: 549: 546: 541: 538: 535: 531: 525: 522: 516: 511: 508: 507: 503: 501: 494: 492: 490: 486: 482: 474: 472: 470: 462: 457: 455: 453: 449: 445: 441: 437: 429: 427: 424: 422: 418: 414: 410: 406: 398: 394: 390: 386: 383: =  382: 378: 374: 370: 367: 363: 359: 355: 351: 347: 343: 342: 341: 335: 331: 327: 323: 319: 315: 311: 308: =  307: 302: 298: 296: 292: 288: 284: 280: 276: 272: 268: 259: 257: 254: 253:rule of thumb 250: 249:approximately 245: 243: 239: 235: 231: 227: 223: 219: 216: =  215: 205: 202: 199: 196: 193: 191: 190: 186: 185: 181: 178: 175: 172: 169: 167: 164: 163: 159: 156: 153: 150: 147: 145: 144: 139: 138: 134: 131: 128: 125: 122: 120: 119: 115: 114: 110: 107: 104: 101: 98: 96: 95: 91: 90: 86: 82: 79: =  78: 70:Basic example 69: 67: 65: 61: 55: 53: 49: 45: 41: 37: 33: 30: 26: 22: 1299: 1295: 1285: 1274: 1263:. Retrieved 1256:the original 1235: 1231: 1218: 1193: 1189: 1176: 1133: 1129: 1123: 1080: 1076: 1070: 1027: 1023: 1017: 974: 970: 964: 939: 935: 929: 878: 874: 868: 835: 831: 827: 821: 804: 800: 784: 736:(9): 93005. 733: 729: 723: 715:the original 694: 690: 680: 655: 651: 641: 617:(1): 25–48. 614: 610: 597: 570: 564: 540: 529: 528:J.K.Hunter, 524: 498: 478: 466: 451: 447: 443: 439: 435: 433: 425: 420: 416: 412: 408: 404: 402: 396: 392: 388: 384: 380: 376: 372: 368:is constant. 365: 361: 357: 353: 349: 345: 339: 333: 329: 325: 321: 317: 313: 309: 305: 294: 290: 286: 282: 278: 274: 266: 263: 248: 246: 241: 237: 233: 229: 225: 221: 217: 213: 211: 188: 187: 165: 142: 140: 117: 116: 93: 92: 84: 80: 76: 63: 59: 56: 29:mathematical 24: 20: 18: 1196:(1): 1–10. 942:: 453–460. 485:Stokes flow 434:Of course, 267:lower-order 194:0.105000001 123:0.000000001 27:) within a 25:corrections 1331:Categories 1302:: 105496. 1265:2012-10-31 517:References 36:expression 1318:252957864 1062:119355645 743:0706.3879 510:Valuation 304:Graph of 240:, but as 52:variables 1115:15422325 1009:13979794 921:43551044 913:10057359 768:18352706 532:, 2004. 504:See also 440:actually 391:is that 364:is that 42:are the 32:equation 1240:Bibcode 1198:Bibcode 1168:5943465 1148:Bibcode 1095:Bibcode 1042:Bibcode 989:Bibcode 944:Bibcode 893:Bibcode 860:9959017 840:Bibcode 776:3789664 748:Bibcode 699:Bibcode 660:Bibcode 619:Bibcode 575:Bibcode 438:is not 362:x=0.001 206:1050.1 1316:  1166:  1113:  1060:  1007:  919:  911:  858:  774:  766:  1314:S2CID 1259:(PDF) 1228:(PDF) 1186:(PDF) 1164:S2CID 1138:arXiv 1111:S2CID 1085:arXiv 1058:S2CID 1032:arXiv 1005:S2CID 979:arXiv 917:S2CID 883:arXiv 797:(PDF) 772:S2CID 738:arXiv 607:(PDF) 458:Usage 352:and 5 344:When 281:, or 277:, or 200:2.725 197:0.601 148:0.005 135:1000 129:0.125 126:0.001 99:0.001 44:terms 40:model 909:PMID 856:PMID 764:PMID 389:x=10 236:and 203:18.1 182:0.1 23:(or 19:The 1304:doi 1300:116 1248:doi 1236:152 1206:doi 1156:doi 1103:doi 1081:378 1050:doi 997:doi 952:doi 940:163 901:doi 848:doi 809:doi 756:doi 734:100 707:doi 668:doi 627:doi 583:doi 571:466 419:on 413:x=2 179:0.1 176:0.1 173:0.1 170:0.1 166:0.1 160:50 154:2.5 151:0.5 111:10 105:0.5 102:0.1 38:or 1333:: 1312:. 1298:. 1294:. 1246:. 1234:. 1230:. 1204:. 1194:78 1192:. 1188:. 1162:. 1154:. 1146:. 1134:68 1132:. 1109:. 1101:. 1093:. 1079:. 1056:. 1048:. 1040:. 1028:65 1026:. 1003:. 995:. 987:. 975:11 973:. 950:. 938:. 915:. 907:. 899:. 891:. 879:73 877:. 854:. 846:. 836:38 834:. 805:98 803:. 799:. 770:. 762:. 754:. 746:. 732:. 705:. 693:. 689:. 666:. 656:39 654:. 650:. 625:. 615:64 613:. 609:. 581:. 569:. 563:. 551:^ 491:. 423:. 157:10 34:, 1320:. 1306:: 1268:. 1250:: 1242:: 1212:. 1208:: 1200:: 1170:. 1158:: 1150:: 1140:: 1117:. 1105:: 1097:: 1087:: 1064:. 1052:: 1044:: 1034:: 1011:. 999:: 991:: 981:: 958:. 954:: 946:: 923:. 903:: 895:: 885:: 862:. 850:: 842:: 828:n 815:. 811:: 778:. 758:: 750:: 740:: 709:: 701:: 695:7 674:. 670:: 662:: 635:. 629:: 621:: 591:. 585:: 577:: 444:x 436:y 421:x 417:y 409:x 405:y 399:. 397:x 393:y 385:x 381:y 377:x 373:x 366:y 358:y 354:x 350:x 346:x 336:. 334:x 330:y 326:x 322:y 318:x 314:x 310:x 306:y 242:x 238:y 234:x 230:x 226:x 222:x 218:x 214:y 189:y 143:x 141:5 132:8 118:x 108:2 94:x 85:x 81:x 77:y

Index

mathematical
equation
expression
model
terms
order of magnitude
variables
rule of thumb
significant figure

method of matched asymptotic expansions
Navier–Stokes equations
Stokes flow
lubrication theory
Valuation
http://www.math.ucdavis.edu/~hunter/notes/asy.pdf
NYU course notes


"A model of carbon dioxide dissolution and mineral carbonation kinetics"
Proceedings of the Royal Society A
Bibcode
2010RSPSA.466.1265M
doi
10.1098/rspa.2009.0349
"A multi-scale model for solute transport in a wavy-walled channel"
Bibcode
2009JEnMa..64...25W
doi
10.1007/s10665-008-9239-x

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑