Knowledge (XXG)

Lill's method

Source 📝

132:
another segment is drawn upwards by the magnitude of the second coefficient, then left by the magnitude of the third, and down by the magnitude of the fourth, and so on. The sequence of directions (not turns) is always rightward, upward, leftward, downward, then repeating itself. Thus, each turn is counterclockwise. The process continues for every coefficient of the polynomial, including zeros, with negative coefficients "walking backwards." The final point reached, at the end of the segment corresponding to the equation's constant term, is the terminus.
589: 642: 20: 98: 131:
To employ the method, a diagram is drawn starting at the origin. A line segment is drawn rightwards by the magnitude of the first coefficient (the coefficient of the highest-power term) (so that with a negative coefficient, the segment will end left of the origin). From the end of the first segment,
672:
For each root, the paper is folded until the start point (black circle) and end point (black square) are reflected onto these lines. The axis of reflection (dash-dot line) defines the angled path corresponding to the root (blue, purple and red). The negative of the gradients of their first segments,
143:
at a right angle through the line through each segment (including a line for the zero coefficients) when the angled path does not hit the line segment on that line. The vertical and horizontal lines are reflected off or refracted through in the following sequence: the line containing the segment
668:
In this example with 3x+2x−7x+2, the polynomial's line segments are first drawn on a sheet of paper (black). Lines passing through reflections of the start and end points in the second and third segments, respectively (faint circle and square), and parallel to them (grey lines) are drawn.
224:
is a root of this polynomial. For every real zero of the polynomial there will be one unique initial angle and path that will land on the terminus. A quadratic with two real roots, for example, will have exactly two angles that satisfy the above conditions.
575:
The construction can also be done using clockwise turns instead of counterclockwise turns. When a path is interpreted using the other convention, it corresponds to the mirrored polynomial (every odd coefficient sign changed) and the roots are negated.
540:
are successively generated as distances between the vertices of the polynomial and root paths. For a root of the polynomial the final value is zero, so the last vertex coincides with the polynomial path terminus.
579:
When the right-angle path is traversed in the other direction but the same direction convention, it corresponds to the reversed mirrored polynomial and the roots are the negative reciprocals of the original roots.
355: 538: 232:
triangles, but with the vertices of the root path displaced from the polynomial path by a distance equal to the imaginary part of the root. In this case the root path will not be rectangular.
978: 127:−1 showing how negative coefficients and extended segments are handled. Each number shown on a colored line is the negative of its slope and hence a real root of the polynomial. 443: 619:−2, the polynomial's line segments are first drawn in black, as above. A circle is drawn with the straight line segment joining the start and end points forming a diameter. 214: 178: 385: 626:. Intersects of this circle with the middle segment of Lill's method, extended if needed, thus define the two angled paths in Lill's method, coloured blue and red. 549:
A solution line giving a root is similar to the Lill's construction for the polynomial with that root removed, because the visual construction is analogous to the
971: 39:+2 using Lill's method. Black segments are labeled with their lengths (coefficients in the equation), while each colored line with initial slope 964: 780: 749: 724: 1213: 1234: 742:"Résolution graphique des équations numériques de tous degrés à une seule inconnue, et description d'un instrument inventé dans ce but" 1134: 247: 803: 1275: 1345: 1041: 448: 1072: 89:
of other right-angle paths, also connecting the start to the terminus, but with vertices on the lines of the first path.
1220: 987: 1376: 1270: 650: 85:, with lengths equal to the coefficients of the polynomial. The roots of the polynomial can then be found as the 1011: 1381: 1305: 1241: 139:, reflected off of each line segment at a right angle (not necessarily the "natural" angle of reflection), and 1147: 622:
According to Thales's theorem, the triangle containing these points and any other point on the circle is a
1391: 1031: 880: 569: 67: 565: 229: 1016: 390: 1396: 1191: 1021: 1001: 1158: 1139: 605: 716: 1320: 1143: 1118: 903: 861: 550: 59: 588: 241: 1386: 1340: 1227: 1098: 853: 720: 641: 558: 183: 147: 19: 1300: 1265: 1168: 1153: 1036: 895: 845: 804:"Visualizing solutions to n-th degree algebraic equations using right-angle geometric paths" 772: 741: 708: 554: 360: 1280: 1108: 1093: 830: 75: 1067: 899: 709: 689:, which is based on a slightly modified version of Lill's method for a normed quadratic. 1350: 1325: 1315: 1310: 1295: 1290: 1173: 1006: 686: 623: 1370: 1103: 865: 807: 654: 922: 1355: 1285: 1057: 907: 1335: 1026: 773:"Résolution graphique des équations algébriques qui ont des racines imaginaires" 82: 71: 56: 48: 956: 1330: 1163: 1088: 951: 849: 564:
From the symmetry of the diagram, it can easily be seen that the roots of the
140: 63: 857: 1248: 1062: 653:
showed how Lill's method could be adapted to solve cubic equations using
97: 220:
so that the path lands on the terminus, the negative of the tangent of
81:
Lill's method involves drawing a path of straight line segments making
1113: 952:
Mathologer video: "Solving equations by shooting turtles with lasers"
587: 96: 86: 18: 946: 240:
The construction in effect evaluates the polynomial according to
350:{\displaystyle a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots } 960: 23:
Finding roots −2, −1 (repeated root), and −1/3 of the quartic 3
711:
Uncommon Mathematical Excursions: Polynomia and Related Realms
881:"Solving Cubics With Creases: The Work of Beloch and Lill" 74:
in 1867. A later paper by Lill dealt with the problem of
661:
th degree equation with a real root can be solved using
629:
The negative of the gradients of their first segments,
228:
For complex roots, one also needs to find a series of
135:
A line is then launched from the origin at some angle
533:{\displaystyle ((a_{n}x+a_{n-1})x+a_{n-2})x,\ \dots } 451: 393: 363: 250: 186: 150: 1258: 1205: 1184: 1127: 1081: 1050: 994: 16:
Graphical method for the real roots of a polynomial
608:to find the real roots of a quadratic polynomial. 532: 437: 379: 349: 208: 172: 43:and the same endpoint corresponds to a real root. 584:Finding quadratic roots using Thales's theorem 972: 657:. If simultaneous folds are allowed then any 8: 677:, yield the real roots 1/3, 1 and −2. 923:"One-, Two-, and Multi-Fold Origami Axioms" 979: 965: 957: 921:Roger C. Alperin; Robert J. Lang (2009). 503: 478: 462: 450: 417: 401: 392: 368: 362: 329: 313: 294: 278: 265: 255: 249: 191: 185: 155: 149: 640: 633:, yield the real roots 1/3 and −2. 70:. It was developed by Austrian engineer 699: 553:of the polynomial by a linear (root) 7: 1214:Geometric Exercises in Paper Folding 900:10.4169/amer.math.monthly.118.04.307 806:. www.concentric.net. Archived from 797: 795: 766: 764: 144:corresponding to the coefficient of 1235:A History of Folding in Mathematics 781:Nouvelles Annales de Mathématiques 750:Nouvelles Annales de Mathématiques 55:is a visual method of finding the 14: 829:Tabachnikov, Serge (2017-03-01). 637:Finding roots using paper folding 438:{\displaystyle (a_{n}x+a_{n-1})x} 1135:Alexandrov's uniqueness theorem 604:Lill's method can be used with 838:The Mathematical Intelligencer 515: 490: 455: 452: 429: 394: 1: 1073:Regular paperfolding sequence 888:American Mathematical Monthly 879:Thomas C. Hull (April 2011). 1221:Geometric Folding Algorithms 988:Mathematics of paper folding 947:Animation for Lill's Method 802:Bradford, Phillips Verner. 1413: 1271:Margherita Piazzola Beloch 651:Margherita Piazzola Beloch 1042:Yoshizawa–Randlett system 850:10.1007/s00283-016-9681-y 831:"Polynomials as Polygons" 93:Description of the method 1242:Origami Polyhedra Design 645:Find roots of 3x+2x−7x+2 572:of the original roots. 209:{\displaystyle x^{n-2},} 173:{\displaystyle x^{n-1},} 665:–2 simultaneous folds. 583: 101:Finding roots −1/2, −1/ 1032:Napkin folding problem 646: 611:In this example with 3 601: 534: 439: 381: 380:{\displaystyle a_{n}x} 351: 210: 174: 128: 44: 644: 591: 545:Additional properties 535: 440: 382: 352: 244:. For the polynomial 211: 175: 100: 22: 1192:Fold-and-cut theorem 1148:Steffen's polyhedron 1012:Huzita–Hatori axioms 1002:Big-little-big lemma 449: 391: 361: 248: 184: 148: 1140:Flexible polyhedron 771:M. E. Lill (1868). 740:M. E. Lill (1867). 707:Dan Kalman (2009). 566:reversed polynomial 1377:1867 introductions 1321:Toshikazu Kawasaki 1144:Bricard octahedron 1119:Yoshimura buckling 1017:Kawasaki's theorem 647: 602: 592:Finding roots of 3 551:synthetic division 530: 435: 377: 347: 206: 170: 129: 45: 1364: 1363: 1228:Geometric Origami 1099:Paper bag problem 1022:Maekawa's theorem 726:978-0-88385-341-2 526: 1404: 1301:David A. Huffman 1266:Roger C. Alperin 1169:Source unfolding 1037:Pureland origami 981: 974: 967: 958: 934: 933: 927: 918: 912: 911: 885: 876: 870: 869: 835: 826: 820: 819: 817: 815: 799: 790: 789: 777: 768: 759: 758: 746: 737: 731: 730: 715:. AMS. pp.  714: 704: 606:Thales's theorem 539: 537: 536: 531: 524: 514: 513: 489: 488: 467: 466: 444: 442: 441: 436: 428: 427: 406: 405: 386: 384: 383: 378: 373: 372: 356: 354: 353: 348: 340: 339: 324: 323: 305: 304: 289: 288: 270: 269: 260: 259: 223: 219: 215: 213: 212: 207: 202: 201: 179: 177: 176: 171: 166: 165: 138: 114: 113: 107: 106: 62:of a univariate 1412: 1411: 1407: 1406: 1405: 1403: 1402: 1401: 1382:1867 in science 1367: 1366: 1365: 1360: 1346:Joseph O'Rourke 1281:Robert Connelly 1254: 1201: 1180: 1123: 1109:Schwarz lantern 1094:Modular origami 1077: 1046: 990: 985: 943: 938: 937: 925: 920: 919: 915: 883: 878: 877: 873: 833: 828: 827: 823: 813: 811: 801: 800: 793: 775: 770: 769: 762: 744: 739: 738: 734: 727: 706: 705: 701: 696: 683: 639: 586: 547: 499: 474: 458: 447: 446: 413: 397: 389: 388: 364: 359: 358: 325: 309: 290: 274: 261: 251: 246: 245: 242:Horner's method 238: 221: 217: 187: 182: 181: 151: 146: 145: 136: 111: 109: 104: 102: 95: 17: 12: 11: 5: 1410: 1408: 1400: 1399: 1394: 1389: 1384: 1379: 1369: 1368: 1362: 1361: 1359: 1358: 1353: 1351:Tomohiro Tachi 1348: 1343: 1338: 1333: 1328: 1326:Robert J. Lang 1323: 1318: 1316:Humiaki Huzita 1313: 1308: 1303: 1298: 1296:Rona Gurkewitz 1293: 1291:Martin Demaine 1288: 1283: 1278: 1273: 1268: 1262: 1260: 1256: 1255: 1253: 1252: 1245: 1238: 1231: 1224: 1217: 1209: 1207: 1203: 1202: 1200: 1199: 1194: 1188: 1186: 1182: 1181: 1179: 1178: 1177: 1176: 1174:Star unfolding 1171: 1166: 1161: 1151: 1137: 1131: 1129: 1125: 1124: 1122: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1085: 1083: 1079: 1078: 1076: 1075: 1070: 1065: 1060: 1054: 1052: 1048: 1047: 1045: 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1007:Crease pattern 1004: 998: 996: 992: 991: 986: 984: 983: 976: 969: 961: 955: 954: 949: 942: 941:External links 939: 936: 935: 913: 894:(4): 307–315. 871: 821: 791: 760: 732: 725: 698: 697: 695: 692: 691: 690: 687:Carlyle circle 682: 679: 638: 635: 624:right triangle 585: 582: 559:Ruffini's rule 546: 543: 529: 523: 520: 517: 512: 509: 506: 502: 498: 495: 492: 487: 484: 481: 477: 473: 470: 465: 461: 457: 454: 434: 431: 426: 423: 420: 416: 412: 409: 404: 400: 396: 376: 371: 367: 357:the values of 346: 343: 338: 335: 332: 328: 322: 319: 316: 312: 308: 303: 300: 297: 293: 287: 284: 281: 277: 273: 268: 264: 258: 254: 237: 234: 216:etc. Choosing 205: 200: 197: 194: 190: 169: 164: 161: 158: 154: 115:of the cubic 4 94: 91: 15: 13: 10: 9: 6: 4: 3: 2: 1409: 1398: 1395: 1393: 1392:Paper folding 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1374: 1372: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1263: 1261: 1257: 1251: 1250: 1246: 1244: 1243: 1239: 1237: 1236: 1232: 1230: 1229: 1225: 1223: 1222: 1218: 1216: 1215: 1211: 1210: 1208: 1204: 1198: 1197:Lill's method 1195: 1193: 1190: 1189: 1187: 1185:Miscellaneous 1183: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1156: 1155: 1152: 1149: 1145: 1141: 1138: 1136: 1133: 1132: 1130: 1126: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1104:Rigid origami 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1086: 1084: 1082:3d structures 1080: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1055: 1053: 1051:Strip folding 1049: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 999: 997: 993: 989: 982: 977: 975: 970: 968: 963: 962: 959: 953: 950: 948: 945: 944: 940: 932:. A K Peters. 931: 924: 917: 914: 909: 905: 901: 897: 893: 889: 882: 875: 872: 867: 863: 859: 855: 851: 847: 843: 839: 832: 825: 822: 810:on 2 May 2010 809: 805: 798: 796: 792: 787: 783: 782: 774: 767: 765: 761: 756: 752: 751: 743: 736: 733: 728: 722: 718: 713: 712: 703: 700: 693: 688: 685: 684: 680: 678: 676: 670: 666: 664: 660: 656: 655:paper folding 652: 643: 636: 634: 632: 627: 625: 620: 618: 614: 609: 607: 599: 595: 590: 581: 577: 573: 571: 567: 562: 560: 556: 552: 544: 542: 527: 521: 518: 510: 507: 504: 500: 496: 493: 485: 482: 479: 475: 471: 468: 463: 459: 432: 424: 421: 418: 414: 410: 407: 402: 398: 374: 369: 365: 344: 341: 336: 333: 330: 326: 320: 317: 314: 310: 306: 301: 298: 295: 291: 285: 282: 279: 275: 271: 266: 262: 256: 252: 243: 235: 233: 231: 226: 203: 198: 195: 192: 188: 167: 162: 159: 156: 152: 142: 133: 126: 122: 118: 99: 92: 90: 88: 84: 79: 77: 73: 69: 65: 61: 58: 54: 53:Lill's method 50: 42: 38: 34: 30: 26: 21: 1356:Eve Torrence 1286:Erik Demaine 1247: 1240: 1233: 1226: 1219: 1212: 1206:Publications 1196: 1068:Möbius strip 1058:Dragon curve 995:Flat folding 929: 916: 891: 887: 874: 844:(1): 41–43. 841: 837: 824: 812:. Retrieved 808:the original 785: 779: 754: 748: 735: 710: 702: 674: 671: 667: 662: 658: 648: 630: 628: 621: 616: 612: 610: 603: 597: 593: 578: 574: 563: 548: 239: 227: 134: 130: 124: 120: 116: 83:right angles 80: 52: 46: 40: 36: 32: 28: 24: 1397:Polynomials 1341:Kōryō Miura 1336:Jun Maekawa 1311:Kôdi Husimi 1027:Map folding 570:reciprocals 236:Explanation 72:Eduard Lill 49:mathematics 1371:Categories 1331:Anna Lubiw 1164:Common net 1089:Miura fold 814:3 February 788:: 363–367. 757:: 359–362. 694:References 64:polynomial 1249:Origamics 1128:Polyhedra 866:126072703 858:1866-7414 528:… 508:− 483:− 422:− 345:⋯ 334:− 318:− 299:− 283:− 196:− 160:− 141:refracted 1387:Geometry 1306:Tom Hull 1276:Yan Chen 1159:Blooming 1063:Flexagon 681:See also 649:In 1936 568:are the 180:then of 108:, and 1/ 908:2540978 230:similar 110:√ 103:√ 78:roots. 76:complex 66:of any 1259:People 1114:Sonobe 906:  864:  856:  723:  525:  87:slopes 68:degree 930:4OSME 926:(PDF) 904:S2CID 884:(PDF) 862:S2CID 834:(PDF) 784:. 2. 776:(PDF) 753:. 2. 745:(PDF) 719:–22. 555:monic 60:roots 854:ISSN 816:2012 721:ISBN 57:real 1154:Net 896:doi 892:118 846:doi 561:). 47:In 35:+11 31:+19 27:+13 1373:: 1146:, 928:. 902:. 890:. 886:. 860:. 852:. 842:39 840:. 836:. 794:^ 778:. 763:^ 747:. 717:13 615:+5 600:−2 596:+5 445:, 387:, 123:−2 119:+2 51:, 1150:) 1142:( 980:e 973:t 966:v 910:. 898:: 868:. 848:: 818:. 786:7 755:6 729:. 675:m 663:n 659:n 631:m 617:x 613:x 598:x 594:x 557:( 522:, 519:x 516:) 511:2 505:n 501:a 497:+ 494:x 491:) 486:1 480:n 476:a 472:+ 469:x 464:n 460:a 456:( 453:( 433:x 430:) 425:1 419:n 415:a 411:+ 408:x 403:n 399:a 395:( 375:x 370:n 366:a 342:+ 337:2 331:n 327:x 321:2 315:n 311:a 307:+ 302:1 296:n 292:x 286:1 280:n 276:a 272:+ 267:n 263:x 257:n 253:a 222:θ 218:θ 204:, 199:2 193:n 189:x 168:, 163:1 157:n 153:x 137:θ 125:x 121:x 117:x 112:2 105:2 41:m 37:x 33:x 29:x 25:x

Index


mathematics
real
roots
polynomial
degree
Eduard Lill
complex
right angles
slopes

refracted
similar
Horner's method
synthetic division
monic
Ruffini's rule
reversed polynomial
reciprocals

Thales's theorem
right triangle

Margherita Piazzola Beloch
paper folding
Carlyle circle
Uncommon Mathematical Excursions: Polynomia and Related Realms
13
ISBN
978-0-88385-341-2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.