Knowledge (XXG)

Lie algebra cohomology

Source đź“ť

2635: 2234: 2630:{\displaystyle {\begin{aligned}(df)\left(x_{1},\ldots ,x_{n+1}\right)=&\sum _{i}(-1)^{i+1}x_{i}\,f\left(x_{1},\ldots ,{\hat {x}}_{i},\ldots ,x_{n+1}\right)+\\&\sum _{i<j}(-1)^{i+j}f\left(\left,x_{1},\ldots ,{\hat {x}}_{i},\ldots ,{\hat {x}}_{j},\ldots ,x_{n+1}\right)\,,\end{aligned}}} 149:
The construction of this differential on an exterior algebra makes sense for any Lie algebra, so it is used to define Lie algebra cohomology for all Lie algebras. More generally one uses a similar construction to define Lie algebra cohomology with coefficients in a module.
3206: 4717: 3338: 1416: 580: 3644: 1721: 682: 474: 5002: 1905: 1304: 2935: 1794: 936: 2865: 1184: 755: 221:. The reason for this is that the passage from the complex of all differential forms to the complex of left-invariant differential forms uses an averaging process that only makes sense for compact groups. 1113: 4666: 2239: 4871: 4552: 4452: 3093: 4034: 2753: 3722: 4827: 3583: 4946: 2003: 1598: 1529: 3225: 2788: 5075: 3077: 110:
Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra. This can be done as follows. Its cohomology is the
1337: 1215: 4759: 2101: 1963: 1558: 1445: 4650: 4601: 4313: 3013: 347: 288: 4370: 3963: 3790: 3746: 3037: 2959: 2684: 2129: 2064: 1818: 1642: 1469: 1328: 1239: 1137: 1027: 963: 846: 802: 493: 375: 320: 251: 199: 3915: 5196: 3447: 142:. The left-invariant forms, meanwhile, are determined by their values at the identity, so that the space of left-invariant differential forms can be identified with the 4343: 3597: 4490: 2040: 1647: 4516: 3488: 591: 383: 4200: 4113: 2204: 3992: 4416: 2227: 4621: 4572: 4260: 4153: 4133: 4081: 4058: 3939: 3874: 3850: 3830: 3810: 3766: 3667: 3531: 3511: 3382: 3362: 2979: 2704: 2660: 2172: 2152: 1925: 1838: 1618: 1489: 1067: 1047: 1003: 983: 866: 822: 219: 171: 136: 104: 4240: 4951: 765: 1843: 1247: 2870: 1729: 877: 5295: 5262: 4554:. In light of the de-Rham correspondence, this shows the importance of the compact assumption, as this is the first cohomology group of the 2796: 761: 1142: 701: 1072: 5094: 2686:, the Chevalley–Eilenberg complex may also be canonically identified with the space of left-invariant forms with values in 5205: 5005: 2755:. The Chevalley–Eilenberg differential may then be thought of as a restriction of the covariant derivative on the trivial 139: 5327: 5322: 261: 5024: 3201:{\displaystyle H^{0}({\mathfrak {g}};M)=M^{\mathfrak {g}}=\{m\in M\mid xm=0\ {\text{ for all }}x\in {\mathfrak {g}}\}.} 1139:
is finitely generated as vector space, the Chevalley–Eilenberg complex is canonically isomorphic to the tensor product
4839: 2006: 4521: 4421: 5287: 5123: 295: 75: 3997: 2709: 1331: 4712:{\displaystyle 0\rightarrow {\mathfrak {h}}\rightarrow {\mathfrak {e}}\rightarrow {\mathfrak {g}}\rightarrow 0.} 3675: 4768: 3333:{\displaystyle H^{1}({\mathfrak {g}};M)=\mathrm {Der} ({\mathfrak {g}},M)/\mathrm {Ider} ({\mathfrak {g}},M)\,} 2791: 3917:, as mentioned earlier the Chevalley–Eilenberg complex coincides with the de-Rham complex for a corresponding 3542: 4878: 1968: 1563: 1494: 2761: 1411:{\displaystyle d_{\mathfrak {g}}^{(1)}\colon {\mathfrak {g}}^{*}\rightarrow \Lambda ^{2}{\mathfrak {g}}^{*}} 3046: 5167: 107: 1189: 5332: 4720: 4658: 3589: 575:{\displaystyle M\mapsto M^{\mathfrak {g}}:=\{m\in M\mid xm=0\ {\text{ for all }}x\in {\mathfrak {g}}\}.} 4734: 3087:
The zeroth cohomology group is (by definition) the invariants of the Lie algebra acting on the module:
2069: 1930: 1534: 1421: 4626: 4577: 4268: 2984: 325: 266: 5159: 4351: 3944: 3853: 3771: 3727: 3018: 2940: 2665: 2110: 2045: 1799: 1623: 1450: 1309: 1220: 1118: 1008: 944: 827: 783: 356: 301: 232: 180: 5172: 3892: 4719:
Finite dimensional, simple Lie algebras only have trivial central extensions: a proof is provided
5227: 5149: 4316: 3639:{\displaystyle 0\rightarrow M\rightarrow {\mathfrak {h}}\rightarrow {\mathfrak {g}}\rightarrow 0} 3040: 769: 111: 3390: 1716:{\displaystyle k\sim \Lambda ^{0}{\mathfrak {g}}^{*}\subseteq \mathrm {Ker} (d_{\mathfrak {g}})} 691:
for the definition of Tor), which is equivalent to the left derived functors of the right exact
4322: 677:{\displaystyle \mathrm {H} _{n}({\mathfrak {g}};M):=\mathrm {Tor} _{n}^{U{\mathfrak {g}}}(R,M)} 469:{\displaystyle \mathrm {H} ^{n}({\mathfrak {g}};M):=\mathrm {Ext} _{U{\mathfrak {g}}}^{n}(R,M)} 5291: 5258: 5219: 5066: 115: 55: 4457: 2012: 5279: 5209: 5191: 5187: 5084: 4495: 3458: 143: 67: 63: 5305: 5272: 5239: 4158: 4086: 2177: 5301: 5268: 5254: 5235: 3968: 2104: 484: 59: 5163: 4375: 2209: 5115: 5044: 5018: 4762: 4606: 4557: 4245: 4138: 4118: 4066: 4043: 3924: 3859: 3835: 3815: 3795: 3751: 3652: 3516: 3496: 3367: 3347: 2964: 2689: 2645: 2157: 2137: 1910: 1823: 1603: 1474: 1052: 1032: 988: 968: 851: 807: 204: 156: 121: 89: 47: 4657:
Second cohomology: The second cohomology group is the space of equivalence classes of
4205: 5316: 4997:{\displaystyle {\text{ad}}:{\mathfrak {g}}\rightarrow {\text{End}}({\mathfrak {g}}).} 4454:
is in fact a derivation, and the set of inner derivations is trivial as they satisfy
17: 5246: 5137: 2756: 254: 43: 5070: 1900:{\displaystyle d_{\gamma }^{(0)}\colon M\rightarrow M\otimes {\mathfrak {g}}^{*}} 692: 688: 480: 31: 5253:, Graduate Texts in Mathematics, vol. 4 (2nd ed.), Berlin, New York: 1531:
according to the graded Leibniz rule. It follows from the Jacobi identity that
39: 5223: 4345:, so the space of derivations is trivial, so the first cohomology is trivial. 3039:, the Chevalley–Eilenberg differential coincides with the restriction of the 1299:{\displaystyle \colon \Lambda ^{2}{\mathfrak {g}}\rightarrow {\mathfrak {g}}} 138:. Using an averaging process, this complex can be replaced by the complex of 5140:; Crans, Alissa S. (2004). "Higher-dimensional algebra VI: Lie 2-algebras". 2930:{\displaystyle \gamma \in \mathrm {Hom} ({\mathfrak {g}},\mathrm {End} (M))} 1789:{\displaystyle \gamma \in \mathrm {Hom} ({\mathfrak {g}},\mathrm {End} (M))} 51: 5047:(1929). "Sur les invariants intégraux de certains espaces homogènes clos". 760:
Some important basic results about the cohomology of Lie algebras include
931:{\displaystyle \mathrm {Hom} _{k}(\Lambda ^{\bullet }{\mathfrak {g}},M)} 5231: 5089: 2860:{\displaystyle {\tilde {\gamma }}\in \Omega ^{1}(G,\mathrm {End} (M))} 5154: 5214: 177:
Lie group, the Lie algebra cohomology of the associated Lie algebra
1179:{\displaystyle M\otimes \Lambda ^{\bullet }{\mathfrak {g}}^{*}} 750:{\displaystyle M\mapsto M_{\mathfrak {g}}:=M/{\mathfrak {g}}M.} 483:
for the definition of Ext). Equivalently, these are the right
3724:
gives an equivalence class of ways to extend the Lie algebra
5194:(1948), "Cohomology theory of Lie groups and Lie algebras", 1418:
by duality. The latter is sufficient to define a derivation
62:
to properties of the Lie algebra. It was later extended by
201:
does not necessarily reproduce the de Rham cohomology of
1108:{\displaystyle f\colon \Lambda ^{n}{\mathfrak {g}}\to M} 3079:
to the subspace of left-invariant differential forms.
4954: 4881: 4875:
First cohomology: the inner derivations are given by
4842: 4771: 4737: 4669: 4629: 4609: 4580: 4560: 4524: 4498: 4460: 4424: 4378: 4354: 4325: 4271: 4248: 4208: 4161: 4141: 4121: 4089: 4069: 4046: 4000: 3971: 3947: 3927: 3895: 3862: 3838: 3818: 3798: 3774: 3754: 3730: 3678: 3655: 3600: 3545: 3519: 3499: 3461: 3393: 3370: 3350: 3228: 3096: 3049: 3021: 2987: 2967: 2943: 2873: 2799: 2764: 2712: 2692: 2668: 2648: 2237: 2212: 2180: 2160: 2140: 2113: 2072: 2048: 2015: 1971: 1933: 1913: 1846: 1826: 1802: 1732: 1650: 1626: 1606: 1566: 1537: 1497: 1477: 1453: 1424: 1340: 1312: 1250: 1223: 1192: 1145: 1121: 1075: 1055: 1035: 1011: 991: 971: 947: 880: 854: 830: 810: 786: 704: 594: 496: 386: 359: 328: 304: 269: 235: 207: 183: 159: 124: 92: 4603:
can also be viewed as an abelian group of dimension
585:
Analogously, one can define Lie algebra homology as
4996: 4940: 4865: 4821: 4753: 4711: 4644: 4615: 4595: 4566: 4546: 4518:. Then the first cohomology group in this case is 4510: 4484: 4446: 4410: 4364: 4337: 4307: 4254: 4234: 4194: 4147: 4127: 4107: 4075: 4052: 4028: 3986: 3957: 3933: 3909: 3868: 3844: 3824: 3804: 3784: 3760: 3740: 3716: 3661: 3638: 3577: 3525: 3505: 3482: 3441: 3376: 3356: 3332: 3200: 3071: 3031: 3007: 2973: 2953: 2929: 2859: 2782: 2747: 2698: 2678: 2654: 2639:where the caret signifies omitting that argument. 2629: 2221: 2198: 2166: 2146: 2123: 2095: 2058: 2034: 1997: 1957: 1919: 1899: 1832: 1812: 1788: 1715: 1636: 1612: 1592: 1552: 1523: 1483: 1463: 1439: 1410: 1322: 1298: 1233: 1209: 1178: 1131: 1107: 1061: 1041: 1021: 997: 977: 957: 930: 860: 840: 816: 796: 749: 676: 574: 468: 369: 341: 314: 282: 245: 213: 193: 165: 146:of the Lie algebra, with a suitable differential. 130: 98: 71: 5197:Transactions of the American Mathematical Society 2042:following from the Lie algebra homomorphism from 4866:{\displaystyle {\mathfrak {z}}({\mathfrak {g}})} 1600:and is in fact a differential. In this setting, 5049:Annales de la SociĂ©tĂ© Polonaise de MathĂ©matique 4547:{\displaystyle M^{{\text{dim}}{\mathfrak {g}}}} 3672:Similarly, any element of the cohomology group 5071:"Homologie et cohomologie des algèbres de Lie" 4447:{\displaystyle D:{\mathfrak {g}}\rightarrow M} 487:of the left exact invariant submodule functor 5076:Bulletin de la SociĂ©tĂ© MathĂ©matique de France 3856:with nonzero terms only in degrees 0 through 8: 3192: 3144: 566: 518: 5004:The first cohomology group is the space of 4029:{\displaystyle x\in {\mathfrak {g}},a\in M} 2748:{\displaystyle \Omega ^{\bullet }(G,M)^{G}} 3717:{\displaystyle H^{n+1}({\mathfrak {g}};M)} 5213: 5171: 5153: 5088: 4982: 4981: 4973: 4964: 4963: 4955: 4953: 4921: 4880: 4854: 4853: 4844: 4843: 4841: 4822:{\displaystyle x\cdot y=={\text{ad}}(x)y} 4802: 4770: 4745: 4744: 4736: 4697: 4696: 4687: 4686: 4677: 4676: 4668: 4636: 4632: 4631: 4628: 4608: 4587: 4583: 4582: 4579: 4559: 4536: 4535: 4530: 4529: 4523: 4497: 4459: 4432: 4431: 4423: 4393: 4392: 4383: 4382: 4377: 4356: 4355: 4353: 4324: 4299: 4298: 4286: 4285: 4276: 4275: 4270: 4247: 4223: 4222: 4213: 4212: 4207: 4160: 4140: 4120: 4088: 4068: 4045: 4008: 4007: 3999: 3970: 3949: 3948: 3946: 3926: 3903: 3902: 3894: 3861: 3837: 3817: 3797: 3776: 3775: 3773: 3753: 3732: 3731: 3729: 3699: 3698: 3683: 3677: 3654: 3624: 3623: 3614: 3613: 3599: 3560: 3559: 3550: 3544: 3518: 3498: 3460: 3392: 3369: 3349: 3329: 3314: 3313: 3296: 3291: 3276: 3275: 3261: 3243: 3242: 3233: 3227: 3186: 3185: 3174: 3134: 3133: 3111: 3110: 3101: 3095: 3054: 3048: 3023: 3022: 3020: 3001: 3000: 2986: 2966: 2945: 2944: 2942: 2904: 2895: 2894: 2880: 2872: 2834: 2819: 2801: 2800: 2798: 2763: 2739: 2717: 2711: 2691: 2670: 2669: 2667: 2647: 2619: 2602: 2583: 2572: 2571: 2555: 2544: 2543: 2527: 2509: 2496: 2467: 2442: 2411: 2392: 2381: 2380: 2364: 2351: 2345: 2329: 2310: 2282: 2263: 2238: 2236: 2211: 2179: 2159: 2139: 2115: 2114: 2112: 2073: 2071: 2050: 2049: 2047: 2020: 2014: 1983: 1977: 1976: 1970: 1943: 1938: 1932: 1912: 1891: 1885: 1884: 1856: 1851: 1845: 1825: 1804: 1803: 1801: 1763: 1754: 1753: 1739: 1731: 1703: 1702: 1684: 1675: 1669: 1668: 1661: 1649: 1628: 1627: 1625: 1605: 1578: 1572: 1571: 1565: 1543: 1542: 1536: 1509: 1503: 1502: 1496: 1476: 1455: 1454: 1452: 1430: 1429: 1423: 1402: 1396: 1395: 1388: 1375: 1369: 1368: 1352: 1346: 1345: 1339: 1314: 1313: 1311: 1290: 1289: 1280: 1279: 1273: 1249: 1225: 1224: 1222: 1201: 1195: 1194: 1191: 1170: 1164: 1163: 1156: 1144: 1123: 1122: 1120: 1093: 1092: 1086: 1074: 1054: 1034: 1013: 1012: 1010: 990: 970: 949: 948: 946: 913: 912: 906: 893: 882: 879: 853: 832: 831: 829: 809: 788: 787: 785: 735: 734: 729: 716: 715: 703: 651: 650: 646: 641: 630: 611: 610: 601: 596: 593: 560: 559: 548: 508: 507: 495: 445: 438: 437: 433: 422: 403: 402: 393: 388: 385: 361: 360: 358: 333: 332: 327: 306: 305: 303: 274: 273: 268: 237: 236: 234: 206: 185: 184: 182: 158: 123: 91: 5284:Lie groups, Lie algebras, and cohomology 3578:{\displaystyle H^{2}({\mathfrak {g}};M)} 3211:The first cohomology group is the space 1927:is then the unique derivation extending 5036: 4941:{\displaystyle Dx=xy==-{\text{ad}}(y)x} 4574:-torus viewed as an abelian group, and 3588:is the space of equivalence classes of 3452:and is called inner if it is given by 3015:is equipped with the trivial action of 1998:{\displaystyle d_{\mathfrak {g}}^{(1)}} 1907:. The Chevalley–Eilenberg differential 1593:{\displaystyle d_{\mathfrak {g}}^{2}=0} 1524:{\displaystyle d_{\mathfrak {g}}^{(1)}} 5120:An introduction to homological algebra 2783:{\displaystyle G\times M\rightarrow G} 5142:Theory and Applications of Categories 4948:, so they are precisely the image of 4063:First cohomology: given a derivation 3072:{\displaystyle \Omega ^{\bullet }(G)} 2662:is a real Lie group with Lie algebra 58:by relating cohomological methods of 46:. It was first introduced in 1929 by 7: 5286:, Mathematical Notes, vol. 34, 2134:Explicitly, the differential of the 377:, one defines the cohomology groups 4983: 4965: 4855: 4845: 4833:The zeroth cohomology group is the 4746: 4698: 4688: 4678: 4537: 4433: 4394: 4384: 4357: 4300: 4287: 4277: 4224: 4214: 4009: 3950: 3777: 3733: 3700: 3625: 3615: 3561: 3315: 3277: 3244: 3187: 3135: 3112: 3024: 2946: 2896: 2671: 2116: 2051: 1978: 1886: 1805: 1755: 1704: 1670: 1629: 1573: 1544: 1504: 1456: 1431: 1397: 1370: 1347: 1315: 1291: 1281: 1226: 1210:{\displaystyle {\mathfrak {g}}^{*}} 1196: 1165: 1124: 1094: 1014: 950: 914: 833: 789: 736: 717: 652: 612: 561: 509: 439: 404: 362: 334: 307: 275: 255:Lie algebra over a commutative ring 238: 186: 4202:for all commutators, so the ideal 3306: 3303: 3300: 3297: 3268: 3265: 3262: 3051: 2911: 2908: 2905: 2887: 2884: 2881: 2841: 2838: 2835: 2816: 2714: 2080: 2077: 2074: 1770: 1767: 1764: 1746: 1743: 1740: 1691: 1688: 1685: 1658: 1385: 1270: 1153: 1083: 903: 889: 886: 883: 637: 634: 631: 597: 429: 426: 423: 389: 74:) to coefficients in an arbitrary 27:Cohomology theory for Lie algebras 25: 4754:{\displaystyle M={\mathfrak {g}}} 3649:of the Lie algebra by the module 3215:of derivations modulo the space 2096:{\displaystyle \mathrm {End} (M)} 1958:{\displaystyle d_{\gamma }^{(0)}} 1553:{\displaystyle d_{\mathfrak {g}}} 1440:{\displaystyle d_{\mathfrak {g}}} 1217:denotes the dual vector space of 140:left-invariant differential forms 4727:Cohomology on the adjoint module 4645:{\displaystyle \mathbb {R} ^{n}} 4596:{\displaystyle \mathbb {R} ^{n}} 4308:{\displaystyle ={\mathfrak {g}}} 3885:Cohomology on the trivial module 3008:{\displaystyle M=k=\mathbb {R} } 2867:associated with the left action 2790:, equipped with the equivariant 1840:and regard it as an application 1723:may be thought of as constants. 1447:of the complex of cochains from 342:{\displaystyle U{\mathfrak {g}}} 283:{\displaystyle U{\mathfrak {g}}} 5251:A course in homological algebra 5097:from the original on 2019-04-21 4365:{\displaystyle {\mathfrak {g}}} 4040:The zeroth cohomology group is 3958:{\displaystyle {\mathfrak {g}}} 3785:{\displaystyle {\mathfrak {g}}} 3741:{\displaystyle {\mathfrak {g}}} 3032:{\displaystyle {\mathfrak {g}}} 2981:. In the particular case where 2954:{\displaystyle {\mathfrak {g}}} 2679:{\displaystyle {\mathfrak {g}}} 2124:{\displaystyle {\mathfrak {g}}} 2059:{\displaystyle {\mathfrak {g}}} 1813:{\displaystyle {\mathfrak {g}}} 1637:{\displaystyle {\mathfrak {g}}} 1464:{\displaystyle {\mathfrak {g}}} 1323:{\displaystyle {\mathfrak {g}}} 1234:{\displaystyle {\mathfrak {g}}} 1132:{\displaystyle {\mathfrak {g}}} 1022:{\displaystyle {\mathfrak {g}}} 958:{\displaystyle {\mathfrak {g}}} 841:{\displaystyle {\mathfrak {g}}} 797:{\displaystyle {\mathfrak {g}}} 370:{\displaystyle {\mathfrak {g}}} 353:as a trivial representation of 315:{\displaystyle {\mathfrak {g}}} 246:{\displaystyle {\mathfrak {g}}} 194:{\displaystyle {\mathfrak {g}}} 4988: 4978: 4970: 4932: 4926: 4912: 4900: 4860: 4850: 4813: 4807: 4796: 4784: 4703: 4693: 4683: 4673: 4438: 4399: 4379: 4292: 4272: 4242:is contained in the kernel of 4229: 4209: 4183: 4180: 4168: 4165: 3941:carries the trivial action of 3910:{\displaystyle M=\mathbb {R} } 3711: 3695: 3630: 3620: 3610: 3604: 3572: 3556: 3409: 3397: 3326: 3310: 3288: 3272: 3255: 3239: 3123: 3107: 3083:Cohomology in small dimensions 3066: 3060: 2924: 2921: 2915: 2891: 2854: 2851: 2845: 2825: 2806: 2774: 2736: 2723: 2577: 2549: 2464: 2454: 2386: 2326: 2316: 2251: 2242: 2193: 2181: 2090: 2084: 1990: 1984: 1950: 1944: 1874: 1863: 1857: 1783: 1780: 1774: 1750: 1710: 1695: 1516: 1510: 1381: 1359: 1353: 1286: 1263: 1251: 1099: 925: 899: 804:be a Lie algebra over a field 708: 671: 659: 623: 607: 500: 463: 451: 415: 399: 1: 5206:American Mathematical Society 4418:, then any linear functional 3536:The second cohomology group 3344:where a derivation is a map 824:, with a left action on the 262:universal enveloping algebra 2009:, the nilpotency condition 1796:denote the left action of 870:Chevalley–Eilenberg complex 776:Chevalley–Eilenberg complex 5349: 5288:Princeton University Press 5124:Cambridge University Press 3442:{\displaystyle d=xdy-ydx~} 5249:; Stammbach, Urs (1997), 4338:{\displaystyle D\equiv 0} 4155:, so derivations satisfy 941:are called cochains from 50:to study the topology of 3921:Lie group. In this case 3364:from the Lie algebra to 5204:(1), Providence, R.I.: 5025:Gelfand–Fuks cohomology 5021:in theoretical physics. 4652:has trivial cohomology. 4485:{\displaystyle Dx=xa=0} 2035:{\displaystyle d^{2}=0} 1620:is viewed as a trivial 1049:is thus an alternating 4998: 4942: 4867: 4823: 4755: 4713: 4646: 4617: 4597: 4568: 4548: 4512: 4511:{\displaystyle a\in M} 4486: 4448: 4412: 4366: 4339: 4309: 4256: 4236: 4196: 4149: 4129: 4109: 4077: 4054: 4030: 3988: 3959: 3935: 3911: 3870: 3846: 3826: 3806: 3786: 3762: 3742: 3718: 3663: 3640: 3590:Lie algebra extensions 3579: 3527: 3507: 3484: 3483:{\displaystyle dx=xa~} 3443: 3378: 3358: 3334: 3202: 3073: 3033: 3009: 2975: 2955: 2931: 2861: 2784: 2749: 2700: 2680: 2656: 2631: 2223: 2200: 2168: 2148: 2125: 2097: 2060: 2036: 1999: 1959: 1921: 1901: 1834: 1814: 1790: 1717: 1638: 1614: 1594: 1554: 1525: 1485: 1465: 1441: 1412: 1324: 1300: 1235: 1211: 1180: 1133: 1109: 1069:-multilinear function 1063: 1043: 1023: 999: 979: 959: 932: 868:. The elements of the 862: 842: 818: 798: 751: 678: 576: 470: 371: 349:-module). Considering 343: 316: 284: 247: 215: 195: 173:is a simply connected 167: 132: 100: 36:Lie algebra cohomology 4999: 4943: 4868: 4824: 4756: 4714: 4647: 4618: 4598: 4569: 4549: 4513: 4487: 4449: 4413: 4372:is abelian, that is, 4367: 4340: 4315:, as is the case for 4310: 4257: 4237: 4197: 4195:{\displaystyle D()=0} 4150: 4130: 4110: 4108:{\displaystyle xDy=0} 4078: 4055: 4031: 3989: 3960: 3936: 3912: 3871: 3847: 3827: 3807: 3787: 3763: 3743: 3719: 3664: 3641: 3580: 3528: 3508: 3485: 3444: 3379: 3359: 3335: 3219:of inner derivations 3203: 3074: 3034: 3010: 2976: 2956: 2932: 2862: 2785: 2750: 2701: 2681: 2657: 2632: 2224: 2201: 2199:{\displaystyle (n+1)} 2169: 2149: 2126: 2098: 2061: 2037: 2000: 1960: 1922: 1902: 1835: 1815: 1791: 1718: 1639: 1615: 1595: 1555: 1526: 1486: 1466: 1442: 1413: 1325: 1301: 1236: 1212: 1181: 1134: 1110: 1064: 1044: 1024: 1000: 980: 960: 933: 863: 843: 819: 799: 752: 679: 577: 471: 372: 344: 317: 285: 248: 216: 196: 168: 133: 101: 4952: 4879: 4840: 4769: 4761:, the action is the 4735: 4667: 4627: 4607: 4578: 4558: 4522: 4496: 4458: 4422: 4376: 4352: 4323: 4269: 4246: 4206: 4159: 4139: 4119: 4087: 4067: 4044: 3998: 3987:{\displaystyle xa=0} 3969: 3945: 3925: 3893: 3860: 3854:homotopy Lie algebra 3836: 3816: 3796: 3772: 3752: 3728: 3676: 3653: 3598: 3543: 3517: 3497: 3459: 3391: 3368: 3348: 3226: 3094: 3047: 3041:de Rham differential 3019: 2985: 2965: 2941: 2871: 2797: 2762: 2710: 2690: 2666: 2646: 2235: 2210: 2178: 2158: 2138: 2111: 2070: 2046: 2013: 1969: 1931: 1911: 1844: 1824: 1800: 1730: 1648: 1624: 1604: 1564: 1535: 1495: 1475: 1451: 1422: 1338: 1310: 1248: 1221: 1190: 1143: 1119: 1073: 1053: 1033: 1009: 989: 969: 945: 878: 852: 828: 808: 784: 702: 592: 494: 384: 357: 326: 302: 267: 233: 205: 181: 157: 122: 90: 64:Claude Chevalley 18:Lie algebra homology 5328:Homological algebra 5323:Cohomology theories 5164:2003math......7263B 4317:simple Lie algebras 3176: for all  2007:graded Leibniz rule 1994: 1954: 1867: 1583: 1520: 1363: 658: 550: for all  450: 5116:Weibel, Charles A. 5090:10.24033/bsmf.1410 5067:Koszul, Jean-Louis 4994: 4938: 4863: 4819: 4751: 4709: 4659:central extensions 4642: 4613: 4593: 4564: 4544: 4508: 4482: 4444: 4411:{\displaystyle =0} 4408: 4362: 4335: 4305: 4252: 4232: 4192: 4145: 4125: 4105: 4073: 4050: 4026: 3984: 3955: 3931: 3907: 3866: 3842: 3822: 3802: 3792:in grade zero and 3782: 3758: 3738: 3714: 3659: 3636: 3575: 3523: 3503: 3480: 3439: 3374: 3354: 3330: 3198: 3069: 3029: 3005: 2971: 2951: 2927: 2857: 2780: 2745: 2696: 2676: 2652: 2627: 2625: 2453: 2315: 2222:{\displaystyle df} 2219: 2196: 2164: 2144: 2121: 2093: 2056: 2032: 1995: 1972: 1955: 1934: 1917: 1897: 1847: 1830: 1810: 1786: 1713: 1634: 1610: 1590: 1567: 1550: 1521: 1498: 1481: 1461: 1437: 1408: 1341: 1320: 1296: 1231: 1207: 1176: 1129: 1105: 1059: 1039: 1019: 995: 975: 955: 928: 858: 838: 814: 794: 770:Levi decomposition 762:Whitehead's lemmas 747: 674: 629: 572: 466: 421: 367: 339: 312: 280: 243: 211: 191: 163: 128: 116:differential forms 114:of the complex of 112:de Rham cohomology 96: 56:homogeneous spaces 5297:978-0-691-08498-5 5280:Knapp, Anthony W. 5264:978-0-387-94823-2 5192:Eilenberg, Samuel 5188:Chevalley, Claude 5006:outer derivations 4976: 4958: 4924: 4805: 4616:{\displaystyle n} 4567:{\displaystyle n} 4533: 4255:{\displaystyle D} 4148:{\displaystyle y} 4128:{\displaystyle x} 4076:{\displaystyle D} 4053:{\displaystyle M} 3934:{\displaystyle M} 3869:{\displaystyle n} 3845:{\displaystyle n} 3825:{\displaystyle n} 3805:{\displaystyle M} 3761:{\displaystyle n} 3662:{\displaystyle M} 3526:{\displaystyle M} 3506:{\displaystyle a} 3479: 3438: 3377:{\displaystyle M} 3357:{\displaystyle d} 3177: 3173: 2974:{\displaystyle M} 2809: 2699:{\displaystyle M} 2655:{\displaystyle G} 2580: 2552: 2438: 2389: 2306: 2167:{\displaystyle f} 2147:{\displaystyle n} 2005:according to the 1920:{\displaystyle d} 1833:{\displaystyle M} 1613:{\displaystyle k} 1484:{\displaystyle k} 1062:{\displaystyle k} 1042:{\displaystyle M} 998:{\displaystyle n} 978:{\displaystyle M} 861:{\displaystyle M} 817:{\displaystyle k} 551: 547: 322:(equivalently, a 214:{\displaystyle G} 166:{\displaystyle G} 131:{\displaystyle G} 99:{\displaystyle G} 16:(Redirected from 5340: 5308: 5275: 5247:Hilton, Peter J. 5242: 5217: 5178: 5177: 5175: 5157: 5134: 5128: 5127: 5112: 5106: 5105: 5103: 5102: 5092: 5063: 5057: 5056: 5041: 5003: 5001: 5000: 4995: 4987: 4986: 4977: 4974: 4969: 4968: 4959: 4956: 4947: 4945: 4944: 4939: 4925: 4922: 4872: 4870: 4869: 4864: 4859: 4858: 4849: 4848: 4828: 4826: 4825: 4820: 4806: 4803: 4760: 4758: 4757: 4752: 4750: 4749: 4718: 4716: 4715: 4710: 4702: 4701: 4692: 4691: 4682: 4681: 4651: 4649: 4648: 4643: 4641: 4640: 4635: 4622: 4620: 4619: 4614: 4602: 4600: 4599: 4594: 4592: 4591: 4586: 4573: 4571: 4570: 4565: 4553: 4551: 4550: 4545: 4543: 4542: 4541: 4540: 4534: 4531: 4517: 4515: 4514: 4509: 4491: 4489: 4488: 4483: 4453: 4451: 4450: 4445: 4437: 4436: 4417: 4415: 4414: 4409: 4398: 4397: 4388: 4387: 4371: 4369: 4368: 4363: 4361: 4360: 4344: 4342: 4341: 4336: 4314: 4312: 4311: 4306: 4304: 4303: 4291: 4290: 4281: 4280: 4261: 4259: 4258: 4253: 4241: 4239: 4238: 4235:{\displaystyle } 4233: 4228: 4227: 4218: 4217: 4201: 4199: 4198: 4193: 4154: 4152: 4151: 4146: 4134: 4132: 4131: 4126: 4114: 4112: 4111: 4106: 4082: 4080: 4079: 4074: 4059: 4057: 4056: 4051: 4035: 4033: 4032: 4027: 4013: 4012: 3993: 3991: 3990: 3985: 3964: 3962: 3961: 3956: 3954: 3953: 3940: 3938: 3937: 3932: 3916: 3914: 3913: 3908: 3906: 3875: 3873: 3872: 3867: 3851: 3849: 3848: 3843: 3831: 3829: 3828: 3823: 3811: 3809: 3808: 3803: 3791: 3789: 3788: 3783: 3781: 3780: 3767: 3765: 3764: 3759: 3747: 3745: 3744: 3739: 3737: 3736: 3723: 3721: 3720: 3715: 3704: 3703: 3694: 3693: 3668: 3666: 3665: 3660: 3645: 3643: 3642: 3637: 3629: 3628: 3619: 3618: 3584: 3582: 3581: 3576: 3565: 3564: 3555: 3554: 3532: 3530: 3529: 3524: 3512: 3510: 3509: 3504: 3489: 3487: 3486: 3481: 3477: 3448: 3446: 3445: 3440: 3436: 3383: 3381: 3380: 3375: 3363: 3361: 3360: 3355: 3339: 3337: 3336: 3331: 3319: 3318: 3309: 3295: 3281: 3280: 3271: 3248: 3247: 3238: 3237: 3218: 3214: 3207: 3205: 3204: 3199: 3191: 3190: 3178: 3175: 3171: 3140: 3139: 3138: 3116: 3115: 3106: 3105: 3078: 3076: 3075: 3070: 3059: 3058: 3038: 3036: 3035: 3030: 3028: 3027: 3014: 3012: 3011: 3006: 3004: 2980: 2978: 2977: 2972: 2960: 2958: 2957: 2952: 2950: 2949: 2936: 2934: 2933: 2928: 2914: 2900: 2899: 2890: 2866: 2864: 2863: 2858: 2844: 2824: 2823: 2811: 2810: 2802: 2789: 2787: 2786: 2781: 2754: 2752: 2751: 2746: 2744: 2743: 2722: 2721: 2705: 2703: 2702: 2697: 2685: 2683: 2682: 2677: 2675: 2674: 2661: 2659: 2658: 2653: 2636: 2634: 2633: 2628: 2626: 2618: 2614: 2613: 2612: 2588: 2587: 2582: 2581: 2573: 2560: 2559: 2554: 2553: 2545: 2532: 2531: 2519: 2515: 2514: 2513: 2501: 2500: 2478: 2477: 2452: 2434: 2427: 2423: 2422: 2421: 2397: 2396: 2391: 2390: 2382: 2369: 2368: 2350: 2349: 2340: 2339: 2314: 2298: 2294: 2293: 2292: 2268: 2267: 2228: 2226: 2225: 2220: 2205: 2203: 2202: 2197: 2173: 2171: 2170: 2165: 2153: 2151: 2150: 2145: 2130: 2128: 2127: 2122: 2120: 2119: 2102: 2100: 2099: 2094: 2083: 2065: 2063: 2062: 2057: 2055: 2054: 2041: 2039: 2038: 2033: 2025: 2024: 2004: 2002: 2001: 1996: 1993: 1982: 1981: 1964: 1962: 1961: 1956: 1953: 1942: 1926: 1924: 1923: 1918: 1906: 1904: 1903: 1898: 1896: 1895: 1890: 1889: 1866: 1855: 1839: 1837: 1836: 1831: 1819: 1817: 1816: 1811: 1809: 1808: 1795: 1793: 1792: 1787: 1773: 1759: 1758: 1749: 1726:In general, let 1722: 1720: 1719: 1714: 1709: 1708: 1707: 1694: 1680: 1679: 1674: 1673: 1666: 1665: 1643: 1641: 1640: 1635: 1633: 1632: 1619: 1617: 1616: 1611: 1599: 1597: 1596: 1591: 1582: 1577: 1576: 1559: 1557: 1556: 1551: 1549: 1548: 1547: 1530: 1528: 1527: 1522: 1519: 1508: 1507: 1490: 1488: 1487: 1482: 1470: 1468: 1467: 1462: 1460: 1459: 1446: 1444: 1443: 1438: 1436: 1435: 1434: 1417: 1415: 1414: 1409: 1407: 1406: 1401: 1400: 1393: 1392: 1380: 1379: 1374: 1373: 1362: 1351: 1350: 1329: 1327: 1326: 1321: 1319: 1318: 1305: 1303: 1302: 1297: 1295: 1294: 1285: 1284: 1278: 1277: 1244:The Lie bracket 1240: 1238: 1237: 1232: 1230: 1229: 1216: 1214: 1213: 1208: 1206: 1205: 1200: 1199: 1185: 1183: 1182: 1177: 1175: 1174: 1169: 1168: 1161: 1160: 1138: 1136: 1135: 1130: 1128: 1127: 1114: 1112: 1111: 1106: 1098: 1097: 1091: 1090: 1068: 1066: 1065: 1060: 1048: 1046: 1045: 1040: 1028: 1026: 1025: 1020: 1018: 1017: 1004: 1002: 1001: 996: 985:. A homogeneous 984: 982: 981: 976: 964: 962: 961: 956: 954: 953: 937: 935: 934: 929: 918: 917: 911: 910: 898: 897: 892: 867: 865: 864: 859: 847: 845: 844: 839: 837: 836: 823: 821: 820: 815: 803: 801: 800: 795: 793: 792: 756: 754: 753: 748: 740: 739: 733: 722: 721: 720: 683: 681: 680: 675: 657: 656: 655: 645: 640: 616: 615: 606: 605: 600: 581: 579: 578: 573: 565: 564: 552: 549: 545: 514: 513: 512: 485:derived functors 475: 473: 472: 467: 449: 444: 443: 442: 432: 408: 407: 398: 397: 392: 376: 374: 373: 368: 366: 365: 348: 346: 345: 340: 338: 337: 321: 319: 318: 313: 311: 310: 289: 287: 286: 281: 279: 278: 252: 250: 249: 244: 242: 241: 220: 218: 217: 212: 200: 198: 197: 192: 190: 189: 172: 170: 169: 164: 144:exterior algebra 137: 135: 134: 129: 108:simply connected 105: 103: 102: 97: 68:Samuel Eilenberg 21: 5348: 5347: 5343: 5342: 5341: 5339: 5338: 5337: 5313: 5312: 5311: 5298: 5278: 5265: 5255:Springer-Verlag 5245: 5215:10.2307/1990637 5186: 5182: 5181: 5173:10.1.1.435.9259 5136: 5135: 5131: 5114: 5113: 5109: 5100: 5098: 5065: 5064: 5060: 5043: 5042: 5038: 5033: 5015: 4950: 4949: 4877: 4876: 4838: 4837: 4767: 4766: 4733: 4732: 4729: 4665: 4664: 4630: 4625: 4624: 4605: 4604: 4581: 4576: 4575: 4556: 4555: 4525: 4520: 4519: 4494: 4493: 4456: 4455: 4420: 4419: 4374: 4373: 4350: 4349: 4321: 4320: 4267: 4266: 4244: 4243: 4204: 4203: 4157: 4156: 4137: 4136: 4117: 4116: 4085: 4084: 4065: 4064: 4042: 4041: 3996: 3995: 3967: 3966: 3943: 3942: 3923: 3922: 3891: 3890: 3887: 3882: 3858: 3857: 3834: 3833: 3814: 3813: 3794: 3793: 3770: 3769: 3768:-algebra" with 3750: 3749: 3726: 3725: 3679: 3674: 3673: 3651: 3650: 3596: 3595: 3546: 3541: 3540: 3515: 3514: 3495: 3494: 3457: 3456: 3389: 3388: 3366: 3365: 3346: 3345: 3229: 3224: 3223: 3216: 3212: 3129: 3097: 3092: 3091: 3085: 3050: 3045: 3044: 3017: 3016: 2983: 2982: 2963: 2962: 2939: 2938: 2869: 2868: 2815: 2795: 2794: 2760: 2759: 2735: 2713: 2708: 2707: 2688: 2687: 2664: 2663: 2644: 2643: 2624: 2623: 2598: 2570: 2542: 2523: 2505: 2492: 2491: 2487: 2486: 2482: 2463: 2432: 2431: 2407: 2379: 2360: 2359: 2355: 2341: 2325: 2302: 2278: 2259: 2258: 2254: 2233: 2232: 2208: 2207: 2176: 2175: 2156: 2155: 2136: 2135: 2109: 2108: 2105:Jacobi identity 2068: 2067: 2044: 2043: 2016: 2011: 2010: 1967: 1966: 1929: 1928: 1909: 1908: 1883: 1842: 1841: 1822: 1821: 1798: 1797: 1728: 1727: 1698: 1667: 1657: 1646: 1645: 1622: 1621: 1602: 1601: 1562: 1561: 1538: 1533: 1532: 1493: 1492: 1473: 1472: 1449: 1448: 1425: 1420: 1419: 1394: 1384: 1367: 1336: 1335: 1308: 1307: 1269: 1246: 1245: 1219: 1218: 1193: 1188: 1187: 1162: 1152: 1141: 1140: 1117: 1116: 1082: 1071: 1070: 1051: 1050: 1031: 1030: 1007: 1006: 987: 986: 967: 966: 943: 942: 902: 881: 876: 875: 850: 849: 826: 825: 806: 805: 782: 781: 778: 711: 700: 699: 595: 590: 589: 503: 492: 491: 387: 382: 381: 355: 354: 324: 323: 300: 299: 265: 264: 231: 230: 227: 203: 202: 179: 178: 155: 154: 120: 119: 88: 87: 84: 60:Georges de Rham 28: 23: 22: 15: 12: 11: 5: 5346: 5344: 5336: 5335: 5330: 5325: 5315: 5314: 5310: 5309: 5296: 5276: 5263: 5243: 5183: 5180: 5179: 5129: 5126:. p. 240. 5107: 5058: 5035: 5034: 5032: 5029: 5028: 5027: 5022: 5019:BRST formalism 5014: 5011: 5010: 5009: 4993: 4990: 4985: 4980: 4972: 4967: 4962: 4937: 4934: 4931: 4928: 4920: 4917: 4914: 4911: 4908: 4905: 4902: 4899: 4896: 4893: 4890: 4887: 4884: 4873: 4862: 4857: 4852: 4847: 4818: 4815: 4812: 4809: 4801: 4798: 4795: 4792: 4789: 4786: 4783: 4780: 4777: 4774: 4763:adjoint action 4748: 4743: 4740: 4728: 4725: 4708: 4705: 4700: 4695: 4690: 4685: 4680: 4675: 4672: 4662: 4661: 4655: 4654: 4653: 4639: 4634: 4612: 4590: 4585: 4563: 4539: 4528: 4507: 4504: 4501: 4481: 4478: 4475: 4472: 4469: 4466: 4463: 4443: 4440: 4435: 4430: 4427: 4407: 4404: 4401: 4396: 4391: 4386: 4381: 4359: 4346: 4334: 4331: 4328: 4302: 4297: 4294: 4289: 4284: 4279: 4274: 4251: 4231: 4226: 4221: 4216: 4211: 4191: 4188: 4185: 4182: 4179: 4176: 4173: 4170: 4167: 4164: 4144: 4124: 4104: 4101: 4098: 4095: 4092: 4072: 4061: 4049: 4025: 4022: 4019: 4016: 4011: 4006: 4003: 3983: 3980: 3977: 3974: 3952: 3930: 3905: 3901: 3898: 3886: 3883: 3881: 3878: 3865: 3852:-algebra is a 3841: 3821: 3801: 3779: 3757: 3735: 3713: 3710: 3707: 3702: 3697: 3692: 3689: 3686: 3682: 3658: 3647: 3646: 3635: 3632: 3627: 3622: 3617: 3612: 3609: 3606: 3603: 3586: 3585: 3574: 3571: 3568: 3563: 3558: 3553: 3549: 3522: 3502: 3491: 3490: 3476: 3473: 3470: 3467: 3464: 3450: 3449: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3405: 3402: 3399: 3396: 3373: 3353: 3342: 3341: 3328: 3325: 3322: 3317: 3312: 3308: 3305: 3302: 3299: 3294: 3290: 3287: 3284: 3279: 3274: 3270: 3267: 3264: 3260: 3257: 3254: 3251: 3246: 3241: 3236: 3232: 3209: 3208: 3197: 3194: 3189: 3184: 3181: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3146: 3143: 3137: 3132: 3128: 3125: 3122: 3119: 3114: 3109: 3104: 3100: 3084: 3081: 3068: 3065: 3062: 3057: 3053: 3026: 3003: 2999: 2996: 2993: 2990: 2970: 2948: 2926: 2923: 2920: 2917: 2913: 2910: 2907: 2903: 2898: 2893: 2889: 2886: 2883: 2879: 2876: 2856: 2853: 2850: 2847: 2843: 2840: 2837: 2833: 2830: 2827: 2822: 2818: 2814: 2808: 2805: 2779: 2776: 2773: 2770: 2767: 2742: 2738: 2734: 2731: 2728: 2725: 2720: 2716: 2695: 2673: 2651: 2622: 2617: 2611: 2608: 2605: 2601: 2597: 2594: 2591: 2586: 2579: 2576: 2569: 2566: 2563: 2558: 2551: 2548: 2541: 2538: 2535: 2530: 2526: 2522: 2518: 2512: 2508: 2504: 2499: 2495: 2490: 2485: 2481: 2476: 2473: 2470: 2466: 2462: 2459: 2456: 2451: 2448: 2445: 2441: 2437: 2435: 2433: 2430: 2426: 2420: 2417: 2414: 2410: 2406: 2403: 2400: 2395: 2388: 2385: 2378: 2375: 2372: 2367: 2363: 2358: 2354: 2348: 2344: 2338: 2335: 2332: 2328: 2324: 2321: 2318: 2313: 2309: 2305: 2303: 2301: 2297: 2291: 2288: 2285: 2281: 2277: 2274: 2271: 2266: 2262: 2257: 2253: 2250: 2247: 2244: 2241: 2240: 2218: 2215: 2195: 2192: 2189: 2186: 2183: 2163: 2143: 2118: 2092: 2089: 2086: 2082: 2079: 2076: 2053: 2031: 2028: 2023: 2019: 1992: 1989: 1986: 1980: 1975: 1952: 1949: 1946: 1941: 1937: 1916: 1894: 1888: 1882: 1879: 1876: 1873: 1870: 1865: 1862: 1859: 1854: 1850: 1829: 1807: 1785: 1782: 1779: 1776: 1772: 1769: 1766: 1762: 1757: 1752: 1748: 1745: 1742: 1738: 1735: 1712: 1706: 1701: 1697: 1693: 1690: 1687: 1683: 1678: 1672: 1664: 1660: 1656: 1653: 1644:-module while 1631: 1609: 1589: 1586: 1581: 1575: 1570: 1546: 1541: 1518: 1515: 1512: 1506: 1501: 1480: 1458: 1433: 1428: 1405: 1399: 1391: 1387: 1383: 1378: 1372: 1366: 1361: 1358: 1355: 1349: 1344: 1317: 1293: 1288: 1283: 1276: 1272: 1268: 1265: 1262: 1259: 1256: 1253: 1228: 1204: 1198: 1173: 1167: 1159: 1155: 1151: 1148: 1126: 1104: 1101: 1096: 1089: 1085: 1081: 1078: 1058: 1038: 1016: 1005:-cochain from 994: 974: 952: 939: 938: 927: 924: 921: 916: 909: 905: 901: 896: 891: 888: 885: 857: 835: 813: 791: 777: 774: 766:Weyl's theorem 758: 757: 746: 743: 738: 732: 728: 725: 719: 714: 710: 707: 685: 684: 673: 670: 667: 664: 661: 654: 649: 644: 639: 636: 633: 628: 625: 622: 619: 614: 609: 604: 599: 583: 582: 571: 568: 563: 558: 555: 544: 541: 538: 535: 532: 529: 526: 523: 520: 517: 511: 506: 502: 499: 477: 476: 465: 462: 459: 456: 453: 448: 441: 436: 431: 428: 425: 420: 417: 414: 411: 406: 401: 396: 391: 364: 336: 331: 309: 296:representation 277: 272: 240: 226: 223: 210: 188: 162: 127: 95: 83: 80: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5345: 5334: 5331: 5329: 5326: 5324: 5321: 5320: 5318: 5307: 5303: 5299: 5293: 5289: 5285: 5281: 5277: 5274: 5270: 5266: 5260: 5256: 5252: 5248: 5244: 5241: 5237: 5233: 5229: 5225: 5221: 5216: 5211: 5207: 5203: 5199: 5198: 5193: 5189: 5185: 5184: 5174: 5169: 5165: 5161: 5156: 5151: 5147: 5143: 5139: 5138:Baez, John C. 5133: 5130: 5125: 5121: 5117: 5111: 5108: 5096: 5091: 5086: 5082: 5078: 5077: 5072: 5068: 5062: 5059: 5054: 5050: 5046: 5040: 5037: 5030: 5026: 5023: 5020: 5017: 5016: 5012: 5007: 4991: 4960: 4935: 4929: 4918: 4915: 4909: 4906: 4903: 4897: 4894: 4891: 4888: 4885: 4882: 4874: 4836: 4832: 4831: 4830: 4816: 4810: 4799: 4793: 4790: 4787: 4781: 4778: 4775: 4772: 4764: 4741: 4738: 4726: 4724: 4722: 4706: 4670: 4660: 4656: 4637: 4610: 4588: 4561: 4526: 4505: 4502: 4499: 4479: 4476: 4473: 4470: 4467: 4464: 4461: 4441: 4428: 4425: 4405: 4402: 4389: 4347: 4332: 4329: 4326: 4318: 4295: 4282: 4264: 4263: 4249: 4219: 4189: 4186: 4177: 4174: 4171: 4162: 4142: 4122: 4102: 4099: 4096: 4093: 4090: 4070: 4062: 4047: 4039: 4038: 4037: 4023: 4020: 4017: 4014: 4004: 4001: 3981: 3978: 3975: 3972: 3928: 3920: 3899: 3896: 3884: 3879: 3877: 3863: 3855: 3839: 3819: 3799: 3755: 3708: 3705: 3690: 3687: 3684: 3680: 3670: 3656: 3633: 3607: 3601: 3594: 3593: 3592: 3591: 3569: 3566: 3551: 3547: 3539: 3538: 3537: 3534: 3520: 3500: 3474: 3471: 3468: 3465: 3462: 3455: 3454: 3453: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3406: 3403: 3400: 3394: 3387: 3386: 3385: 3371: 3351: 3323: 3320: 3292: 3285: 3282: 3258: 3252: 3249: 3234: 3230: 3222: 3221: 3220: 3195: 3182: 3179: 3168: 3165: 3162: 3159: 3156: 3153: 3150: 3147: 3141: 3130: 3126: 3120: 3117: 3102: 3098: 3090: 3089: 3088: 3082: 3080: 3063: 3055: 3042: 2997: 2994: 2991: 2988: 2968: 2918: 2901: 2877: 2874: 2848: 2831: 2828: 2820: 2812: 2803: 2793: 2777: 2771: 2768: 2765: 2758: 2740: 2732: 2729: 2726: 2718: 2706:, denoted by 2693: 2649: 2640: 2637: 2620: 2615: 2609: 2606: 2603: 2599: 2595: 2592: 2589: 2584: 2574: 2567: 2564: 2561: 2556: 2546: 2539: 2536: 2533: 2528: 2524: 2520: 2516: 2510: 2506: 2502: 2497: 2493: 2488: 2483: 2479: 2474: 2471: 2468: 2460: 2457: 2449: 2446: 2443: 2439: 2436: 2428: 2424: 2418: 2415: 2412: 2408: 2404: 2401: 2398: 2393: 2383: 2376: 2373: 2370: 2365: 2361: 2356: 2352: 2346: 2342: 2336: 2333: 2330: 2322: 2319: 2311: 2307: 2304: 2299: 2295: 2289: 2286: 2283: 2279: 2275: 2272: 2269: 2264: 2260: 2255: 2248: 2245: 2230: 2216: 2213: 2190: 2187: 2184: 2161: 2141: 2132: 2106: 2087: 2029: 2026: 2021: 2017: 2008: 1987: 1973: 1947: 1939: 1935: 1914: 1892: 1880: 1877: 1871: 1868: 1860: 1852: 1848: 1827: 1777: 1760: 1736: 1733: 1724: 1699: 1681: 1676: 1662: 1654: 1651: 1607: 1587: 1584: 1579: 1568: 1539: 1513: 1499: 1491:by extending 1478: 1426: 1403: 1389: 1376: 1364: 1356: 1342: 1333: 1274: 1266: 1260: 1257: 1254: 1242: 1202: 1171: 1157: 1149: 1146: 1102: 1087: 1079: 1076: 1056: 1036: 992: 972: 922: 919: 907: 894: 874: 873: 872: 871: 855: 811: 775: 773: 771: 767: 763: 744: 741: 730: 726: 723: 712: 705: 698: 697: 696: 694: 690: 668: 665: 662: 647: 642: 626: 620: 617: 602: 588: 587: 586: 569: 556: 553: 542: 539: 536: 533: 530: 527: 524: 521: 515: 504: 497: 490: 489: 488: 486: 482: 460: 457: 454: 446: 434: 418: 412: 409: 394: 380: 379: 378: 352: 329: 297: 293: 270: 263: 259: 256: 224: 222: 208: 176: 160: 151: 147: 145: 141: 125: 117: 113: 109: 106:is a compact 93: 81: 79: 77: 73: 69: 66: and 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 5333:Lie algebras 5283: 5250: 5201: 5195: 5155:math/0307263 5145: 5141: 5132: 5119: 5110: 5099:. Retrieved 5080: 5074: 5061: 5052: 5048: 5045:Cartan, Élie 5039: 4834: 4730: 4663: 3918: 3888: 3671: 3648: 3587: 3535: 3492: 3451: 3343: 3210: 3086: 2757:fiber bundle 2641: 2638: 2231: 2133: 1725: 1334:application 1243: 940: 869: 779: 759: 693:coinvariants 686: 584: 478: 350: 291: 257: 228: 174: 152: 148: 85: 44:Lie algebras 35: 29: 5148:: 492–528. 689:Tor functor 481:Ext functor 48:Élie Cartan 42:theory for 32:mathematics 5317:Categories 5208:: 85–124, 5101:2019-05-03 5083:: 65–127. 5055:: 181–225. 5031:References 3994:for every 3748:to a "Lie 3384:such that 2792:connection 2229:given by: 1560:satisfies 1330:induces a 768:, and the 290:, and let 225:Definition 175:noncompact 82:Motivation 76:Lie module 52:Lie groups 40:cohomology 5224:0002-9947 5168:CiteSeerX 4971:→ 4919:− 4776:⋅ 4704:→ 4694:→ 4684:→ 4674:→ 4503:∈ 4439:→ 4330:≡ 4021:∈ 4005:∈ 3832:. A Lie 3812:in grade 3631:→ 3621:→ 3611:→ 3605:→ 3493:for some 3425:− 3183:∈ 3157:∣ 3151:∈ 3056:∙ 3052:Ω 2878:∈ 2875:γ 2817:Ω 2813:∈ 2807:~ 2804:γ 2775:→ 2769:× 2719:∙ 2715:Ω 2593:… 2578:^ 2565:… 2550:^ 2537:… 2458:− 2440:∑ 2402:… 2387:^ 2374:… 2320:− 2308:∑ 2273:… 2206:-cochain 2154:-cochain 1940:γ 1893:∗ 1881:⊗ 1875:→ 1869:: 1853:γ 1737:∈ 1734:γ 1682:⊆ 1677:∗ 1659:Λ 1655:∼ 1404:∗ 1386:Λ 1382:→ 1377:∗ 1365:: 1332:transpose 1287:→ 1271:Λ 1267:: 1261:⋅ 1255:⋅ 1203:∗ 1172:∗ 1158:∙ 1154:Λ 1150:⊗ 1100:→ 1084:Λ 1080:: 908:∙ 904:Λ 772:theorem. 709:↦ 557:∈ 531:∣ 525:∈ 501:↦ 5282:(1988), 5118:(1994). 5095:Archived 5069:(1950). 5013:See also 4492:for any 4115:for all 3880:Examples 2103:and the 1186:, where 848:-module 695:functor 5306:0938524 5273:1438546 5240:0024908 5232:1990637 5160:Bibcode 4319:, then 3919:compact 2174:is the 1115:. When 70: ( 5304:  5294:  5271:  5261:  5238:  5230:  5222:  5170:  4835:center 4623:, but 3478:  3437:  3172:  546:  5228:JSTOR 5150:arXiv 4731:When 3965:, so 3889:When 2642:When 687:(see 479:(see 294:be a 260:with 253:be a 38:is a 5292:ISBN 5259:ISBN 5220:ISSN 4721:here 4135:and 3217:Ider 2447:< 1965:and 780:Let 229:Let 72:1948 54:and 5210:doi 5085:doi 4975:End 4532:dim 4348:If 4265:If 3513:in 3213:Der 3043:on 2961:on 2937:of 2107:in 2066:to 1820:on 1471:to 1306:on 1029:to 965:to 298:of 153:If 118:on 86:If 30:In 5319:: 5302:MR 5300:, 5290:, 5269:MR 5267:, 5257:, 5236:MR 5234:, 5226:, 5218:, 5202:63 5200:, 5190:; 5166:. 5158:. 5146:12 5144:. 5122:. 5093:. 5081:78 5079:. 5073:. 5051:. 4957:ad 4923:ad 4829:. 4804:ad 4765:, 4723:. 4707:0. 4262:. 4083:, 4036:. 3876:. 3669:. 3533:. 2131:. 1241:. 764:, 724::= 627::= 516::= 419::= 78:. 34:, 5212:: 5176:. 5162:: 5152:: 5104:. 5087:: 5053:8 5008:. 4992:. 4989:) 4984:g 4979:( 4966:g 4961:: 4936:x 4933:) 4930:y 4927:( 4916:= 4913:] 4910:y 4907:, 4904:x 4901:[ 4898:= 4895:y 4892:x 4889:= 4886:x 4883:D 4861:) 4856:g 4851:( 4846:z 4817:y 4814:) 4811:x 4808:( 4800:= 4797:] 4794:y 4791:, 4788:x 4785:[ 4782:= 4779:y 4773:x 4747:g 4742:= 4739:M 4699:g 4689:e 4679:h 4671:0 4638:n 4633:R 4611:n 4589:n 4584:R 4562:n 4538:g 4527:M 4506:M 4500:a 4480:0 4477:= 4474:a 4471:x 4468:= 4465:x 4462:D 4442:M 4434:g 4429:: 4426:D 4406:0 4403:= 4400:] 4395:g 4390:, 4385:g 4380:[ 4358:g 4333:0 4327:D 4301:g 4296:= 4293:] 4288:g 4283:, 4278:g 4273:[ 4250:D 4230:] 4225:g 4220:, 4215:g 4210:[ 4190:0 4187:= 4184:) 4181:] 4178:y 4175:, 4172:x 4169:[ 4166:( 4163:D 4143:y 4123:x 4103:0 4100:= 4097:y 4094:D 4091:x 4071:D 4060:. 4048:M 4024:M 4018:a 4015:, 4010:g 4002:x 3982:0 3979:= 3976:a 3973:x 3951:g 3929:M 3904:R 3900:= 3897:M 3864:n 3840:n 3820:n 3800:M 3778:g 3756:n 3734:g 3712:) 3709:M 3706:; 3701:g 3696:( 3691:1 3688:+ 3685:n 3681:H 3657:M 3634:0 3626:g 3616:h 3608:M 3602:0 3573:) 3570:M 3567:; 3562:g 3557:( 3552:2 3548:H 3521:M 3501:a 3475:a 3472:x 3469:= 3466:x 3463:d 3434:x 3431:d 3428:y 3422:y 3419:d 3416:x 3413:= 3410:] 3407:y 3404:, 3401:x 3398:[ 3395:d 3372:M 3352:d 3340:, 3327:) 3324:M 3321:, 3316:g 3311:( 3307:r 3304:e 3301:d 3298:I 3293:/ 3289:) 3286:M 3283:, 3278:g 3273:( 3269:r 3266:e 3263:D 3259:= 3256:) 3253:M 3250:; 3245:g 3240:( 3235:1 3231:H 3196:. 3193:} 3188:g 3180:x 3169:0 3166:= 3163:m 3160:x 3154:M 3148:m 3145:{ 3142:= 3136:g 3131:M 3127:= 3124:) 3121:M 3118:; 3113:g 3108:( 3103:0 3099:H 3067:) 3064:G 3061:( 3025:g 3002:R 2998:= 2995:k 2992:= 2989:M 2969:M 2947:g 2925:) 2922:) 2919:M 2916:( 2912:d 2909:n 2906:E 2902:, 2897:g 2892:( 2888:m 2885:o 2882:H 2855:) 2852:) 2849:M 2846:( 2842:d 2839:n 2836:E 2832:, 2829:G 2826:( 2821:1 2778:G 2772:M 2766:G 2741:G 2737:) 2733:M 2730:, 2727:G 2724:( 2694:M 2672:g 2650:G 2621:, 2616:) 2610:1 2607:+ 2604:n 2600:x 2596:, 2590:, 2585:j 2575:x 2568:, 2562:, 2557:i 2547:x 2540:, 2534:, 2529:1 2525:x 2521:, 2517:] 2511:j 2507:x 2503:, 2498:i 2494:x 2489:[ 2484:( 2480:f 2475:j 2472:+ 2469:i 2465:) 2461:1 2455:( 2450:j 2444:i 2429:+ 2425:) 2419:1 2416:+ 2413:n 2409:x 2405:, 2399:, 2394:i 2384:x 2377:, 2371:, 2366:1 2362:x 2357:( 2353:f 2347:i 2343:x 2337:1 2334:+ 2331:i 2327:) 2323:1 2317:( 2312:i 2300:= 2296:) 2290:1 2287:+ 2284:n 2280:x 2276:, 2270:, 2265:1 2261:x 2256:( 2252:) 2249:f 2246:d 2243:( 2217:f 2214:d 2194:) 2191:1 2188:+ 2185:n 2182:( 2162:f 2142:n 2117:g 2091:) 2088:M 2085:( 2081:d 2078:n 2075:E 2052:g 2030:0 2027:= 2022:2 2018:d 1991:) 1988:1 1985:( 1979:g 1974:d 1951:) 1948:0 1945:( 1936:d 1915:d 1887:g 1878:M 1872:M 1864:) 1861:0 1858:( 1849:d 1828:M 1806:g 1784:) 1781:) 1778:M 1775:( 1771:d 1768:n 1765:E 1761:, 1756:g 1751:( 1747:m 1744:o 1741:H 1711:) 1705:g 1700:d 1696:( 1692:r 1689:e 1686:K 1671:g 1663:0 1652:k 1630:g 1608:k 1588:0 1585:= 1580:2 1574:g 1569:d 1545:g 1540:d 1517:) 1514:1 1511:( 1505:g 1500:d 1479:k 1457:g 1432:g 1427:d 1398:g 1390:2 1371:g 1360:) 1357:1 1354:( 1348:g 1343:d 1316:g 1292:g 1282:g 1275:2 1264:] 1258:, 1252:[ 1227:g 1197:g 1166:g 1147:M 1125:g 1103:M 1095:g 1088:n 1077:f 1057:k 1037:M 1015:g 993:n 973:M 951:g 926:) 923:M 920:, 915:g 900:( 895:k 890:m 887:o 884:H 856:M 834:g 812:k 790:g 745:. 742:M 737:g 731:/ 727:M 718:g 713:M 706:M 672:) 669:M 666:, 663:R 660:( 653:g 648:U 643:n 638:r 635:o 632:T 624:) 621:M 618:; 613:g 608:( 603:n 598:H 570:. 567:} 562:g 554:x 543:0 540:= 537:m 534:x 528:M 522:m 519:{ 510:g 505:M 498:M 464:) 461:M 458:, 455:R 452:( 447:n 440:g 435:U 430:t 427:x 424:E 416:) 413:M 410:; 405:g 400:( 395:n 390:H 363:g 351:R 335:g 330:U 308:g 292:M 276:g 271:U 258:R 239:g 209:G 187:g 161:G 126:G 94:G 20:)

Index

Lie algebra homology
mathematics
cohomology
Lie algebras
Élie Cartan
Lie groups
homogeneous spaces
Georges de Rham
Claude Chevalley
Samuel Eilenberg
1948
Lie module
simply connected
de Rham cohomology
differential forms
left-invariant differential forms
exterior algebra
Lie algebra over a commutative ring
universal enveloping algebra
representation
Ext functor
derived functors
Tor functor
coinvariants
Whitehead's lemmas
Weyl's theorem
Levi decomposition
transpose
graded Leibniz rule
Jacobi identity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑