Knowledge (XXG)

Lee wave

Source đź“ť

43: 204: 31: 745:
pressure amplitudes vary primarily in the vertical direction instead of the horizontal. Whereas conventional, non-hydrostatic waves are characterized by horizontal undulations of lift and sink, largely independent of altitude, hydrostatic waves are characterized by undulations of lift and sink at different altitudes over the same ground position.
439: 744:
are vertically propagating waves which form over spatially large obstructions. In hydrostatic equilibrium, the pressure of a fluid can depend only on altitude, not on horizontal displacement. Hydrostatic waves get their name from the fact that they approximately obey the laws of hydrostatics, i.e.
733:
forms which can be several times higher than the mountain. The hydraulic jump is similar to a rotor in that it is very turbulent, yet it is not as spatially localized as a rotor. The hydraulic jump itself acts as an obstruction for the stable layer of air moving above it, thereby triggering wave.
207:
A fluid dynamics lab experiment illustrates flow past a mountain-shaped obstacle. Downstream wave crests radiate upwards with their group velocity pointing about 45° from horizontal. A downslope jet can be seen in the lee of the mountain, an area of lower pressure, enhanced turbulence, and periodic
795:
On 10 March 1933, German glider pilot Hans Deutschmann (1911–1942) was flying over the Giant Mountains in Silesia when an updraft lifted his plane by a kilometre. The event was observed, and correctly interpreted, by German engineer and glider pilot Wolf Hirth (1900–1959), who wrote about it in:
505:
in its upwelling portion, also known as a "roll cloud". The rotor cloud looks like a line of cumulus. It forms on the lee side and parallel to the ridge line. Its base is near the height of the mountain peak, though the top can extend well above the peak and can merge with the lenticular clouds
728:
are a type of wave that forms when there exists a lower layer of air which is dense, yet thin relative to the size of the mountain. After flowing over the mountain, a type of shock wave forms at the trough of the flow, and a sharp vertical discontinuity called the
800:(Berlin, Germany: Klasing & Co., 1933). The phenomenon was subsequently studied by German glider pilot and atmospheric physicist Joachim P. Küttner (1909 -2011) in: Küttner, J. (1938) "Moazagotl und Föhnwelle" (Lenticular clouds and foehn waves), 190:
Strong winds (with wind gusts over 100 miles per hour (160 km/h)) can be created in the foothills of large mountain ranges by mountain waves. These strong winds can contribute to unexpected wildfire growth and spread (including the
696: 303: 884:
This is the ideal case, for an unstable layer below and above the stable layer create what can be described as a springboard for the stable layer to bounce on once the mountain begins the oscillation.
602: 470:. Waves may also form in dry air without cloud markers. Wave clouds do not move downwind as clouds usually do, but remain fixed in position relative to the obstruction that forms them. 675:
The rising air of the wave, which allows gliders to climb to great heights, can also result in high-altitude upset in jet aircraft trying to maintain level cruising flight in
339: 34:
The wind flows towards a mountain and produces a first oscillation (A) followed by more waves. The following waves will have lower amplitude because of the natural damping.
401: 366: 753:
can occur when velocity shear is present within a continuous fluid or when there is sufficient velocity difference across the interface between two fluids.
808:, 79–114, and Kuettner, J. (1959) "The rotor flow in the lee of mountains." GRD Research Notes No. 6, AFCRC-TN-58-626, ASTIA Document No. AD-208862. 208:
vertical displacement of fluid parcels. Vertical dye lines indicate effects are also felt upstream of the mountain, an area of higher pressure.
237: 1325: 877: 1105:(Special Symposium on Mesoscale Meteorological Extremes: Understanding, Prediction, and Projection). American Meteorological Society: 5 pp. 229: 192: 1481:
SOUTHTRAC (Transport and Composition of the Southern Hemisphere Upper Troposphere and Lower Stratosphere) Campaign in Southern Argentina
1476:
An Examination of the Areal Extent of High Winds due to Mountain Waves along the Western Foothills of the Southern Appalachian Mountains
494:). Multiple lenticular clouds can be stacked on top of each other if there are alternating layers of relatively dry and moist air aloft. 1466:
Chronological collection of meteorological data, satellite pics and cloud images of mountain waves in Bariloche, Argentina (in Spanish)
761:(or planetary waves) are large-scale motions in the atmosphere whose restoring force is the variation in Coriolis effect with latitude. 939:"On High Winds and Foehn Warming Associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains" 716:
separates two layers with a marked difference in wind direction. If the wind encounters distortions in the inversion layer caused by
1183: 1150: 1471:
On High Winds and Foehn Warming associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains
749: 662: 642: 1217: 164:
that triggers them. Sometimes, mountain waves can help to enhance precipitation amounts downwind of mountain ranges. Usually a
513:
wall cloud may exist at the lee side of the mountains, however this is not a reliable indication of the presence of lee waves.
1515: 1265: 411:
field (i.e., lines of lowest and highest pressure), while the areas between wave fronts represent extrema in the perturbed
1520: 1495: 466:
formations if there is sufficient moisture in the atmosphere, and sufficient vertical displacement to cool the air to the
1282:
Lindemann, C; Heise, R.; Herold, W-D. (July 2008). "Leewaves in the Andes Region, Mountain Wave Project (MWP) of OSTIV".
1505: 1354:"A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations" 720:
coming up from below, it will create significant shear waves in the lee of the distortions that can be used for soaring.
1465: 578: 418:
Energy is transmitted along the wave fronts (parallel to air parcel oscillations), which is the direction of the wave
458:
is under the left edge of the window, the rising air is at the right edge, and the distance between them is 3–4 km.
217: 1086: 1061: 1045: 1020: 1004: 979: 922: 897: 520:
or cap cloud, similar to a lenticular cloud, may form above the mountain or cumulus cloud generating the wave.
1201: 1475: 195:
when sparks from a wildfire in the Smoky Mountains were blown into the Gatlinburg and Pigeon Forge areas).
1510: 1304: 562:. World record wave flight performances for speed, distance or altitude have been made in the lee of the 1110: 713: 630: 598: 342: 59: 1365: 1103:"A mesoscale simulation of a mountain wave wind event associated with the Chimney Tops 2 fire (2016)" 1073: 1032: 991: 950: 909: 818:
Tokgozlu, A; Rasulov, M.; Aslan, Z. (January 2005). "Modeling and Classification of Mountain Waves".
735: 703:
There are a variety of distinctive types of waves which form under different atmospheric conditions.
680: 563: 517: 157: 91: 1102: 308: 375: 734:
Hydraulic jumps can be distinguished by their towering roll clouds, and have been observed on the
1470: 551: 451: 403:. These air parcel oscillations occur in concert, parallel to the wave fronts (lines of constant 153: 99: 1393: 1321: 1287: 1179: 1166:
Durran, Dale R. (1990-01-01). "Mountain Waves and Downslope Winds". In Blumen, William (ed.).
1146: 873: 823: 669: 641:. It can even be a hazard for large aircraft; the phenomenon is believed responsible for many 523: 479: 443: 1525: 1500: 1383: 1373: 1171: 1081: 1040: 999: 958: 917: 776: 491: 221: 220:
flow is forced over an obstacle. This disturbance elevates air parcels above their level of
35: 351: 1269: 1205: 1123: 646: 502: 487: 475: 455: 176: 111: 83: 898:"An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region" 75: 1369: 1077: 1036: 995: 954: 913: 1139: 1062:"A Severe Downslope Windstorm and Aircraft Turbulence Event Induced by a Mountain Wave" 730: 684: 582: 427: 423: 419: 123: 1489: 1353: 1221: 534: 530: 498: 404: 213: 187:
shows a stable layer above the obstruction, with an unstable layer above and below.
771: 634: 590: 447: 142: 71: 67: 42: 38:
stuck on top of the flow (A) and (B) will appear immobile despite the strong wind.
1340: 1263: 1175: 757: 638: 225: 103: 95: 51: 203: 1378: 1170:. Meteorological Monographs. American Meteorological Society. pp. 59–81. 708: 665: 654: 650: 586: 463: 184: 127: 79: 1397: 1291: 1252: 963: 938: 827: 679:. Rising, descending or turbulent air, in or above the lee waves, can cause 676: 605:
focusses on analysis and classification of lee waves and associated rotors.
594: 571: 527: 506:
above. Rotor clouds have ragged leeward edges and are dangerously turbulent.
467: 369: 165: 87: 1480: 841: 30: 626: 555: 412: 408: 172: 119: 17: 1341:
Observations of Mountain-Induced Rotors and Related Hypotheses: a Review
695: 298:{\displaystyle N={\sqrt {{g \over \theta _{0}}{d\theta _{0} \over dz}}}} 1460: 1388: 717: 593:
standing waves. They did this for the first time on August 30, 2006 in
559: 538: 161: 156:
of the air within this air current. They always occur in groups on the
138: 135: 131: 168: 1352:
Alexander, P.; Luna, D.; Llamedo, P.; de la Torre, A. (2010-02-19).
615:
Wind direction within 30° of perpendicular to the mountain ridgeline
454:
looking north. The wind flow is from upper left to lower right. The
438: 608:
The conditions favoring strong lee waves suitable for soaring are:
589:
in an unpowered glider using lee waves, making the transition into
1198: 694: 658: 574: 510: 483: 437: 202: 149: 41: 29: 597:, climbing to an altitude of 15,460 metres (50,720 ft). The 1241: 567: 115: 426:) of the waves points perpendicular to energy transmission (or 224:. Buoyancy restoring forces therefore act to excite a vertical 585:
is working to demonstrate the viability of climbing above the
175:
parallel to the mountain range, is generated around the first
126:. They can also be caused by the surface wind blowing over an 107: 896:
David M. Gaffin; Stephen S. Parker; Paul D. Kirkwood (2003).
415:
field (i.e., areas most rapidly gaining or losing buoyancy).
1087:
10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2
1046:
10.1175/1520-0434(1998)013<0702:TSWOSB>2.0.CO;2
1005:
10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2
923:
10.1175/1520-0434(2003)018<0224:AUHACS>2.0.CO;2
462:
Both lee waves and the rotor may be indicated by specific
661:
in 1966, and the in-flight separation of an engine on an
348:
Oscillations tilted off the vertical axis at an angle of
738:
range as well as mountain ranges in southern California.
407:). These wave fronts represent extrema in the perturbed 603:
Organisation Scientifique et Technique du Vol Ă  Voile
378: 354: 311: 240: 1101:
Ryan Shadbolt; Joseph Charney; Hannah Fromm (2019).
625:
The rotor turbulence may be harmful for other small
1138: 1021:"The Sundowner Winds of Santa Barbara, California" 395: 360: 333: 297: 872:. City: Sport Aviation Pubns. pp. 169–175. 618:Strong low-altitude winds in a stable atmosphere 526:in the trough of each wave oscillation may also 183:. The strongest lee waves are produced when the 148:The vertical motion forces periodic changes in 70:. These were discovered in 1933 by two German 1145:(1 ed.). San Diego, CA: Academic Press. 612:A gradual increase in windspeed with altitude 110:caused by vertical displacement, for example 8: 1443:. Cambridge, UK: Cambridge University Press. 1427:An Introduction to Atmospheric Gravity Waves 1422:. Cambridge, UK: Cambridge University Press. 1343:by Joachim Kuettner and Rolf F. Hertenstein 712:can also create waves. This occurs when an 1168:Atmospheric Processes over Complex Terrain 541:, creating a "wave window" or "Foehn gap". 134:, or even by upper winds deflected over a 62:stationary waves. The most common form is 1387: 1377: 1085: 1044: 1003: 962: 921: 422:. In contrast, the phase propagation (or 388: 377: 353: 316: 310: 276: 266: 258: 249: 247: 239: 1286:. Vol. 32, no. 3. p. 93. 822:. Vol. 29, no. 1. p. 22. 863: 861: 859: 857: 788: 1461:Mountain Wave Project official website 1450:. Oxford, UK: Oxford University Press. 1119: 1108: 1415:. Boston: Kluwer Academic Publishers. 645:, including the in-flight breakup of 7: 1420:Fundamentals of Atmospheric Modeling 699:Hydrostatic wave (schematic drawing) 691:Other varieties of atmospheric waves 550:Lee waves provide a possibility for 228:of the perturbed air parcels at the 193:2016 Great Smoky Mountains wildfires 1066:Journal of the Atmospheric Sciences 980:"The Santa Ana winds of California" 621:Ridgetop winds of at least 20 knots 27:Atmospheric stationary oscillations 1320:. Eqip Verbung & Verlag GmbH. 802:Beiträge zur Physik der Atmosphäre 25: 1434:Mesoscale Meteorological Modeling 66:, which are atmospheric internal 663:Evergreen International Airlines 643:aviation accidents and incidents 798:Die hohe Schule des Segelfluges 232:, which for the atmosphere is: 1413:Environmental Stratified Flows 1305:NTSB Accident Report AAR-93-06 334:{\displaystyle \theta _{0}(z)} 328: 322: 1: 524:Adiabatic compression heating 396:{\displaystyle N\cos {\phi }} 750:Kelvin–Helmholtz instability 726:Hydraulic jump induced waves 1253:OSTIV-Mountain Wave Project 1176:10.1007/978-1-935704-25-6_4 558:or fly long distances when 480:adiabatic expansion cooling 341:is the vertical profile of 1542: 1441:Buoyancy Effects in Fluids 1318:Advanced Soaring Made Easy 1436:. Boston: Academic Press. 1429:. Boston: Academic Press. 1379:10.5194/angeo-28-587-2010 1141:Atmosphere-ocean dynamics 842:"Article about wave lift" 1137:Gill, Adrian E. (1982). 964:10.1175/2008WAF2007096.1 937:David M. Gaffin (2009). 497:The rotor may generate 216:produced when a stable, 212:Lee waves are a form of 1316:Eckey, Bernard (2007). 1025:Weather and Forecasting 943:Weather and Forecasting 902:Weather and Forecasting 442:A wave window over the 230:Brunt-Väisäla frequency 1446:Whiteman, C., (2000). 1418:Jacobson, M., (1999). 1411:Grimshaw, R., (2002). 1118:Cite journal requires 978:M. N. Raphael (2003). 868:Pagen, Dennis (1992). 700: 459: 397: 368:will occur at a lower 362: 335: 299: 214:internal gravity waves 209: 47: 39: 1516:Mesoscale meteorology 1272:– accessed 2009-11-03 1019:Warren Blier (1998). 870:Understanding the Sky 714:atmospheric inversion 698: 599:Mountain Wave Project 581:mountain ranges. The 441: 398: 363: 361:{\displaystyle \phi } 343:potential temperature 336: 300: 206: 45: 33: 1521:Mountain meteorology 1496:Atmospheric dynamics 1448:Mountain Meteorology 1439:Turner, B., (1979). 1432:Pielke, R., (2002). 1060:D. K. Lilly (1978). 687:or loss of control. 482:can form a cloud in 376: 352: 309: 238: 92:atmospheric pressure 1506:Gliding meteorology 1425:Nappo, C., (2002). 1370:2010AnGeo..28..587A 1358:Annales Geophysicae 1199:FAI gliding records 1078:1978JAtS...35...59L 1037:1978JAtS...35...59L 996:2003EaInt...7h...1R 955:2009WtFor..24...53G 914:2003WtFor..18..224G 179:; this is called a 1268:2016-03-03 at the 1204:2006-12-05 at the 984:Earth Interactions 701: 460: 393: 358: 331: 295: 210: 100:orthometric height 48: 40: 1327:978-3-9808838-2-5 1284:Technical Soaring 1218:"Fai Record File" 879:978-0-936310-10-7 820:Technical Soaring 742:Hydrostatic waves 670:Anchorage, Alaska 444:Bald Eagle Valley 293: 291: 264: 46:Lenticular clouds 36:Lenticular clouds 16:(Redirected from 1533: 1401: 1391: 1381: 1344: 1338: 1332: 1331: 1313: 1307: 1302: 1296: 1295: 1279: 1273: 1261: 1255: 1250: 1244: 1239: 1233: 1232: 1230: 1229: 1220:. Archived from 1214: 1208: 1196: 1190: 1189: 1163: 1157: 1156: 1144: 1134: 1128: 1127: 1121: 1116: 1114: 1106: 1098: 1092: 1091: 1089: 1057: 1051: 1050: 1048: 1016: 1010: 1009: 1007: 975: 969: 968: 966: 934: 928: 927: 925: 893: 887: 886: 865: 852: 851: 849: 848: 838: 832: 831: 815: 809: 793: 402: 400: 399: 394: 392: 367: 365: 364: 359: 340: 338: 337: 332: 321: 320: 304: 302: 301: 296: 294: 292: 290: 282: 281: 280: 267: 265: 263: 262: 250: 248: 222:neutral buoyancy 173:axis of rotation 76:Hans Deutschmann 21: 1541: 1540: 1536: 1535: 1534: 1532: 1531: 1530: 1486: 1485: 1457: 1408: 1406:Further reading 1351: 1348: 1347: 1339: 1335: 1328: 1315: 1314: 1310: 1303: 1299: 1281: 1280: 1276: 1270:Wayback Machine 1262: 1258: 1251: 1247: 1240: 1236: 1227: 1225: 1216: 1215: 1211: 1206:Wayback Machine 1197: 1193: 1186: 1165: 1164: 1160: 1153: 1136: 1135: 1131: 1117: 1107: 1100: 1099: 1095: 1059: 1058: 1054: 1018: 1017: 1013: 977: 976: 972: 936: 935: 931: 895: 894: 890: 880: 867: 866: 855: 846: 844: 840: 839: 835: 817: 816: 812: 794: 790: 785: 768: 693: 668:cargo jet near 647:BOAC Flight 911 548: 503:cumulus fractus 456:Allegheny Front 450:as seen from a 436: 374: 373: 350: 349: 312: 307: 306: 283: 272: 268: 254: 236: 235: 201: 112:orographic lift 84:Giant Mountains 28: 23: 22: 15: 12: 11: 5: 1539: 1537: 1529: 1528: 1523: 1518: 1513: 1508: 1503: 1498: 1488: 1487: 1484: 1483: 1478: 1473: 1468: 1463: 1456: 1455:External links 1453: 1452: 1451: 1444: 1437: 1430: 1423: 1416: 1407: 1404: 1403: 1402: 1364:(2): 587–595. 1346: 1345: 1333: 1326: 1308: 1297: 1274: 1256: 1245: 1242:Perlan Project 1234: 1209: 1191: 1184: 1158: 1151: 1129: 1120:|journal= 1093: 1052: 1031:(3): 702–716. 1011: 970: 929: 908:(2): 224–235. 888: 878: 853: 833: 810: 787: 786: 784: 781: 780: 779: 774: 767: 764: 763: 762: 754: 746: 739: 731:hydraulic jump 722: 721: 692: 689: 623: 622: 619: 616: 613: 583:Perlan Project 547: 544: 543: 542: 535:stratus clouds 521: 514: 507: 495: 435: 432: 428:group velocity 420:group velocity 391: 387: 384: 381: 357: 330: 327: 324: 319: 315: 289: 286: 279: 275: 271: 261: 257: 253: 246: 243: 200: 197: 124:mountain range 64:mountain waves 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1538: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1511:Gravity waves 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1493: 1491: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1458: 1454: 1449: 1445: 1442: 1438: 1435: 1431: 1428: 1424: 1421: 1417: 1414: 1410: 1409: 1405: 1399: 1395: 1390: 1385: 1380: 1375: 1371: 1367: 1363: 1359: 1355: 1350: 1349: 1342: 1337: 1334: 1329: 1323: 1319: 1312: 1309: 1306: 1301: 1298: 1293: 1289: 1285: 1278: 1275: 1271: 1267: 1264: 1260: 1257: 1254: 1249: 1246: 1243: 1238: 1235: 1224:on 2015-04-13 1223: 1219: 1213: 1210: 1207: 1203: 1200: 1195: 1192: 1187: 1185:9781935704256 1181: 1177: 1173: 1169: 1162: 1159: 1154: 1152:9780122835223 1148: 1143: 1142: 1133: 1130: 1125: 1112: 1104: 1097: 1094: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1047: 1042: 1038: 1034: 1030: 1026: 1022: 1015: 1012: 1006: 1001: 997: 993: 989: 985: 981: 974: 971: 965: 960: 956: 952: 948: 944: 940: 933: 930: 924: 919: 915: 911: 907: 903: 899: 892: 889: 885: 881: 875: 871: 864: 862: 860: 858: 854: 843: 837: 834: 829: 825: 821: 814: 811: 807: 803: 799: 792: 789: 782: 778: 777:Nor'west arch 775: 773: 770: 769: 765: 760: 759: 755: 752: 751: 747: 743: 740: 737: 736:Sierra Nevada 732: 727: 724: 723: 719: 715: 711: 710: 706: 705: 704: 697: 690: 688: 686: 682: 678: 673: 671: 667: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 620: 617: 614: 611: 610: 609: 606: 604: 600: 596: 592: 591:stratospheric 588: 584: 580: 579:Southern Alps 576: 573: 569: 565: 564:Sierra Nevada 561: 557: 553: 545: 540: 536: 532: 529: 525: 522: 519: 515: 512: 508: 504: 500: 496: 493: 489: 485: 481: 478:of the wave, 477: 473: 472: 471: 469: 465: 457: 453: 449: 445: 440: 433: 431: 429: 425: 421: 416: 414: 410: 406: 389: 385: 382: 379: 371: 355: 346: 344: 325: 317: 313: 287: 284: 277: 273: 269: 259: 255: 251: 244: 241: 233: 231: 227: 223: 219: 215: 205: 198: 196: 194: 188: 186: 182: 178: 174: 170: 167: 163: 159: 155: 151: 146: 144: 140: 137: 133: 129: 125: 121: 118:blows over a 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 72:glider pilots 69: 68:gravity waves 65: 61: 57: 53: 44: 37: 32: 19: 1447: 1440: 1433: 1426: 1419: 1412: 1361: 1357: 1336: 1317: 1311: 1300: 1283: 1277: 1259: 1248: 1237: 1226:. Retrieved 1222:the original 1212: 1194: 1167: 1161: 1140: 1132: 1111:cite journal 1096: 1072:(1): 59–77. 1069: 1065: 1055: 1028: 1024: 1014: 987: 983: 973: 949:(1): 53–75. 946: 942: 932: 905: 901: 891: 883: 869: 845:. Retrieved 836: 819: 813: 805: 801: 797: 796:Wolf Hirth, 791: 772:Gravity wave 758:Rossby waves 756: 748: 741: 725: 707: 702: 674: 635:hang gliders 624: 607: 549: 492:lenticularis 461: 448:Pennsylvania 417: 347: 234: 211: 199:Basic theory 189: 180: 160:side of the 147: 143:cloud street 82:, above the 63: 55: 49: 1389:11336/61424 639:paragliders 474:Around the 446:of central 424:phase speed 226:oscillation 171:, with its 96:temperature 90:changes of 86:. They are 60:atmospheric 52:meteorology 1490:Categories 1228:2015-01-27 847:2006-09-28 783:References 709:Wind shear 666:Boeing 747 655:Mount Fuji 651:Boeing 707 587:tropopause 464:wave cloud 218:stratified 185:lapse rate 128:escarpment 80:Wolf Hirth 1398:0992-7689 1292:0744-8996 828:0744-8996 681:overspeed 677:lee waves 672:in 1993. 595:Argentina 572:Patagonic 528:evaporate 468:dew point 390:ϕ 386:⁡ 370:frequency 356:ϕ 314:θ 274:θ 256:θ 166:turbulent 154:direction 114:when the 56:lee waves 18:Lee waves 1266:Archived 1202:Archived 990:(8): 1. 766:See also 718:thermals 631:balloons 629:such as 627:aircraft 556:altitude 554:to gain 546:Aviation 413:buoyancy 409:pressure 305:, where 120:mountain 88:periodic 1526:Sailing 1501:Cumulus 1366:Bibcode 1074:Bibcode 1033:Bibcode 992:Bibcode 951:Bibcode 910:Bibcode 653:, near 601:of the 560:soaring 552:gliders 539:airmass 537:in the 531:cumulus 499:cumulus 162:terrain 139:updraft 136:thermal 132:plateau 104:current 1396:  1324:  1290:  1182:  1149:  876:  826:  577:, and 518:pileus 452:glider 434:Clouds 177:trough 169:vortex 685:stall 659:Japan 575:Andes 511:foehn 486:of a 484:shape 476:crest 405:phase 181:rotor 150:speed 102:in a 1394:ISSN 1322:ISBN 1288:ISSN 1180:ISBN 1147:ISBN 1124:help 874:ISBN 824:ISSN 649:, a 637:and 568:Alps 488:lens 152:and 116:wind 98:and 78:and 58:are 1384:hdl 1374:doi 1172:doi 1082:doi 1041:doi 1000:doi 959:doi 918:doi 533:or 501:or 430:). 383:cos 372:of 158:lee 141:or 130:or 122:or 108:air 106:of 50:In 1492:: 1392:. 1382:. 1372:. 1362:28 1360:. 1356:. 1178:. 1115:: 1113:}} 1109:{{ 1080:. 1070:35 1068:. 1064:. 1039:. 1029:13 1027:. 1023:. 998:. 986:. 982:. 957:. 947:24 945:. 941:. 916:. 906:18 904:. 900:. 882:. 856:^ 806:25 804:, 683:, 657:, 633:, 570:, 566:, 516:A 509:A 345:. 145:. 94:, 74:, 54:, 1400:. 1386:: 1376:: 1368:: 1330:. 1294:. 1231:. 1188:. 1174:: 1155:. 1126:) 1122:( 1090:. 1084:: 1076:: 1049:. 1043:: 1035:: 1008:. 1002:: 994:: 988:7 967:. 961:: 953:: 926:. 920:: 912:: 850:. 830:. 490:( 380:N 329:) 326:z 323:( 318:0 288:z 285:d 278:0 270:d 260:0 252:g 245:= 242:N 20:)

Index

Lee waves

Lenticular clouds

meteorology
atmospheric
gravity waves
glider pilots
Hans Deutschmann
Wolf Hirth
Giant Mountains
periodic
atmospheric pressure
temperature
orthometric height
current
air
orographic lift
wind
mountain
mountain range
escarpment
plateau
thermal
updraft
cloud street
speed
direction
lee
terrain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑