Knowledge (XXG)

Lipid bilayer

Source đź“ť

1058:. When a vesicle is produced inside the cell and fuses with the plasma membrane to release its contents into the extracellular space, this process is known as exocytosis. In the reverse process, a region of the cell membrane will dimple inwards and eventually pinch off, enclosing a portion of the extracellular fluid to transport it into the cell. Endocytosis and exocytosis rely on very different molecular machinery to function, but the two processes are intimately linked and could not work without each other. The primary mechanism of this interdependence is the large amount of lipid material involved. In a typical cell, an area of bilayer equivalent to the entire plasma membrane will travel through the endocytosis/exocytosis cycle in about half an hour. If these two processes were not balancing each other, the cell would either balloon outward to an unmanageable size or completely deplete its plasma membrane within a short time. 1358:
at least partially dehydrated, as the bound surface water normally present causes bilayers to strongly repel. The presence of ions, in particular divalent cations like magnesium and calcium, strongly affects this step. One of the critical roles of calcium in the body is regulating membrane fusion. Third, a destabilization must form at one point between the two bilayers, locally distorting their structures. The exact nature of this distortion is not known. One theory is that a highly curved "stalk" must form between the two bilayers. Proponents of this theory believe that it explains why phosphatidylethanolamine, a highly curved lipid, promotes fusion. Finally, in the last step of fusion, this point defect grows and the components of the two bilayers mix and diffuse away from the site of contact.
1548:. Since the lipid bilayer is the barrier between the interior and exterior of the cell, it is also the site of extensive signal transduction. Researchers over the years have tried to harness this potential to develop a bilayer-based device for clinical diagnosis or bioterrorism detection. Progress has been slow in this area and, although a few companies have developed automated lipid-based detection systems, they are still targeted at the research community. These include Biacore (now GE Healthcare Life Sciences), which offers a disposable chip for utilizing lipid bilayers in studies of binding kinetics and Nanion Inc., which has developed an 864:(AFM). Rather than using a beam of light or particles, a very small sharpened tip scans the surface by making physical contact with the bilayer and moving across it, like a record player needle. AFM is a promising technique because it has the potential to image with nanometer resolution at room temperature and even under water or physiological buffer, conditions necessary for natural bilayer behavior. Utilizing this capability, AFM has been used to examine dynamic bilayer behavior including the formation of transmembrane pores (holes) and phase transitions in supported bilayers. Another advantage is that AFM does not require fluorescent or 1499:” except that vesicle is a general term for the structure whereas liposome refers to only artificial not natural vesicles) The basic idea of liposomal drug delivery is that the drug is encapsulated in solution inside the liposome then injected into the patient. These drug-loaded liposomes travel through the system until they bind at the target site and rupture, releasing the drug. In theory, liposomes should make an ideal drug delivery system since they can isolate nearly any hydrophilic drug, can be grafted with molecules to target specific tissues and can be relatively non-toxic since the body possesses biochemical pathways for 943:. When a cell or vesicle with a high interior salt concentration is placed in a solution with a low salt concentration it will swell and eventually burst. Such a result would not be observed unless water was able to pass through the bilayer with relative ease. The anomalously large permeability of water through bilayers is still not completely understood and continues to be the subject of active debate. Small uncharged apolar molecules diffuse through lipid bilayers many orders of magnitude faster than ions or water. This applies both to fats and organic solvents like 837: 47: 372:. Other lipids, such as sphingomyelin, appear to be synthesised at the external leaflet. Flippases are members of a larger family of lipid transport molecules that also includes floppases, which transfer lipids in the opposite direction, and scramblases, which randomize lipid distribution across lipid bilayers (as in apoptotic cells). In any case, once lipid asymmetry is established, it does not normally dissipate quickly because spontaneous flip-flop of lipids between leaflets is extremely slow. 1362: 618: 397: 262: 1314: 849: 1370: 768: 312: 1167: 1062: 1027: 1626:. When they compared the area of the monolayer to the surface area of the cells, they found a ratio of two to one. Later analyses showed several errors and incorrect assumptions with this experiment but, serendipitously, these errors canceled out and from this flawed data Gorter and Grendel drew the correct conclusion- that the cell membrane is a lipid bilayer. 188:. Because bilayers define the boundaries of the cell and its compartments, these membrane proteins are involved in many intra- and inter-cellular signaling processes. Certain kinds of membrane proteins are involved in the process of fusing two bilayers together. This fusion allows the joining of two distinct structures as in the 955: 299:
group is located within this hydrated region, approximately 0.5 nm outside the hydrophobic core. In some cases, the hydrated region can extend much further, for instance in lipids with a large protein or long sugar chain grafted to the head. One common example of such a modification in nature is
1325:
is the process by which two lipid bilayers merge, resulting in one connected structure. If this fusion proceeds completely through both leaflets of both bilayers, a water-filled bridge is formed and the solutions contained by the bilayers can mix. Alternatively, if only one leaflet from each bilayer
1215:
affect the ability of proteins and small molecules to insert into the bilayer, and bilayer mechanical properties have been shown to alter the function of mechanically activated ion channels. Bilayer mechanical properties also govern what types of stress a cell can withstand without tearing. Although
691:
in part by grafting these proteins from the host membrane onto its own surface. Alternatively, some membrane proteins penetrate all the way through the bilayer and serve to relay individual signal events from the outside to the inside of the cell. The most common class of this type of protein is the
411:
At a given temperature a lipid bilayer can exist in either a liquid or a gel (solid) phase. All lipids have a characteristic temperature at which they transition (melt) from the gel to liquid phase. In both phases the lipid molecules are prevented from flip-flopping across the bilayer, but in liquid
387:
It has been reported that the organization and dynamics of the lipid monolayers in a bilayer are coupled. For example, introduction of obstructions in one monolayer can slow down the lateral diffusion in both monolayers. In addition, phase separation in one monolayer can also induce phase separation
1357:
There are four fundamental steps in the fusion process. First, the involved membranes must aggregate, approaching each other to within several nanometers. Second, the two bilayers must come into very close contact (within a few angstroms). To achieve this close contact, the two surfaces must become
1151:
both result from application of an electric field, the mechanisms involved are fundamentally different. In dielectric breakdown the barrier material is ionized, creating a conductive pathway. The material alteration is thus chemical in nature. In contrast, during electroporation the lipid molecules
275:
would be about as thick as a piece of office paper. Despite being only a few nanometers thick, the bilayer is composed of several distinct chemical regions across its cross-section. These regions and their interactions with the surrounding water have been characterized over the past several decades
1641:
Around the same time, the development of model membranes confirmed that the lipid bilayer is a stable structure that can exist independent of proteins. By “painting” a solution of lipid in organic solvent across an aperture, Mueller and Rudin were able to create an artificial bilayer and determine
1243:
is a measure of how much energy is needed to bend or flex the bilayer. Formally, bending modulus is defined as the energy required to deform a membrane from its intrinsic curvature to some other curvature. Intrinsic curvature is defined by the ratio of the diameter of the head group to that of the
1049:
Some molecules or particles are too large or too hydrophilic to pass through a lipid bilayer. Other molecules could pass through the bilayer but must be transported rapidly in such large numbers that channel-type transport is impractical. In both cases, these types of cargo can be moved across the
558:
bilayer core, as discussed in Transport across the bilayer below. The nucleus, mitochondria and chloroplasts have two lipid bilayers, while other sub-cellular structures are surrounded by a single lipid bilayer (such as the plasma membrane, endoplasmic reticula, Golgi apparatus and lysosomes). See
383:
deposition or a combination of Langmuir-Blodgett and vesicle rupture deposition it is also possible to synthesize an asymmetric planar bilayer. This asymmetry may be lost over time as lipids in supported bilayers can be prone to flip-flop. However, it has been reported that lipid flip-flop is slow
322:
Next to the hydrated region is an intermediate region that is only partially hydrated. This boundary layer is approximately 0.3 nm thick. Within this short distance, the water concentration drops from 2M on the headgroup side to nearly zero on the tail (core) side. The hydrophobic core of the
164:
at higher temperatures, and the chemical properties of the lipids' tails influence at which temperature this happens. The packing of lipids within the bilayer also affects its mechanical properties, including its resistance to stretching and bending. Many of these properties have been studied with
147:
tail consisting of two fatty acid chains. Phospholipids with certain head groups can alter the surface chemistry of a bilayer and can, for example, serve as signals as well as "anchors" for other molecules in the membranes of cells. Just like the heads, the tails of lipids can also affect membrane
1219:
As discussed in the Structure and organization section, the hydrophobic attraction of lipid tails in water is the primary force holding lipid bilayers together. Thus, the elastic modulus of the bilayer is primarily determined by how much extra area is exposed to water when the lipid molecules are
754:
of the bilayer is determined. This resistance is typically quite high (10 Ohm-cm or more) since the hydrophobic core is impermeable to charged species. The presence of even a few nanometer-scale holes results in a dramatic increase in current. The sensitivity of this system is such that even the
1294:
is a measure of how much energy it takes to expose a bilayer edge to water by tearing the bilayer or creating a hole in it. The origin of this energy is the fact that creating such an interface exposes some of the lipid tails to water, but the exact orientation of these border lipids is unknown.
1122:
Electroporation is the rapid increase in bilayer permeability induced by the application of a large artificial electric field across the membrane. Experimentally, electroporation is used to introduce hydrophilic molecules into cells. It is a particularly useful technique for large highly charged
444:
Most natural membranes are a complex mixture of different lipid molecules. If some of the components are liquid at a given temperature while others are in the gel phase, the two phases can coexist in spatially separated regions, rather like an iceberg floating in the ocean. This phase separation
440:
chain, disrupting the lipid packing. This disruption creates extra free space within the bilayer that allows additional flexibility in the adjacent chains. An example of this effect can be noted in everyday life as butter, which has a large percentage saturated fats, is solid at room temperature
1633:
in the late 1950s. Although he did not publish the first electron microscopy study of lipid bilayers J. David Robertson was the first to assert that the two dark electron-dense bands were the headgroups and associated proteins of two apposed lipid monolayers. In this body of work, Robertson put
1621:
Although the results of this experiment were accurate, Fricke misinterpreted the data to mean that the cell membrane is a single molecular layer. Prof. Dr. Evert Gorter (1881–1954) and F. Grendel of Leiden University approached the problem from a different perspective, spreading the erythrocyte
355:
and a variety of glycolipids. In some cases, this asymmetry is based on where the lipids are made in the cell and reflects their initial orientation. The biological functions of lipid asymmetry are imperfectly understood, although it is clear that it is used in several different situations. For
265:
Schematic cross sectional profile of a typical lipid bilayer. There are three distinct regions: the fully hydrated headgroups, the fully dehydrated alkane core and a short intermediate region with partial hydration. Although the head groups are neutral, they have significant dipole moments that
827:
is widely used for studies of phospholipid bilayers and biological membranes in native conditions. The analysis of P-NMR spectra of lipids could provide a wide range of information about lipid bilayer packing, phase transitions (gel phase, physiological liquid crystal phase, ripple phases, non
427:
interactions between adjacent lipid molecules. Longer-tailed lipids have more area over which to interact, increasing the strength of this interaction and, as a consequence, decreasing the lipid mobility. Thus, at a given temperature, a short-tailed lipid will be more fluid than an otherwise
1402:
intracellular trafficking. Despite years of study, much is still unknown about the function of this protein class. In fact, there is still an active debate regarding whether SNAREs are linked to early docking or participate later in the fusion process by facilitating hemifusion.
868:
labeling of the lipids, since the probe tip interacts mechanically with the bilayer surface. Because of this, the same scan can image both lipids and associated proteins, sometimes even with single-molecule resolution. AFM can also probe the mechanical nature of lipid bilayers.
400:
Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black). The resulting bilayer has more free space and is, as a consequence, more permeable to water and other small
5409:
Bermejo, M.; Avdeef, A.; Ruiz, A.; Nalda, R.; Ruell, J. A.; Tsinman, O.; González, I.; Fernández, C.; Sánchez, G.; Garrigues, T. M.; Merino, V. (2004). "PAMPA--a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones".
533:
compartments from their surroundings. Without some form of barrier delineating “self” from “non-self”, it is difficult to even define the concept of an organism or of life. This barrier takes the form of a lipid bilayer in all known life forms except for a few species of
786:
A natural lipid bilayer is not fluorescent, so at least one fluorescent dye needs to be attached to some of the molecules in the bilayer. Resolution is usually limited to a few hundred nanometers, which is unfortunately much larger than the thickness of a lipid bilayer.
806:
interacts with the sample rather than a beam of light as in traditional microscopy. In conjunction with rapid freezing techniques, electron microscopy has also been used to study the mechanisms of inter- and intracellular transport, for instance in demonstrating that
1456:. These synthetic systems are called model lipid bilayers. There are many different types of model bilayers, each having experimental advantages and disadvantages. They can be made with either synthetic or natural lipids. Among the most common model systems are: 367:
Lipid asymmetry arises, at least in part, from the fact that most phospholipids are synthesised and initially inserted into the inner monolayer: those that constitute the outer monolayer are then transported from the inner monolayer by a class of enzymes called
228:
into a two-layered sheet with the hydrophobic tails pointing toward the center of the sheet. This arrangement results in two “leaflets” that are each a single molecular layer. The center of this bilayer contains almost no water and excludes molecules like
1609:
By the early twentieth century scientists had come to believe that cells are surrounded by a thin oil-like barrier, but the structural nature of this membrane was not known. Two experiments in 1925 laid the groundwork to fill in this gap. By measuring the
1244:
tail group. For two-tailed PC lipids, this ratio is nearly one so the intrinsic curvature is nearly zero. If a particular lipid has too large a deviation from zero intrinsic curvature it will not form a bilayer and will instead form other phases such as
749:
Electrical measurements are a straightforward way to characterize an important function of a bilayer: its ability to segregate and prevent the flow of ions in solution. By applying a voltage across the bilayer and measuring the resulting current, the
983:
that pass through the bilayer, but their roles are quite different. Ion pumps are the proteins that build and maintain the chemical gradients by utilizing an external energy source to move ions against the concentration gradient to an area of higher
445:
plays a critical role in biochemical phenomena because membrane components such as proteins can partition into one or the other phase and thus be locally concentrated or activated. One particularly important component of many mixed phase systems is
2229:
Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (October 1973). "The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy".
740:
The lipid bilayer is a very difficult structure to study because it is so thin and fragile. In spite of these limitations dozens of techniques have been developed over the last seventy years to allow investigations of its structure and function.
1170:
Schematic showing two possible conformations of the lipids at the edge of a pore. In the top image the lipids have not rearranged, so the pore wall is hydrophobic. In the bottom image some of the lipid heads have bent over, so the pore wall is
1023:. All ion pumps have some sort of trigger or “gating” mechanism. In the previous example it was electrical bias, but other channels can be activated by binding a molecular agonist or through a conformational change in another nearby protein. 930:
core of a lipid bilayer and, as a consequence, have low permeability coefficients across the bilayer. This effect is particularly pronounced for charged species, which have even lower permeability coefficients than neutral polar molecules.
1373:
Diagram of the action of SNARE proteins docking a vesicle for exocytosis. Complementary versions of the protein on the vesicle and the target membrane bind and wrap around each other, drawing the two bilayers close together in the
270:
The lipid bilayer is very thin compared to its lateral dimensions. If a typical mammalian cell (diameter ~10 micrometers) were magnified to the size of a watermelon (~1 ft/30 cm), the lipid bilayer making up the
1646:
showed that bilayers, in the form of lipid vesicles, could also be formed simply by exposing a dried lipid sample to water. This was an important advance, since it demonstrated that lipid bilayers form spontaneously via
1146:
This increase in permeability primarily affects transport of ions and other hydrated species, indicating that the mechanism is the creation of nm-scale water-filled holes in the membrane. Although electroporation and
613:
for example, the plasma membrane accounts for only two percent of the total bilayer area of the cell, whereas the endoplasmic reticulum contains more than fifty percent and the mitochondria a further thirty percent.
1654:
In 1977, a totally synthetic bilayer membrane was prepared by Kunitake and Okahata, from a single organic compound, didodecyldimethylammonium bromide. It clearly shows that the bilayer membrane was assembled by the
1317:
Illustration of lipid vesicles fusing showing two possible outcomes: hemifusion and full fusion. In hemifusion, only the outer bilayer leaflets mix. In full fusion both leaflets as well as the internal contents
318:
image of a bacterium. The furry appearance on the outside is due to a coat of long-chain sugars attached to the cell membrane. This coating helps trap water to prevent the bacterium from becoming dehydrated.
5275:
Maeda H, Sawa T, Konno T (July 2001). "Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS".
1011:
In contrast to ion pumps, ion channels do not build chemical gradients but rather dissipate them in order to perform work or send a signal. Probably the most familiar and best studied example is the
5480:
Avdeef, A.; Nielsen, P. E.; Tsinman, O. (2004). "PAMPA--a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates".
379:
will automatically make themselves slightly asymmetric, although the mechanism by which this asymmetry is generated is very different from that in cells. By utilizing two different monolayers in
711:
equilibrates this distribution, displaying phosphatidylserine on the extracellular bilayer face. The presence of phosphatidylserine then triggers phagocytosis to remove the dead or dying cell.
668:
with the cell membrane at the pre-synaptic terminal and their contents are released into the space outside the cell. The contents then diffuse across the synapse to the post-synaptic terminal.
323:
bilayer is typically 3-4 nm thick, but this value varies with chain length and chemistry. Core thickness also varies significantly with temperature, in particular near a phase transition.
117:
and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few
516:
crystals and subsequent bone mineralization. Unlike PC, some of the other headgroups carry a net charge, which can alter the electrostatic interactions of small molecules with the bilayer.
1541:
or other molecular markers onto the liposome surface in the hope of actively binding them to a specific cell or tissue type. Some examples of this approach are already in clinical trials.
208:
into a cell. Because lipid bilayers are fragile and invisible in a traditional microscope, they are a challenge to study. Experiments on bilayers often require advanced techniques like
5445:
Avdeef, A.; Artursson, P.; Neuhoff, S.; Lazorova, L.; Gråsjö, J.; Tavelin, S. (2005). "Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method".
696:(GPCR). GPCRs are responsible for much of the cell's ability to sense its surroundings and, because of this important role, approximately 40% of all modern drugs are targeted at GPCRs. 4256: 1506:
The first generation of drug delivery liposomes had a simple lipid composition and suffered from several limitations. Circulation in the bloodstream was extremely limited due to both
609:. All of these sub-cellular compartments are surrounded by one or more lipid bilayers and, together, typically comprise the majority of the bilayer area present in the cell. In liver 4889:
Leventis R, Gagné J, Fuller N, Rand RP, Silvius JR (November 1986). "Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles".
1642:
that this exhibited lateral fluidity, high electrical resistance and self-healing in response to puncture, all of which are properties of a natural cell membrane. A few years later,
4276: 3616:
Dubinnyi MA, Lesovoy DM, Dubovskii PV, Chupin VV, Arseniev AS (June 2006). "Modeling of P-NMR spectra of magnetically oriented phospholipid liposomes: A new analytical solution".
1448:
Lipid bilayers can be created artificially in the lab to allow researchers to perform experiments that cannot be done with natural bilayers. They can also be used in the field of
291:
The first region on either side of the bilayer is the hydrophilic headgroup. This portion of the membrane is completely hydrated and is typically around 0.8-0.9 nm thick. In
496:(PG). These alternate headgroups often confer specific biological functionality that is highly context-dependent. For instance, PS presence on the extracellular membrane face of 457:
While lipid tails primarily modulate bilayer phase behavior, it is the headgroup that determines the bilayer surface chemistry. Most natural bilayers are composed primarily of
4507:
Suchyna TM, Tape SE, Koeppe RE, Andersen OS, Sachs F, Gottlieb PA (July 2004). "Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers".
4740: 783:. A sample is excited with one wavelength of light and observed in another, so that only fluorescent molecules with a matching excitation and emission profile will be seen. 707:. Normally, phosphatidylserine is asymmetrically distributed in the cell membrane and is present only on the interior side. During programmed cell death a protein called a 3656:
Roiter, Yuri; Ornatska, Maryna; Rammohan, Aravind R.; Balakrishnan, Jitendra; Heine, David R.; Minko, Sergiy (2008). "Interaction of Nanoparticles with Lipid Membrane".
4990:
Georgiev, Danko D.; Glazebrook, James F. (2007). "Subneuronal processing of information by solitary waves and stochastic processes". In Lyshevski, Sergey Edward (ed.).
4240: 1537:
they are especially “leaky” and allow liposomes to exit the bloodstream at a much higher rate than normal tissue would. More recently work has been undertaken to graft
1292: 1201: 828:
bilayer phases), lipid head group orientation/dynamics, and elastic properties of pure lipid bilayer and as a result of binding of proteins and other biomolecules.
699:
In addition to protein- and solution-mediated processes, it is also possible for lipid bilayers to participate directly in signaling. A classic example of this is
5938:; Horne, R. W. (1964). "Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope". 5311:
Lopes DE, Menezes DE, Kirchmeier MJ, Gagne JF (1999). "Cellular trafficking and cytotoxicity of anti-CD19-targeted liposomal doxorubicin in B lymphoma cells".
4640:
Rutkowski CA, Williams LM, Haines TH, Cummins HZ (June 1991). "The elasticity of synthetic phospholipid vesicles obtained by photon correlation spectroscopy".
901:
calculations of its properties is difficult and computationally expensive. Quantum chemical calculations has recently been successfully performed to estimate
5884:
Mueller P, Rudin DO, Tien HT, Wescott WC (June 1962). "Reconstitution of cell membrane structure in vitro and its transformation into an excitable system".
1152:
are not chemically altered but simply shift position, opening up a pore that acts as the conductive pathway through the bilayer as it is filled with water.
2551:
Crane JM, Kiessling V, Tamm LK (February 2005). "Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy".
1514:. Refinement of the lipid composition to tune fluidity, surface charge density, and surface hydration resulted in vesicles that adsorb fewer proteins from 1350:
are a few of the many eukaryotic processes that rely on some form of fusion. Even the entry of pathogens can be governed by fusion, as many bilayer-coated
176:
typically includes several types of molecules in addition to the phospholipids comprising the bilayer. A particularly important example in animal cells is
481:
headgroup, as it has a negative charge on the phosphate group and a positive charge on the amine but, because these local charges balance, no net charge.
5795:
Sjöstrand FS, Andersson-Cedergren E, Dewey MM (April 1958). "The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle".
1634:
forward the concept of the “unit membrane.” This was the first time the bilayer structure had been universally assigned to all cell membranes as well as
3832:
Alireza Mashaghi et al., Hydration strongly affects the molecular and electronic structure of membrane phospholipids. J. Chem. Phys. 136, 114709 (2012)
1559:
A supported lipid bilayer (SLB) as described above has achieved commercial success as a screening technique to measure the permeability of drugs. This
360:, the phosphatidylserine â€” normally localised to the cytoplasmic leaflet â€” is transferred to the outer surface: There, it is recognised by a 4257:
https://www.researchgate.net/publication/230817087_Electron_microscope_studies_of_surface_pilli_and_vesicles_of_Salmonella_310r-_organisms?ev=prf_pub
1390:
to insert its genetic material into the host cell (enveloped viruses are those surrounded by a lipid bilayer; some others have only a protein coat).
1104:
microbes, translocate bacterial signal molecules to host or target cells to carry out multiple processes in favour of the secreting microbe e.g., in
726: 6043: 736:. The two dark bands around the edge are the two leaflets of the bilayer. Historically, similar images confirmed that the cell membrane is a bilayer 2516:
Litman BJ (July 1974). "Determination of molecular asymmetry in the phosphatidylethanolamine surface distribution in mixed phospholipid vesicles".
5340:"Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer" 4277:
https://www.researchgate.net/publication/230793568_Discovery_of_vesicular_exocytosis_in_prokaryotes_and_its_role_in_Salmonella_invasion?ev=prf_pub
3738:
Richter RP, Brisson A (2003). "Characterization of lipid bilayers and protein assemblies supported on rough surfaces by atomic force microscopy".
824: 3139:
Eanes ED, Hailer AW (January 1987). "Calcium phosphate precipitation in aqueous suspensions of phosphatidylserine-containing anionic liposomes".
184:. Integral membrane proteins function when incorporated into a lipid bilayer, and they are held tightly to the lipid bilayer with the help of an 1308: 31: 5142: 5015: 4624: 3320: 3043: 2925: 2586:
Kalb E, Frey S, Tamm LK (January 1992). "Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers".
1985: 1410:(PEG) causes fusion without significant aggregation or biochemical disruption. This procedure is now used extensively, for example by fusing 5564:
Sinkó, B.; Kökösi, J.; Avdeef, A.; Takács-Novák, K. (2009). "A PAMPA study of the permeability-enhancing effect of new ceramide analogues".
4741:
https://www.researchgate.net/publication/15042978_Destabilisation_of_lamellar_dispersion_of_thylakoid_membrane_lipids_by_sucrose?ev=prf_pub
1826:
Lewis BA, Engelman DM (May 1983). "Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles".
1326:
is involved in the fusion process, the bilayers are said to be hemifused. Fusion is involved in many cellular processes, in particular in
1228:
but only weakly with tail length and unsaturation. Because the forces involved are so small, it is difficult to experimentally determine K
233:
or salts that dissolve in water. The assembly process and maintenance are driven by aggregation of hydrophobic molecules (also called the
3954:
Papahadjopoulos D, Watkins JC (September 1967). "Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals".
2943:"Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers" 1426:
as determined by the B-cell involved, but is immortalized due to the melanoma component. Fusion can also be artificially induced through
1175:
Lipid bilayers are large enough structures to have some of the mechanical properties of liquids or solids. The area compression modulus K
1127:, which would never passively diffuse across the hydrophobic bilayer core. Because of this, electroporation is one of the key methods of 897:
Lipid bilayers are complicated molecular systems with many degrees of freedom. Thus, atomistic simulation of membrane and in particular
420:
and thus wander across the surface of the membrane. Unlike liquid phase bilayers, the lipids in a gel phase bilayer have less mobility.
4241:
https://www.researchgate.net/publication/230822402_'Exocytosis_in_prokaryotes'_and_its_role_in_Salmonella_invasion?ev=prf_pub
1207:, but like any liquid, the shear modulus is zero for fluid bilayers. These mechanical properties affect how the membrane functions. K 3991:"Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness" 3834: 3013: 1797: 1097: 538:
that utilize a specially adapted lipid monolayer. It has even been proposed that the very first form of life may have been a simple
2167:
Trauble H, Haynes DH (1971). "The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition".
3860:
Chakrabarti AC (1994). "Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation".
1702:
Andersen, Olaf S.; Koeppe, II, Roger E. (June 2007). "Bilayer Thickness and Membrane Protein Function: An Energetic Perspective".
1526:(PEG) onto the liposome surface to produce “stealth” vesicles, which circulate over long times without immune or renal clearing. 886: 729: 315: 3282: 856:
scan of a supported lipid bilayer. The pits are defects in the bilayer, exposing the smooth surface of the substrate underneath.
1795:
Mashaghi et al. Hydration strongly affects the molecular and electronic structure of membrane phospholipids. 136, 114709 (2012)
1604: 166: 5392: 6011: 720: 4140:
Gundelfinger ED, Kessels MM, Qualmann B (February 2003). "Temporal and spatial coordination of exocytosis and endocytosis".
180:, which helps strengthen the bilayer and decrease its permeability. Cholesterol also helps regulate the activity of certain 5517:"P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model" 375:
It is possible to mimic this asymmetry in the laboratory in model bilayer systems. Certain types of very small artificial
4046:
Xiang TX, Anderson BD (June 1994). "The relationship between permeant size and permeability in lipid bilayer membranes".
971:
Two special classes of protein deal with the ionic gradients found across cellular and sub-cellular membranes in nature-
679:
are membrane proteins. Some of these proteins are linked to the exterior of the cell membrane. An example of this is the
6036: 4472:
McIntosh TJ, Simon SA (2006). "Roles of Bilayer Material Properties in Function and Distribution of Membrane Proteins".
2801:
Deverall, Miranda A.; Garg, Sumit; LĂĽdtke, Karin; Jordan, Rainer; RĂĽhe, JĂĽrgen; Naumann, Christoph A. (12 August 2008).
1583:
technique measures the permeability across specifically formulated lipid cocktail(s) found to be highly correlated with
1085: 962:
penetrate the bilayer (boundaries indicated by red and blue lines), opening a hole through which potassium ions can flow
406: 331:
In many naturally occurring bilayers, the compositions of the inner and outer membrane leaflets are different. In human
5082:
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity".
1295:
There is some evidence that both hydrophobic (tails straight) and hydrophilic (heads curved around) pores can coexist.
951:. Regardless of their polar character larger molecules diffuse more slowly across lipid bilayers than small molecules. 939:. Compared to ions, water molecules actually have a relatively large permeability through the bilayer, as evidenced by 6121: 1434:
formed during electroporation, which can act as the local defect point to nucleate stalk growth between two bilayers.
836: 1220:
stretched apart. It is not surprising given this understanding of the forces involved that studies have shown that K
1069:
3,10:r:- pathogens docking on plasma membrane of macrophage cells (M) in chicken ileum, for host-pathogen signaling
6216: 1552:
system. Other, more exotic applications are also being pursued such as the use of lipid bilayer membrane pores for
693: 285: 125:) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and 1406:
In studies of molecular and cellular biology it is often desirable to artificially induce fusion. The addition of
6221: 6112: 6002: 5248:
Boris EH, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD (1997). "Stealth liposomes: from theory to product".
1132: 980: 675:. This is an extremely broad and important class of biomolecule. It is estimated that up to a third of the human 672: 238: 181: 46: 1623: 1140: 1065:
Exocytosis of outer membrane vesicles (MV) liberated from inflated periplasmic pockets (p) on surface of human
997: 489: 336: 106: 5160:"Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential" 4846:
Papahadjopoulos D, Nir S, DĂĽzgĂĽnes N (April 1990). "Molecular mechanisms of calcium-induced membrane fusion".
1592: 1495:
for drug delivery, especially for cancer treatment. (Note- the term “liposome” is in essence synonymous with “
779:
A lipid bilayer cannot be seen with a traditional microscope because it is too thin, so researchers often use
4924:
Markin VS, Kozlov MM, Borovjagin VL (October 1984). "On the theory of membrane fusion. The stalk mechanism".
6029: 2481:
Kornberg RD, McConnell HM (March 1971). "Inside-outside transitions of phospholipids in vesicle membranes".
1431: 1161: 861: 853: 841: 780: 225: 213: 5209:"Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes" 6125: 6107: 2735:"Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes" 1588: 989: 664:
which are, inside the cell, loaded with the neurotransmitters to be released later. These loaded vesicles
429: 380: 3701:"Lipid membrane phase behavior elucidated in real time by controlled environment atomic force microscopy" 2623:"Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study" 881:
where the refractive index in the plane of the bilayer differs from that perpendicular by as much as 0.1
6161: 6116: 3569:"Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release" 3457:"Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer" 2680:"Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study" 1361: 751: 683:
protein, which identifies cells as “self” and thus inhibits their destruction by the immune system. The
649: 606: 412:
phase bilayers a given lipid will exchange locations with its neighbor millions of times a second. This
4089:
Gouaux E, Mackinnon R (December 2005). "Principles of selective ion transport in channels and pumps".
2678:
Perez-Salas, Ursula; Porcar, Lionel; Garg, Sumit; Ayee, Manuela A. A.; Levitan, Irena (October 2022).
5935: 5893: 5620: 5091: 4792: 4688: 4571: 4516: 4430: 4377: 4098: 4002: 3912: 3789: 3665: 3525: 3468: 3409: 3398:"Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties" 3195: 2954: 2864: 2814: 2746: 2634: 2435: 2380: 2278: 2123: 2014: 1874: 1656: 1643: 1475: 1470: 1465: 1460: 1443: 1386:. The first of these proteins to be studied were the viral fusion proteins, which allow an enveloped 1322: 1304: 1148: 1051: 665: 493: 344: 4781:"The effects of intra-membrane viscosity on lipid membrane morphology: complete analytical solution" 2853:"Domain Registration in Raft-Mimicking Lipid Mixtures Studied Using Polymer-Tethered Lipid Bilayers" 2851:
Garg, Sumit; RĂĽhe, JĂĽrgen; LĂĽdtke, Karin; Jordan, Rainer; Naumann, Christoph A. (15 February 2007).
5703:
Dooren LJ, Wiedemann LR (1986). "On bimolecular layers of lipids on the chromocytes of the blood".
4999: 1673: 1630: 1523: 1480: 1407: 799: 795: 474: 424: 348: 277: 242: 209: 185: 173: 102: 39: 2802: 5917: 5728: 5589: 5115: 5064: 5021: 4871: 4540: 4454: 4165: 4122: 4071: 3936: 3885: 3755: 3549: 3455:
Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (April 2001).
3264: 3164: 2715: 2404: 2312: 2085: 1778: 1727: 1678: 1549: 985: 700: 485: 340: 301: 281: 234: 996:. Alternatively, the energy source can be another chemical gradient already in place, as in the 2803:"Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers" 2331: 885:
units. This has been used to characterise the degree of order and disruption in bilayers using
725: 617: 347:
and its phosphorylated derivatives. By contrast, the outer (extracellular) leaflet is based on
6166: 5955: 5909: 5866: 5839: 5812: 5777: 5720: 5685: 5636: 5581: 5546: 5497: 5462: 5427: 5361: 5293: 5230: 5189: 5138: 5107: 5056: 5011: 4972: 4933: 4906: 4863: 4828: 4810: 4714: 4657: 4620: 4597: 4532: 4489: 4446: 4403: 4346: 4214: 4157: 4114: 4063: 4028: 3971: 3928: 3877: 3815: 3720: 3681: 3633: 3598: 3541: 3494: 3437: 3359: 3316: 3256: 3221: 3156: 3121: 3082: 3039: 3009: 2982: 2921: 2898: 2880: 2830: 2780: 2762: 2707: 2699: 2660: 2603: 2568: 2533: 2498: 2463: 2396: 2353: 2304: 2296: 2247: 2211: 2194:
Bretscher MS (1 March 1972). "Asymmetrical Lipid Bilayer Structure for Biological Membranes".
2149: 2077: 2042: 1981: 1951: 1902: 1843: 1770: 1719: 1496: 1449: 1399: 1343: 1277: 1216:
lipid bilayers can easily bend, most cannot stretch more than a few percent before rupturing.
1186: 923: 639: 629:
a chemical reaction on the interior domain (red). The gray feature is the surrounding bilayer.
376: 189: 6018:
Simulations and publication links related to the cross sectional structure of lipid bilayers.
4968: 4485: 3903:
Hauser H, Phillips MC, Stubbs M (October 1972). "Ion permeability of phospholipid bilayers".
1715: 1232:. Most techniques require sophisticated microscopy and very sensitive measurement equipment. 423:
The phase behavior of lipid bilayers is determined largely by the strength of the attractive
6181: 6099: 5982: 5947: 5901: 5830:
Robertson JD (1960). "The molecular structure and contact relationships of cell membranes".
5804: 5767: 5759: 5712: 5675: 5667: 5628: 5573: 5536: 5528: 5489: 5454: 5419: 5351: 5320: 5285: 5257: 5220: 5179: 5171: 5099: 5048: 5003: 4991: 4964: 4898: 4855: 4818: 4800: 4761: 4704: 4696: 4649: 4587: 4579: 4524: 4481: 4438: 4393: 4385: 4336: 4328: 4204: 4196: 4149: 4106: 4055: 4018: 4010: 3963: 3920: 3869: 3805: 3797: 3747: 3712: 3673: 3625: 3588: 3580: 3533: 3484: 3476: 3427: 3417: 3349: 3248: 3211: 3203: 3148: 3113: 3072: 2972: 2962: 2888: 2872: 2822: 2770: 2754: 2691: 2650: 2642: 2595: 2560: 2525: 2490: 2453: 2443: 2388: 2343: 2286: 2267:"Investigating lipid headgroup composition within epithelial membranes: a systematic review" 2239: 2203: 2176: 2139: 2131: 2069: 2032: 2022: 1941: 1933: 1892: 1882: 1835: 1760: 1711: 1383: 1225: 1088:, a Nobel prize-winning (year, 2013) process, is traditionally regarded as a prerogative of 1016: 882: 767: 661: 657: 530: 157: 94: 3838: 3239:
Koch AL (1984). "Primeval cells: possible energy-generating and cell-division mechanisms".
1801: 449:, which modulates bilayer permeability, mechanical strength, and biochemical interactions. 396: 261: 6176: 6015: 5396: 3513: 3101: 2424:"Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly" 1863:"Neutron Diffraction Studies on the Location of Water in Lecithin Bilayer Model Membranes" 1491:
To date, the most successful commercial application of lipid bilayers has been the use of
1453: 1430:
in a process known as electrofusion. It is believed that this phenomenon results from the
1427: 1395: 1117: 976: 671:
Lipid bilayers are also involved in signal transduction through their role as the home of
272: 130: 4992: 3778:"Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy" 3338:"An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins" 5897: 5624: 5095: 4796: 4692: 4575: 4520: 4434: 4381: 4102: 4006: 3916: 3793: 3669: 3529: 3472: 3413: 3199: 2958: 2868: 2818: 2750: 2638: 2439: 2384: 2282: 2127: 2018: 1878: 6061: 5772: 5747: 5680: 5655: 5541: 5516: 5184: 5159: 4823: 4780: 4709: 4676: 4592: 4559: 4332: 4209: 4184: 4023: 3990: 3810: 3777: 3593: 3568: 3489: 3456: 3216: 3183: 2893: 2852: 2775: 2734: 2655: 2622: 2144: 2111: 1946: 1921: 1751: 1553: 1012: 513: 250: 149: 78: 67: 5951: 5808: 5289: 5261: 5225: 5208: 4765: 4700: 4583: 4341: 4316: 4014: 3776:
Steltenkamp S, MĂĽller MM, Deserno M, Hennesthal C, Steinem C, Janshoff A (July 2006).
3480: 3432: 3397: 3207: 3184:"Binding of peptides with basic residues to membranes containing acidic phospholipids" 2458: 2423: 2348: 2135: 1937: 1897: 1862: 1839: 848: 30: 6210: 6186: 6146: 6053: 5068: 5025: 4398: 4365: 4289: 4267:
YashRoy R.C. (1998) Discovery of vesicular exocytosis in prokaryotes and its role in
3967: 3354: 3337: 3286: 2977: 2942: 2719: 2599: 2316: 2243: 2180: 2037: 2002: 1974: 1765: 1746: 1648: 1519: 1339: 1335: 1204: 1101: 1055: 948: 878: 772: 733: 688: 570: 539: 462: 352: 246: 197: 193: 82: 5732: 5593: 4389: 4169: 4126: 4075: 3889: 3759: 3268: 3168: 2733:
Garg, S.; Porcar, L.; Woodka, A. C.; Butler, P. D.; Perez-Salas, U. (20 July 2011).
2408: 2089: 1782: 1369: 1313: 6084: 6074: 5921: 5857:
Robertson JD (1959). "The ultrastructure of cell membranes and their derivatives".
5389: 5119: 4875: 4544: 4458: 3940: 3553: 1731: 1534: 1511: 1330:, since the eukaryotic cell is extensively sub-divided by lipid bilayer membranes. 1128: 844:
images showing formation of transmembrane pores (holes) in supported lipid bilayer
704: 598: 594: 582: 547: 543: 505: 477:(PC), accounting for about half the phospholipids in most mammalian cells. PC is a 458: 292: 140: 98: 6021: 6008: 473:
are also important components. Of the phospholipids, the most common headgroup is
4317:"Gene transfer into mouse lyoma cells by electroporation in high electric fields" 3514:"Single-channel currents recorded from membrane of denervated frog muscle fibres" 3001: 2392: 2060:
Marsh D (December 2002). "Membrane water-penetration profiles from spin labels".
1556:
by Oxford Nanolabs. To date, this technology has not proven commercially viable.
6079: 3801: 3629: 3061:"The role of phosphatidylserine in recognition of apoptotic cells by phagocytes" 2876: 2646: 1618:
solutions, Hugo Fricke determined that the cell membrane was 3.3 nm thick.
1615: 1611: 1515: 1040: 1005: 972: 959: 927: 756: 555: 551: 497: 470: 446: 433: 428:
identical long-tailed lipid. Transition temperature can also be affected by the
413: 332: 311: 304:
coat on a bacterial outer membrane, which helps retain a water layer around the
177: 144: 122: 5632: 5532: 5493: 5458: 5423: 4805: 4560:"Mechanical properties of vesicles. II. A model for osmotic swelling and lysis" 4251:
YashRoy R C (1993) Electron microscope studies of surface pili and vesicles of
3102:"The role of matrix vesicles in growth plate development and biomineralization" 2695: 1061: 388:
in other monolayer even when other monolayer can not phase separate by itself.
6156: 6151: 5324: 2758: 2073: 1683: 1668: 1538: 1500: 1391: 1331: 1268:
is not measured experimentally but rather is calculated from measurements of K
1089: 1081: 1044: 944: 906: 808: 708: 643: 621:
Illustration of a GPCR signaling protein. In response to a molecule such as a
610: 566: 509: 478: 361: 137: 17: 5175: 5007: 4814: 2884: 2834: 2766: 2703: 2300: 1096:
was however broken with the revelation that nanovesicles, popularly known as
5356: 5339: 4110: 3716: 3422: 2679: 1635: 1545: 1419: 1327: 1166: 1136: 993: 898: 626: 590: 586: 574: 560: 501: 417: 357: 305: 296: 118: 86: 77:. These membranes are flat sheets that form a continuous barrier around all 5959: 5913: 5870: 5843: 5816: 5781: 5689: 5640: 5585: 5577: 5550: 5501: 5466: 5431: 5365: 5297: 5193: 5060: 4976: 4832: 4718: 4536: 4493: 4450: 4407: 4161: 4118: 3932: 3881: 3819: 3724: 3685: 3637: 3498: 3363: 3125: 3086: 3077: 3060: 2986: 2967: 2920:(Extended Paperback ed.). Princeton, N.J: Princeton University Press. 2902: 2784: 2711: 2664: 2572: 2448: 2371:
Bretscher MS (August 1973). "Membrane structure: some general principles".
2308: 2207: 2153: 2081: 2046: 2027: 1955: 1906: 1723: 1260:
made from galactolipid-rich thylakoid membranes destabilises bilayers into
1239:, which is a measure of how much energy is needed to stretch the bilayer, K 5724: 5234: 5111: 4937: 4910: 4867: 4661: 4601: 4350: 4218: 4067: 4032: 3975: 3545: 3441: 3260: 3225: 3160: 2941:
Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K (September 2001).
2607: 2537: 2502: 2400: 2357: 2251: 2215: 1887: 1847: 1774: 550:. The partitioning ability of the lipid bilayer is based on the fact that 6191: 6141: 5763: 4752:
Weaver JC, Chizmadzhev YA (1996). "Theory of electroporation: A review".
4200: 3584: 2467: 2112:"Effect of chain length and unsaturation on elasticity of lipid bilayers" 1492: 1423: 1347: 803: 676: 602: 369: 74: 51: 5986: 5671: 5656:"The electrical capacity of suspensions with special reference to blood" 5515:
Dagenais, C.; Avdeef, A.; Tsinman, O.; Dudley, A.; Beliveau, R. (2009).
5378: 5039:
Chen YA, Scheller RH (February 2001). "SNARE-mediated membrane fusion".
4902: 4653: 4528: 4366:"Laboratory-scale evidence for lightning-mediated gene transfer in soil" 3602: 2529: 2494: 1365:
Schematic illustration of the process of fusion through stalk formation.
1026: 1000:. It is through the action of ion pumps that cells are able to regulate 169:
made by model bilayers have also been used clinically to deliver drugs.
5716: 5133:
Jordan, Carol A.; Neumann, Eberhard; Sowershi mason, Arthur E. (1989).
4953:"Protein-lipid interplay in fusion and fission of biological membranes" 4859: 4059: 3873: 3252: 3152: 2291: 2266: 1415: 1245: 940: 865: 812: 622: 578: 535: 114: 3989:
Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (January 1996).
3751: 3677: 2564: 6171: 6089: 5905: 5103: 5052: 3924: 3537: 2826: 1584: 1411: 1020: 936: 902: 653: 484:
Other headgroups are also present to varying degrees and can include
466: 437: 161: 5608: 4952: 4442: 4153: 3700: 1382:
since biological fusion is almost always regulated by the action of
771:
Human red blood cells viewed through a fluorescence microscope. The
3059:
Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (July 1998).
3567:
Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (May 1979).
3283:"5.1 Cell Membrane Structure | Life Science | University of Tokyo" 2110:
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (July 2000).
1580: 1530: 1507: 1394:
cells also use fusion proteins, the best-studied of which are the
1387: 1368: 1360: 1351: 1312: 1060: 1025: 953: 932: 847: 835: 766: 724: 573:(also known as the plasma membrane). Many prokaryotes also have a 395: 310: 260: 230: 205: 201: 129:
by transporting ions across their membranes using proteins called
90: 71: 45: 35: 29: 5748:"On bimolecular layers of lipids on the chromocytes of the blood" 3117: 1354:
have dedicated fusion proteins to gain entry into the host cell.
1203:, can be used to describe them. Solid lipid bilayers also have a 625:
binding to the exterior domain (blue) the GPCR changes shape and
4231:
YashRoy R.C. (1999) 'Exocytosis in prokaryotes' and its role in
1544:
Another potential application of lipid bilayers is the field of
1522:. The most significant advance in this area was the grafting of 1135:. It has even been proposed that electroporation resulting from 935:
typically have a higher rate of diffusion through bilayers than
680: 529:
The primary role of the lipid bilayer in biology is to separate
6025: 1272:
and bilayer thickness, since the three parameters are related.
954: 4731:
YashRoy R.C. (1994) Destabilisation of lamellar dispersion of
4315:
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982).
1124: 684: 153: 121:
in width, because they are impermeable to most water-soluble (
110: 50:
The three main structures phospholipids form in solution; the
4364:
Demanèche S, Bertolla F, Buret F, et al. (August 2001).
1378:
The situation is further complicated when considering fusion
441:
while vegetable oil, which is mostly unsaturated, is liquid.
1030:
Schematic illustration of pinocytosis, a type of endocytosis
5973:
Kunitake T (1977). "A totally synthetic bilayer membrane".
4677:"Dynamic tension spectroscopy and strength of biomembranes" 3182:
Kim J, Mosior M, Chung LA, Wu H, McLaughlin S (July 1991).
1001: 775:
has been stained with a fluorescent dye. Scale bar is 20ÎĽm.
126: 4421:
Garcia ML (July 2004). "Ion channels: gate expectations".
4185:"Membrane flow during pinocytosis. A stereologic analysis" 3651: 3649: 3647: 2621:
Lin WC, Blanchette CD, Ratto TV, Longo ML (January 2006).
652:, whereby a nerve impulse that has reached the end of one 165:
the use of artificial "model" bilayers produced in a lab.
4558:
Hallett FR, Marsh J, Nickel BG, Wood JM (February 1993).
109:
in the cell. The lipid bilayer is the barrier that keeps
5338:
Matsumura Y, Gotoh M, Muro K, et al. (March 2004).
4998:. Nano and Microengineering Series. CRC Press. pp.  4675:
Evans E, Heinrich V, Ludwig F, Rawicz W (October 2003).
335:, the inner (cytoplasmic) leaflet is composed mostly of 1980:(10th ed.). Englewood Cliffs, N.J: Prentice Hall. 1529:
The first stealth liposomes were passively targeted at
648:
The most familiar form of cellular signaling is likely
1704:
Annual Review of Biophysics and Biomolecular Structure
1533:
tissues. Because tumors induce rapid and uncontrolled
660:. This transmission is made possible by the action of 2003:"Polarity and permeation profiles in lipid membranes" 1280: 1189: 656:
is conveyed to an adjacent neuron via the release of
2265:
Coones, R. T.; Green, R. J.; Frazier, R. A. (2021).
1972:
Parker J, Madigan MT, Brock TD, Martinko JM (2003).
1745:
Divecha, Nullin; Irvine, Robin F (27 January 1995).
384:
compare to cholesterol and other smaller molecules.
6134: 6098: 6060: 5207:Chonn A, Semple SC, Cullis PR (15 September 1992). 3100:Anderson HC, Garimella R, Tague SE (January 2005). 1861:Zaccai G, Blasie JK, Schoenborn BP (January 1975). 6005:An extensive database of lipid physical properties 4255:3,10:r:- organisms. Ind Jl of Anim Sci 63, 99-102. 3771: 3769: 1973: 1651:and do not require a patterned support structure. 1286: 1195: 1108:and microbe-environment interactions, in general. 5135:Electroporation and electrofusion in cell biology 889:to understand mechanisms of protein interaction. 54:(a closed bilayer), the micelle and the bilayer. 4237:ICAR NEWS - A Science and Technology Newsletter 2330:Bell RM, Ballas LM, Coleman RA (1 March 1981). 4183:Steinman RM, Brodie SE, Cohn ZA (March 1976). 3306: 3304: 811:vesicles are the means of chemical release at 224:When phospholipids are exposed to water, they 156:phase state at lower temperatures but undergo 152:of the bilayer. The bilayer can adopt a solid 6037: 4619:. Cambridge, UK: Cambridge University Press. 3029: 3027: 3025: 2105: 2103: 2101: 2099: 1629:This theory was confirmed through the use of 364:that then actively scavenges the dying cell. 143:that have a hydrophilic phosphate head and a 38:bilayer cross section is made up entirely of 8: 4290:"Exocytosis from gram negative bacteria for 3336:Martelli PL, Fariselli P, Casadio R (2003). 1920:Nagle JF, Tristram-Nagle S (November 2000). 1518:and thus are less readily recognized by the 1422:” from this combination expresses a desired 825:NMR(nuclear magnetic resonance) spectroscopy 148:properties, for instance by determining the 136:Biological bilayers are usually composed of 5521:European Journal of Pharmaceutical Sciences 5482:European Journal of Pharmaceutical Sciences 5447:European Journal of Pharmaceutical Sciences 5412:European Journal of Pharmaceutical Sciences 3315:(4th ed.). New York: Garland Science. 1967: 1965: 1821: 1819: 6044: 6030: 6022: 5390:Nanion Technologies. Automated Patch Clamp 958:Structure of a potassium ion channel. The 5771: 5705:Journal of European Journal of Pediatrics 5679: 5540: 5355: 5224: 5183: 4822: 4804: 4708: 4591: 4397: 4340: 4208: 4022: 3809: 3592: 3488: 3431: 3421: 3353: 3215: 3076: 2976: 2966: 2892: 2774: 2654: 2457: 2447: 2347: 2290: 2143: 2036: 2026: 1945: 1896: 1886: 1764: 1346:, and transport of waste products to the 1279: 1188: 27:Membrane of two layers of lipid molecules 5158:Immordino ML, Dosio F, Cattel L (2006). 4969:10.1146/annurev.biochem.72.121801.161504 4486:10.1146/annurev.biophys.35.040405.102022 3038:(2nd ed.). Boston: Academic Press. 1716:10.1146/annurev.biophys.36.040306.132643 1471:Tethered Bilayer Lipid Membranes (t-BLM) 1398:. SNARE proteins are used to direct all 1165: 1139:strikes could be a mechanism of natural 860:A new method to study lipid bilayers is 798:offers a higher resolution image. In an 616: 546:capability being the production of more 93:are made of a lipid bilayer, as are the 4994:Nano and Molecular Electronics Handbook 3377:Filmore D (2004). "It's A GPCR World". 1694: 819:Nuclear magnetic resonance spectroscopy 5380:. Biacore Inc. Retrieved Feb 12, 2009. 3699:Tokumasu F, Jin AJ, Dvorak JA (2002). 1309:Interbilayer forces in membrane fusion 877:Lipid bilayers exhibit high levels of 4754:Bioelectrochemistry and Bioenergetics 4294:invasion of chicken ileal epithelium" 3396:Montal M, Mueller P (December 1972). 2846: 2844: 2796: 2794: 926:molecules have low solubility in the 7: 266:influence the molecular arrangement. 5609:"The recent development of Biology" 4951:Chernomordik LV, Kozlov MM (2003). 4779:Zeidi, Mahdi; Kim, Chun IL (2018). 2422:Rothman JE, Kennedy EP (May 1977). 577:, but the cell wall is composed of 432:of the lipid tails. An unsaturated 4474:Annu. Rev. Biophys. Biomol. Struct 4333:10.1002/j.1460-2075.1982.tb01257.x 1281: 1248:or inverted micelles. Addition of 1190: 569:have only one lipid bilayer - the 554:molecules cannot easily cross the 25: 6009:Structure of Fluid Lipid Bilayers 4298:Indian Journal of Poultry Science 3835:"The Journal of Chemical Physics" 3512:Neher E, Sakmann B (April 1976). 3002:"Chapter 10: Membrane Structures" 1798:"The Journal of Chemical Physics" 1481:Droplet Interface Bilayers (DIBs) 1098:bacterial outer membrane vesicles 237:). This complex process includes 5752:Journal of Experimental Medicine 1015:, which allows conduction of an 887:dual polarisation interferometry 873:Dual polarisation interferometry 730:Transmission Electron Microscope 5399:. Retrieved Feb 28, 2010. (PDF) 4390:10.1128/AEM.67.8.3440-3444.2001 4239:, (Oct-Dec) vol. 5(4), page 18. 2684:The Journal of Membrane Biology 1976:Brock biology of microorganisms 1605:History of cell membrane theory 356:example, when a cell undergoes 5250:Advanced Drug Delivery Reviews 3705:Journal of Electron Microscopy 3355:10.1093/bioinformatics/btg1027 1466:Supported lipid bilayers (SLB) 1452:, to define the boundaries of 979:. Both pumps and channels are 721:Lipid bilayer characterization 508:vesicles is necessary for the 1: 5952:10.1016/S0022-2836(64)80115-7 5809:10.1016/S0022-5320(58)80008-8 5660:Journal of General Physiology 5290:10.1016/S0168-3659(01)00309-1 5262:10.1016/S0169-409X(96)00456-5 5226:10.1016/S0021-9258(19)37026-7 4766:10.1016/S0302-4598(96)05062-3 4737:Biochimica et Biophysica Acta 4701:10.1016/S0006-3495(03)74658-X 4584:10.1016/S0006-3495(93)81384-5 4275:, vol. 75(10), pp. 1062-1066. 4015:10.1016/S0006-3495(96)79575-9 3481:10.1016/S0006-3495(01)76153-X 3313:Molecular biology of the cell 3208:10.1016/S0006-3495(91)82037-9 3006:Molecular Biology of the Cell 2349:10.1016/S0022-2275(20)34952-X 2136:10.1016/S0006-3495(00)76295-3 1938:10.1016/S0304-4157(00)00016-2 1922:"Structure of lipid bilayers" 1840:10.1016/S0022-2836(83)80007-2 893:Quantum chemical calculations 5940:Journal of Molecular Biology 5746:Gorter E, Grendel F (1925). 5566:Chemistry & Biodiversity 5313:Journal of Liposome Research 4735:membrane lipids by sucrose. 3968:10.1016/0005-2736(67)90095-8 2947:Proc. Natl. Acad. Sci. U.S.A 2600:10.1016/0005-2736(92)90101-Q 2428:Proc. Natl. Acad. Sci. U.S.A 2393:10.1126/science.181.4100.622 2244:10.1016/0005-2736(73)90143-0 2181:10.1016/0009-3084(71)90010-7 2007:Proc. Natl. Acad. Sci. U.S.A 1867:Proc. Natl. Acad. Sci. U.S.A 1766:10.1016/0092-8674(95)90409-3 1384:membrane-associated proteins 1086:membrane vesicle trafficking 913:Transport across the bilayer 909:moments of lipid membranes. 407:Lipid bilayer phase behavior 392:Phases and phase transitions 6122:Peripheral membrane protein 3802:10.1529/biophysj.106.081398 3630:10.1016/j.ssnmr.2005.10.009 3618:Solid State Nucl Magn Reson 2877:10.1529/biophysj.106.091082 2647:10.1529/biophysj.105.067066 1622:lipids as a monolayer on a 1461:Black lipid membranes (BLM) 1250:small hydrophilic molecules 988:. The energy source can be 585:, not lipids. In contrast, 6238: 6113:Integral membrane proteins 5633:10.1126/science.20.519.777 5533:10.1016/j.ejps.2009.06.009 5494:10.1016/j.ejps.2004.04.009 5459:10.1016/j.ejps.2004.11.011 5424:10.1016/j.ejps.2003.10.009 5137:. New York: Plenum Press. 4806:10.1038/s41598-018-31251-6 2696:10.1007/s00232-022-00231-3 1602: 1441: 1432:energetically active edges 1302: 1159: 1115: 1038: 1035:Endocytosis and exocytosis 981:integral membrane proteins 852:Illustration of a typical 718: 694:G protein-coupled receptor 673:integral membrane proteins 637: 525:Containment and separation 436:can produce a kink in the 404: 286:nuclear magnetic resonance 220:Structure and organization 182:integral membrane proteins 5325:10.3109/08982109909024786 4739:, vol. 1212, pp. 129-133. 2759:10.1016/j.bpj.2011.06.014 2074:10.1007/s00249-002-0245-z 1078:Exocytosis in prokaryotes 992:, as is the case for the 416:exchange allows lipid to 239:non-covalent interactions 107:membrane-bound organelles 5832:Prog. Biophys. Mol. Biol 5607:Loeb J (December 1904). 5176:10.2217/17435889.1.3.297 5041:Nat. Rev. Mol. Cell Biol 5008:10.1201/9781315221670-17 4370:Appl. Environ. Microbiol 4142:Nat. Rev. Mol. Cell Biol 2916:Berg, Howard C. (1993). 1747:"Phospholipid signaling" 1624:Langmuir-Blodgett trough 1550:automated patch clamping 1287:{\displaystyle \Lambda } 1196:{\displaystyle \Lambda } 1141:horizontal gene transfer 1013:voltage-gated Na channel 715:Characterization methods 542:with virtually its sole 490:phosphatidylethanolamine 337:phosphatidylethanolamine 308:to prevent dehydration. 6157:Lipid raft/microdomains 4615:Boal, David H. (2001). 4111:10.1126/science.1113666 3423:10.1073/pnas.69.12.3561 3311:Alberts, Bruce (2002). 3034:Yeagle, Philip (1993). 3000:Alberts, Bruce (2017). 2918:Random walks in biology 1487:Commercial applications 1162:Lipid bilayer mechanics 862:Atomic force microscopy 832:Atomic force microscopy 781:fluorescence microscopy 763:Fluorescence microscopy 745:Electrical measurements 214:atomic force microscopy 6162:Membrane contact sites 6126:Lipid-anchored protein 6108:Membrane glycoproteins 5578:10.1002/cbdv.200900149 3956:Biochim. Biophys. Acta 3078:10.1038/sj.cdd.4400404 3036:The membranes of cells 2968:10.1073/pnas.191168698 2588:Biochim. Biophys. Acta 2449:10.1073/pnas.74.5.1821 2232:Biochim. Biophys. Acta 2208:10.1038/newbio236011a0 2028:10.1073/pnas.131023798 1926:Biochim. Biophys. Acta 1589:gastrointestinal tract 1418:cells. The resulting “ 1375: 1366: 1319: 1288: 1197: 1172: 1074: 1050:cell membrane through 1031: 967:Ion pumps and channels 963: 857: 845: 776: 737: 630: 430:degree of unsaturation 402: 319: 267: 257:Cross section analysis 70:made of two layers of 55: 43: 6117:transmembrane protein 6014:11 April 2011 at the 5395:31 March 2010 at the 5357:10.1093/annonc/mdh092 4926:Gen. Physiol. Biophys 4848:J. Bioenerg. Biomembr 4617:Mechanics of the cell 3717:10.1093/jmicro/51.1.1 3402:Proc. Natl. Acad. Sci 3379:Modern Drug Discovery 2001:Marsh D (July 2001). 1888:10.1073/pnas.72.1.376 1657:intermolecular forces 1603:Further information: 1442:Further information: 1372: 1364: 1316: 1289: 1224:varies strongly with 1198: 1169: 1160:Further information: 1131:as well as bacterial 1116:Further information: 1084:, popularly known as 1080:: Membrane vesicular 1064: 1029: 957: 851: 839: 770: 728: 719:Further information: 650:synaptic transmission 620: 607:endoplasmic reticulum 405:Further information: 399: 314: 264: 49: 33: 6142:Caveolae/Coated pits 5764:10.1084/jem.41.4.439 4201:10.1083/jcb.68.3.665 3585:10.1083/jcb.81.2.275 3348:(Suppl 1): i205–11. 1444:Model lipid bilayers 1305:Lipid bilayer fusion 1278: 1187: 1149:dielectric breakdown 802:, a beam of focused 500:is a marker of cell 494:phosphatidylglycerol 345:phosphatidylinositol 243:van der Waals forces 204:, or the entry of a 174:biological membranes 64:phospholipid bilayer 5987:10.1021/ja00453a066 5898:1962Natur.194..979M 5797:J. Ultrastruct. Res 5672:10.1085/jgp.9.2.137 5625:1904Sci....20..777L 5096:1975Natur.256..495K 4903:10.1021/bi00370a600 4797:2018NatSR...812845Z 4693:2003BpJ....85.2342E 4654:10.1021/bi00237a008 4576:1993BpJ....64..435H 4529:10.1038/nature02743 4521:2004Natur.430..235S 4435:2004Natur.430..153G 4382:2001ApEnM..67.3440D 4288:YashRoy RC (1998). 4103:2005Sci...310.1461G 4007:1996BpJ....70..339P 3917:1972Natur.239..342H 3794:2006BpJ....91..217S 3670:2008NanoL...8..941R 3530:1976Natur.260..799N 3473:2001BpJ....80.1829M 3414:1972PNAS...69.3561M 3289:on 22 February 2014 3200:1991BpJ....60..135K 3008:. Garland Science. 2959:2001PNAS...9810642D 2869:2007BpJ....92.1263G 2857:Biophysical Journal 2819:2008SMat....4.1899D 2751:2011BpJ...101..370G 2739:Biophysical Journal 2639:2006BpJ....90..228L 2530:10.1021/bi00711a010 2495:10.1021/bi00783a003 2440:1977PNAS...74.1821R 2385:1973Sci...181..622B 2332:"Lipid topogenesis" 2283:2021SMat...17.6773C 2128:2000BpJ....79..328R 2019:2001PNAS...98.7777M 1879:1975PNAS...72..376Z 1674:Membrane biophysics 1631:electron microscopy 1593:blood–brain barrier 1524:polyethylene glycol 1408:polyethylene glycol 1264:phase. Typically, K 1179:, bending modulus K 800:electron microscope 796:Electron microscopy 791:Electron microscopy 755:activity of single 475:phosphatidylcholine 349:phosphatidylcholine 278:x-ray reflectometry 210:electron microscopy 186:annular lipid shell 40:phosphatidylcholine 6167:Membrane nanotubes 6052:Structures of the 5859:Biochem. Soc. Symp 5717:10.1007/BF00439232 4957:Annu. Rev. Biochem 4860:10.1007/BF00762944 4785:Scientific Reports 4060:10.1007/bf00232899 3874:10.1007/BF00813743 3253:10.1007/BF02102359 3153:10.1007/BF02555727 3141:Calcif. Tissue Int 2292:10.1039/D1SM00703C 2196:Nature New Biology 2169:Chem. Phys. Lipids 1679:Lipid polymorphism 1376: 1367: 1320: 1284: 1258:lamellar liposomes 1193: 1183:, and edge energy 1173: 1123:molecules such as 1106:host cell invasion 1075: 1032: 1006:pumping of protons 986:chemical potential 964: 858: 846: 777: 738: 701:phosphatidylserine 631: 486:phosphatidylserine 403: 341:phosphatidylserine 320: 302:lipopolysaccharide 282:neutron scattering 268: 235:hydrophobic effect 56: 44: 6217:Biological matter 6200: 6199: 6100:Membrane proteins 5981:(11): 3860–3861. 5654:Fricke H (1925). 5278:J Control Release 5144:978-0-306-43043-5 5017:978-0-8493-8528-5 4626:978-0-521-79681-1 3752:10.1021/la026427w 3678:10.1021/nl080080l 3524:(5554): 799–802. 3322:978-0-8153-4072-0 3065:Cell Death Differ 3045:978-0-12-769041-4 2927:978-0-691-00064-0 2565:10.1021/la047654w 2379:(4100): 622–629. 2277:(28): 6773–6786. 1987:978-0-13-049147-3 1450:Synthetic Biology 1256:into mixed lipid 918:Passive diffusion 759:can be resolved. 732:(TEM) image of a 687:virus evades the 662:synaptic vesicles 658:neurotransmitters 640:Neurotransmission 453:Surface chemistry 381:Langmuir-Blodgett 190:acrosome reaction 172:The structure of 16:(Redirected from 6229: 6222:Membrane biology 6182:Nuclear envelope 6177:Nodes of Ranvier 6046: 6039: 6032: 6023: 5991: 5990: 5975:J. Am. Chem. Soc 5970: 5964: 5963: 5932: 5926: 5925: 5906:10.1038/194979a0 5892:(4832): 979–80. 5881: 5875: 5874: 5854: 5848: 5847: 5827: 5821: 5820: 5792: 5786: 5785: 5775: 5743: 5737: 5736: 5700: 5694: 5693: 5683: 5651: 5645: 5644: 5619:(519): 777–786. 5604: 5598: 5597: 5561: 5555: 5554: 5544: 5512: 5506: 5505: 5477: 5471: 5470: 5442: 5436: 5435: 5406: 5400: 5387: 5381: 5376: 5370: 5369: 5359: 5335: 5329: 5328: 5308: 5302: 5301: 5272: 5266: 5265: 5245: 5239: 5238: 5228: 5219:(26): 18759–65. 5204: 5198: 5197: 5187: 5155: 5149: 5148: 5130: 5124: 5123: 5104:10.1038/256495a0 5079: 5073: 5072: 5053:10.1038/35052017 5036: 5030: 5029: 4997: 4987: 4981: 4980: 4948: 4942: 4941: 4921: 4915: 4914: 4886: 4880: 4879: 4843: 4837: 4836: 4826: 4808: 4776: 4770: 4769: 4749: 4743: 4729: 4723: 4722: 4712: 4672: 4666: 4665: 4637: 4631: 4630: 4612: 4606: 4605: 4595: 4555: 4549: 4548: 4515:(6996): 235–40. 4504: 4498: 4497: 4469: 4463: 4462: 4418: 4412: 4411: 4401: 4361: 4355: 4354: 4344: 4312: 4306: 4305: 4285: 4279: 4265: 4259: 4249: 4243: 4229: 4223: 4222: 4212: 4180: 4174: 4173: 4137: 4131: 4130: 4097:(5753): 1461–5. 4086: 4080: 4079: 4043: 4037: 4036: 4026: 3986: 3980: 3979: 3951: 3945: 3944: 3925:10.1038/239342a0 3900: 3894: 3893: 3857: 3851: 3850: 3848: 3846: 3837:. Archived from 3830: 3824: 3823: 3813: 3773: 3764: 3763: 3735: 3729: 3728: 3696: 3690: 3689: 3653: 3642: 3641: 3613: 3607: 3606: 3596: 3564: 3558: 3557: 3538:10.1038/260799a0 3509: 3503: 3502: 3492: 3452: 3446: 3445: 3435: 3425: 3393: 3387: 3386: 3374: 3368: 3367: 3357: 3333: 3327: 3326: 3308: 3299: 3298: 3296: 3294: 3285:. Archived from 3279: 3273: 3272: 3236: 3230: 3229: 3219: 3179: 3173: 3172: 3136: 3130: 3129: 3097: 3091: 3090: 3080: 3056: 3050: 3049: 3031: 3020: 3019: 2997: 2991: 2990: 2980: 2970: 2938: 2932: 2931: 2913: 2907: 2906: 2896: 2863:(4): 1263–1270. 2848: 2839: 2838: 2827:10.1039/B800801A 2813:(9): 1899–1908. 2798: 2789: 2788: 2778: 2730: 2724: 2723: 2690:(4–5): 423–435. 2675: 2669: 2668: 2658: 2618: 2612: 2611: 2583: 2577: 2576: 2548: 2542: 2541: 2513: 2507: 2506: 2478: 2472: 2471: 2461: 2451: 2419: 2413: 2412: 2368: 2362: 2361: 2351: 2327: 2321: 2320: 2294: 2262: 2256: 2255: 2226: 2220: 2219: 2191: 2185: 2184: 2164: 2158: 2157: 2147: 2107: 2094: 2093: 2057: 2051: 2050: 2040: 2030: 1998: 1992: 1991: 1979: 1969: 1960: 1959: 1949: 1917: 1911: 1910: 1900: 1890: 1858: 1852: 1851: 1823: 1814: 1813: 1811: 1809: 1800:. Archived from 1793: 1787: 1786: 1768: 1742: 1736: 1735: 1699: 1454:artificial cells 1344:sperm activation 1293: 1291: 1290: 1285: 1235:In contrast to K 1226:osmotic pressure 1202: 1200: 1199: 1194: 1017:action potential 998:Ca/Na antiporter 941:osmotic swelling 883:refractive index 589:have a range of 520:Biological roles 504:, whereas PS in 158:phase transition 97:surrounding the 95:nuclear membrane 21: 6237: 6236: 6232: 6231: 6230: 6228: 6227: 6226: 6207: 6206: 6201: 6196: 6130: 6094: 6062:Membrane lipids 6056: 6050: 6016:Wayback Machine 5999: 5994: 5972: 5971: 5967: 5934: 5933: 5929: 5883: 5882: 5878: 5856: 5855: 5851: 5829: 5828: 5824: 5794: 5793: 5789: 5745: 5744: 5740: 5702: 5701: 5697: 5653: 5652: 5648: 5606: 5605: 5601: 5572:(11): 1867–74. 5563: 5562: 5558: 5514: 5513: 5509: 5479: 5478: 5474: 5444: 5443: 5439: 5408: 5407: 5403: 5397:Wayback Machine 5388: 5384: 5377: 5373: 5337: 5336: 5332: 5310: 5309: 5305: 5274: 5273: 5269: 5256:(2–3): 165–77. 5247: 5246: 5242: 5206: 5205: 5201: 5157: 5156: 5152: 5145: 5132: 5131: 5127: 5090:(5517): 495–7. 5081: 5080: 5076: 5038: 5037: 5033: 5018: 4989: 4988: 4984: 4950: 4949: 4945: 4923: 4922: 4918: 4897:(22): 6978–87. 4888: 4887: 4883: 4845: 4844: 4840: 4778: 4777: 4773: 4751: 4750: 4746: 4730: 4726: 4674: 4673: 4669: 4648:(23): 5688–96. 4639: 4638: 4634: 4627: 4614: 4613: 4609: 4557: 4556: 4552: 4506: 4505: 4501: 4471: 4470: 4466: 4443:10.1038/430153a 4429:(6996): 153–5. 4420: 4419: 4415: 4363: 4362: 4358: 4314: 4313: 4309: 4287: 4286: 4282: 4273:Current Science 4266: 4262: 4250: 4246: 4230: 4226: 4182: 4181: 4177: 4154:10.1038/nrm1016 4139: 4138: 4134: 4088: 4087: 4083: 4045: 4044: 4040: 3988: 3987: 3983: 3953: 3952: 3948: 3911:(5371): 342–4. 3902: 3901: 3897: 3859: 3858: 3854: 3844: 3842: 3833: 3831: 3827: 3775: 3774: 3767: 3737: 3736: 3732: 3698: 3697: 3693: 3655: 3654: 3645: 3615: 3614: 3610: 3566: 3565: 3561: 3511: 3510: 3506: 3454: 3453: 3449: 3395: 3394: 3390: 3376: 3375: 3371: 3335: 3334: 3330: 3323: 3310: 3309: 3302: 3292: 3290: 3281: 3280: 3276: 3238: 3237: 3233: 3181: 3180: 3176: 3138: 3137: 3133: 3112:(1–3): 822–37. 3099: 3098: 3094: 3058: 3057: 3053: 3046: 3033: 3032: 3023: 3016: 2999: 2998: 2994: 2953:(19): 10642–7. 2940: 2939: 2935: 2928: 2915: 2914: 2910: 2850: 2849: 2842: 2800: 2799: 2792: 2732: 2731: 2727: 2677: 2676: 2672: 2620: 2619: 2615: 2585: 2584: 2580: 2550: 2549: 2545: 2515: 2514: 2510: 2480: 2479: 2475: 2421: 2420: 2416: 2370: 2369: 2365: 2329: 2328: 2324: 2264: 2263: 2259: 2228: 2227: 2223: 2193: 2192: 2188: 2166: 2165: 2161: 2109: 2108: 2097: 2062:Eur. Biophys. J 2059: 2058: 2054: 2013:(14): 7777–82. 2000: 1999: 1995: 1988: 1971: 1970: 1963: 1919: 1918: 1914: 1860: 1859: 1855: 1825: 1824: 1817: 1807: 1805: 1796: 1794: 1790: 1744: 1743: 1739: 1701: 1700: 1696: 1692: 1665: 1607: 1601: 1489: 1446: 1440: 1428:electroporation 1311: 1301: 1276: 1275: 1271: 1267: 1242: 1238: 1231: 1223: 1214: 1210: 1185: 1184: 1182: 1178: 1164: 1158: 1120: 1118:Electroporation 1114: 1112:Electroporation 1047: 1037: 969: 920: 915: 895: 875: 834: 821: 793: 765: 747: 723: 717: 646: 636: 527: 522: 455: 409: 394: 333:red blood cells 329: 273:plasma membrane 259: 222: 28: 23: 22: 15: 12: 11: 5: 6235: 6233: 6225: 6224: 6219: 6209: 6208: 6198: 6197: 6195: 6194: 6189: 6187:Phycobilisomes 6184: 6179: 6174: 6169: 6164: 6159: 6154: 6149: 6147:Cell junctions 6144: 6138: 6136: 6132: 6131: 6129: 6128: 6119: 6110: 6104: 6102: 6096: 6095: 6093: 6092: 6087: 6082: 6077: 6072: 6066: 6064: 6058: 6057: 6051: 6049: 6048: 6041: 6034: 6026: 6020: 6019: 6006: 5998: 5997:External links 5995: 5993: 5992: 5965: 5946:(5): 660–668. 5936:Bangham, A. D. 5927: 5876: 5849: 5822: 5787: 5738: 5695: 5646: 5599: 5556: 5507: 5472: 5437: 5401: 5382: 5371: 5330: 5319:(2): 199–228. 5303: 5284:(1–3): 47–61. 5267: 5240: 5199: 5170:(3): 297–315. 5150: 5143: 5125: 5074: 5031: 5016: 4982: 4963:(1): 175–207. 4943: 4916: 4881: 4838: 4771: 4744: 4724: 4687:(4): 2342–50. 4667: 4632: 4625: 4607: 4550: 4499: 4464: 4413: 4356: 4307: 4280: 4260: 4244: 4224: 4175: 4132: 4081: 4048:J. Membr. Biol 4038: 3981: 3946: 3895: 3852: 3841:on 15 May 2016 3825: 3765: 3746:(5): 1632–40. 3730: 3691: 3664:(3): 941–944. 3643: 3624:(4): 305–311. 3608: 3579:(2): 275–300. 3559: 3504: 3467:(4): 1829–36. 3447: 3408:(12): 3561–6. 3388: 3369: 3342:Bioinformatics 3328: 3321: 3300: 3274: 3231: 3174: 3131: 3092: 3051: 3044: 3021: 3014: 2992: 2933: 2926: 2908: 2840: 2790: 2745:(2): 370–377. 2725: 2670: 2613: 2578: 2559:(4): 1377–88. 2543: 2524:(14): 2844–8. 2508: 2489:(7): 1111–20. 2473: 2414: 2363: 2342:(3): 391–403. 2322: 2257: 2221: 2186: 2159: 2095: 2052: 1993: 1986: 1961: 1912: 1873:(1): 376–380. 1853: 1815: 1804:on 15 May 2016 1788: 1759:(2): 269–278. 1737: 1710:(1): 107–130. 1693: 1691: 1688: 1687: 1686: 1681: 1676: 1671: 1664: 1661: 1600: 1597: 1587:cultures, the 1554:DNA sequencing 1488: 1485: 1484: 1483: 1478: 1473: 1468: 1463: 1439: 1436: 1300: 1297: 1283: 1269: 1265: 1240: 1236: 1229: 1221: 1212: 1208: 1192: 1180: 1176: 1157: 1154: 1133:transformation 1113: 1110: 1100:, released by 1054:or budding of 1036: 1033: 968: 965: 919: 916: 914: 911: 894: 891: 874: 871: 833: 830: 820: 817: 792: 789: 764: 761: 746: 743: 716: 713: 635: 632: 593:including the 581:or long chain 526: 523: 521: 518: 514:hydroxyapatite 454: 451: 393: 390: 328: 325: 258: 255: 251:hydrogen bonds 221: 218: 85:of almost all 83:cell membranes 68:polar membrane 26: 24: 18:Lipid bilayers 14: 13: 10: 9: 6: 4: 3: 2: 6234: 6223: 6220: 6218: 6215: 6214: 6212: 6205: 6203: 6193: 6190: 6188: 6185: 6183: 6180: 6178: 6175: 6173: 6172:Myelin sheath 6170: 6168: 6165: 6163: 6160: 6158: 6155: 6153: 6150: 6148: 6145: 6143: 6140: 6139: 6137: 6133: 6127: 6123: 6120: 6118: 6114: 6111: 6109: 6106: 6105: 6103: 6101: 6097: 6091: 6088: 6086: 6085:Sphingolipids 6083: 6081: 6078: 6076: 6075:Phospholipids 6073: 6071: 6070:Lipid bilayer 6068: 6067: 6065: 6063: 6059: 6055: 6054:cell membrane 6047: 6042: 6040: 6035: 6033: 6028: 6027: 6024: 6017: 6013: 6010: 6007: 6004: 6001: 6000: 5996: 5988: 5984: 5980: 5976: 5969: 5966: 5961: 5957: 5953: 5949: 5945: 5941: 5937: 5931: 5928: 5923: 5919: 5915: 5911: 5907: 5903: 5899: 5895: 5891: 5887: 5880: 5877: 5872: 5868: 5864: 5860: 5853: 5850: 5845: 5841: 5837: 5833: 5826: 5823: 5818: 5814: 5810: 5806: 5803:(3): 271–87. 5802: 5798: 5791: 5788: 5783: 5779: 5774: 5769: 5765: 5761: 5758:(4): 439–43. 5757: 5753: 5749: 5742: 5739: 5734: 5730: 5726: 5722: 5718: 5714: 5710: 5706: 5699: 5696: 5691: 5687: 5682: 5677: 5673: 5669: 5666:(2): 137–52. 5665: 5661: 5657: 5650: 5647: 5642: 5638: 5634: 5630: 5626: 5622: 5618: 5614: 5610: 5603: 5600: 5595: 5591: 5587: 5583: 5579: 5575: 5571: 5567: 5560: 5557: 5552: 5548: 5543: 5538: 5534: 5530: 5527:(2): 121–37. 5526: 5522: 5518: 5511: 5508: 5503: 5499: 5495: 5491: 5488:(5): 365–74. 5487: 5483: 5476: 5473: 5468: 5464: 5460: 5456: 5453:(4): 333–49. 5452: 5448: 5441: 5438: 5433: 5429: 5425: 5421: 5418:(4): 429–41. 5417: 5413: 5405: 5402: 5398: 5394: 5391: 5386: 5383: 5379: 5375: 5372: 5367: 5363: 5358: 5353: 5350:(3): 517–25. 5349: 5345: 5341: 5334: 5331: 5326: 5322: 5318: 5314: 5307: 5304: 5299: 5295: 5291: 5287: 5283: 5279: 5271: 5268: 5263: 5259: 5255: 5251: 5244: 5241: 5236: 5232: 5227: 5222: 5218: 5214: 5213:J. Biol. Chem 5210: 5203: 5200: 5195: 5191: 5186: 5181: 5177: 5173: 5169: 5165: 5164:Int J Nanomed 5161: 5154: 5151: 5146: 5140: 5136: 5129: 5126: 5121: 5117: 5113: 5109: 5105: 5101: 5097: 5093: 5089: 5085: 5078: 5075: 5070: 5066: 5062: 5058: 5054: 5050: 5047:(2): 98–106. 5046: 5042: 5035: 5032: 5027: 5023: 5019: 5013: 5009: 5005: 5001: 4996: 4995: 4986: 4983: 4978: 4974: 4970: 4966: 4962: 4958: 4954: 4947: 4944: 4939: 4935: 4932:(5): 361–77. 4931: 4927: 4920: 4917: 4912: 4908: 4904: 4900: 4896: 4892: 4885: 4882: 4877: 4873: 4869: 4865: 4861: 4857: 4854:(2): 157–79. 4853: 4849: 4842: 4839: 4834: 4830: 4825: 4820: 4816: 4812: 4807: 4802: 4798: 4794: 4790: 4786: 4782: 4775: 4772: 4767: 4763: 4760:(2): 135–60. 4759: 4755: 4748: 4745: 4742: 4738: 4734: 4728: 4725: 4720: 4716: 4711: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4671: 4668: 4663: 4659: 4655: 4651: 4647: 4643: 4636: 4633: 4628: 4622: 4618: 4611: 4608: 4603: 4599: 4594: 4589: 4585: 4581: 4577: 4573: 4570:(2): 435–42. 4569: 4565: 4561: 4554: 4551: 4546: 4542: 4538: 4534: 4530: 4526: 4522: 4518: 4514: 4510: 4503: 4500: 4495: 4491: 4487: 4483: 4480:(1): 177–98. 4479: 4475: 4468: 4465: 4460: 4456: 4452: 4448: 4444: 4440: 4436: 4432: 4428: 4424: 4417: 4414: 4409: 4405: 4400: 4395: 4391: 4387: 4383: 4379: 4376:(8): 3440–4. 4375: 4371: 4367: 4360: 4357: 4352: 4348: 4343: 4338: 4334: 4330: 4326: 4322: 4318: 4311: 4308: 4304:(2): 119–123. 4303: 4299: 4295: 4293: 4284: 4281: 4278: 4274: 4270: 4264: 4261: 4258: 4254: 4248: 4245: 4242: 4238: 4234: 4228: 4225: 4220: 4216: 4211: 4206: 4202: 4198: 4195:(3): 665–87. 4194: 4190: 4186: 4179: 4176: 4171: 4167: 4163: 4159: 4155: 4151: 4148:(2): 127–39. 4147: 4143: 4136: 4133: 4128: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4096: 4092: 4085: 4082: 4077: 4073: 4069: 4065: 4061: 4057: 4054:(2): 111–22. 4053: 4049: 4042: 4039: 4034: 4030: 4025: 4020: 4016: 4012: 4008: 4004: 4001:(1): 339–48. 4000: 3996: 3992: 3985: 3982: 3977: 3973: 3969: 3965: 3962:(4): 639–52. 3961: 3957: 3950: 3947: 3942: 3938: 3934: 3930: 3926: 3922: 3918: 3914: 3910: 3906: 3899: 3896: 3891: 3887: 3883: 3879: 3875: 3871: 3868:(3): 213–29. 3867: 3863: 3856: 3853: 3840: 3836: 3829: 3826: 3821: 3817: 3812: 3807: 3803: 3799: 3795: 3791: 3788:(1): 217–26. 3787: 3783: 3779: 3772: 3770: 3766: 3761: 3757: 3753: 3749: 3745: 3741: 3734: 3731: 3726: 3722: 3718: 3714: 3710: 3706: 3702: 3695: 3692: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3659: 3652: 3650: 3648: 3644: 3639: 3635: 3631: 3627: 3623: 3619: 3612: 3609: 3604: 3600: 3595: 3590: 3586: 3582: 3578: 3574: 3570: 3563: 3560: 3555: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3508: 3505: 3500: 3496: 3491: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3451: 3448: 3443: 3439: 3434: 3429: 3424: 3419: 3415: 3411: 3407: 3403: 3399: 3392: 3389: 3384: 3380: 3373: 3370: 3365: 3361: 3356: 3351: 3347: 3343: 3339: 3332: 3329: 3324: 3318: 3314: 3307: 3305: 3301: 3288: 3284: 3278: 3275: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3235: 3232: 3227: 3223: 3218: 3213: 3209: 3205: 3201: 3197: 3194:(1): 135–48. 3193: 3189: 3185: 3178: 3175: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3135: 3132: 3127: 3123: 3119: 3115: 3111: 3107: 3106:Front. Biosci 3103: 3096: 3093: 3088: 3084: 3079: 3074: 3071:(7): 551–62. 3070: 3066: 3062: 3055: 3052: 3047: 3041: 3037: 3030: 3028: 3026: 3022: 3017: 3015:9781317563747 3011: 3007: 3003: 2996: 2993: 2988: 2984: 2979: 2974: 2969: 2964: 2960: 2956: 2952: 2948: 2944: 2937: 2934: 2929: 2923: 2919: 2912: 2909: 2904: 2900: 2895: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2847: 2845: 2841: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2797: 2795: 2791: 2786: 2782: 2777: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2729: 2726: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2674: 2671: 2666: 2662: 2657: 2652: 2648: 2644: 2640: 2636: 2633:(1): 228–37. 2632: 2628: 2624: 2617: 2614: 2609: 2605: 2601: 2597: 2594:(2): 307–16. 2593: 2589: 2582: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2547: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2496: 2492: 2488: 2484: 2477: 2474: 2469: 2465: 2460: 2455: 2450: 2445: 2441: 2437: 2434:(5): 1821–5. 2433: 2429: 2425: 2418: 2415: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2367: 2364: 2359: 2355: 2350: 2345: 2341: 2337: 2333: 2326: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2293: 2288: 2284: 2280: 2276: 2272: 2268: 2261: 2258: 2253: 2249: 2245: 2241: 2238:(2): 178–93. 2237: 2233: 2225: 2222: 2217: 2213: 2209: 2205: 2202:(61): 11–12. 2201: 2197: 2190: 2187: 2182: 2178: 2175:(4): 324–35. 2174: 2170: 2163: 2160: 2155: 2151: 2146: 2141: 2137: 2133: 2129: 2125: 2122:(1): 328–39. 2121: 2117: 2113: 2106: 2104: 2102: 2100: 2096: 2091: 2087: 2083: 2079: 2075: 2071: 2068:(7): 559–62. 2067: 2063: 2056: 2053: 2048: 2044: 2039: 2034: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1983: 1978: 1977: 1968: 1966: 1962: 1957: 1953: 1948: 1943: 1939: 1935: 1932:(3): 159–95. 1931: 1927: 1923: 1916: 1913: 1908: 1904: 1899: 1894: 1889: 1884: 1880: 1876: 1872: 1868: 1864: 1857: 1854: 1849: 1845: 1841: 1837: 1833: 1829: 1822: 1820: 1816: 1803: 1799: 1792: 1789: 1784: 1780: 1776: 1772: 1767: 1762: 1758: 1754: 1753: 1748: 1741: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1695: 1689: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1666: 1662: 1660: 1658: 1652: 1650: 1649:self assembly 1645: 1639: 1637: 1632: 1627: 1625: 1619: 1617: 1613: 1606: 1598: 1596: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1557: 1555: 1551: 1547: 1542: 1540: 1536: 1532: 1527: 1525: 1521: 1520:immune system 1517: 1513: 1510:clearing and 1509: 1504: 1502: 1498: 1494: 1486: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1458: 1457: 1455: 1451: 1445: 1438:Model systems 1437: 1435: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1404: 1401: 1397: 1393: 1389: 1385: 1381: 1371: 1363: 1359: 1355: 1353: 1349: 1345: 1341: 1337: 1336:fertilization 1333: 1329: 1324: 1315: 1310: 1306: 1298: 1296: 1273: 1263: 1259: 1255: 1251: 1247: 1233: 1227: 1217: 1206: 1205:shear modulus 1168: 1163: 1155: 1153: 1150: 1144: 1142: 1138: 1134: 1130: 1126: 1119: 1111: 1109: 1107: 1103: 1102:gram-negative 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1068: 1063: 1059: 1057: 1053: 1046: 1042: 1034: 1028: 1024: 1022: 1018: 1014: 1009: 1007: 1003: 999: 995: 991: 987: 982: 978: 974: 966: 961: 960:alpha helices 956: 952: 950: 946: 942: 938: 934: 929: 925: 917: 912: 910: 908: 904: 900: 892: 890: 888: 884: 880: 879:birefringence 872: 870: 867: 863: 855: 850: 843: 838: 831: 829: 826: 818: 816: 814: 810: 805: 801: 797: 790: 788: 784: 782: 774: 773:cell membrane 769: 762: 760: 758: 753: 744: 742: 735: 734:lipid vesicle 731: 727: 722: 714: 712: 710: 706: 702: 697: 695: 690: 689:immune system 686: 682: 678: 674: 669: 667: 663: 659: 655: 651: 645: 641: 633: 628: 624: 619: 615: 612: 608: 604: 600: 596: 592: 588: 584: 583:carbohydrates 580: 576: 572: 571:cell membrane 568: 564: 562: 557: 553: 549: 548:phospholipids 545: 541: 540:lipid vesicle 537: 532: 524: 519: 517: 515: 511: 507: 503: 499: 495: 491: 487: 482: 480: 476: 472: 468: 464: 463:sphingolipids 460: 459:phospholipids 452: 450: 448: 442: 439: 435: 431: 426: 425:Van der Waals 421: 419: 415: 408: 398: 391: 389: 385: 382: 378: 373: 371: 365: 363: 359: 354: 353:sphingomyelin 350: 346: 342: 338: 334: 326: 324: 317: 313: 309: 307: 303: 298: 295:bilayers the 294: 289: 287: 283: 279: 274: 263: 256: 254: 252: 248: 247:electrostatic 244: 240: 236: 232: 227: 226:self-assemble 219: 217: 215: 211: 207: 203: 199: 195: 194:fertilization 191: 187: 183: 179: 175: 170: 168: 163: 159: 155: 151: 146: 142: 141:phospholipids 139: 134: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 73: 69: 65: 61: 60:lipid bilayer 53: 48: 41: 37: 32: 19: 6204: 6202: 6080:Lipoproteins 6069: 5978: 5974: 5968: 5943: 5939: 5930: 5889: 5885: 5879: 5862: 5858: 5852: 5835: 5831: 5825: 5800: 5796: 5790: 5755: 5751: 5741: 5708: 5704: 5698: 5663: 5659: 5649: 5616: 5612: 5602: 5569: 5565: 5559: 5524: 5520: 5510: 5485: 5481: 5475: 5450: 5446: 5440: 5415: 5411: 5404: 5385: 5374: 5347: 5343: 5333: 5316: 5312: 5306: 5281: 5277: 5270: 5253: 5249: 5243: 5216: 5212: 5202: 5167: 5163: 5153: 5134: 5128: 5087: 5083: 5077: 5044: 5040: 5034: 4993: 4985: 4960: 4956: 4946: 4929: 4925: 4919: 4894: 4891:Biochemistry 4890: 4884: 4851: 4847: 4841: 4791:(1): 12845. 4788: 4784: 4774: 4757: 4753: 4747: 4736: 4732: 4727: 4684: 4680: 4670: 4645: 4642:Biochemistry 4641: 4635: 4616: 4610: 4567: 4563: 4553: 4512: 4508: 4502: 4477: 4473: 4467: 4426: 4422: 4416: 4373: 4369: 4359: 4327:(7): 841–5. 4324: 4320: 4310: 4301: 4297: 4291: 4283: 4272: 4268: 4263: 4252: 4247: 4236: 4232: 4227: 4192: 4189:J. Cell Biol 4188: 4178: 4145: 4141: 4135: 4094: 4090: 4084: 4051: 4047: 4041: 3998: 3994: 3984: 3959: 3955: 3949: 3908: 3904: 3898: 3865: 3861: 3855: 3843:. Retrieved 3839:the original 3828: 3785: 3781: 3743: 3739: 3733: 3708: 3704: 3694: 3661: 3658:Nano Letters 3657: 3621: 3617: 3611: 3576: 3573:J. Cell Biol 3572: 3562: 3521: 3517: 3507: 3464: 3460: 3450: 3405: 3401: 3391: 3382: 3378: 3372: 3345: 3341: 3331: 3312: 3291:. Retrieved 3287:the original 3277: 3247:(3): 270–7. 3244: 3241:J. Mol. Evol 3240: 3234: 3191: 3187: 3177: 3144: 3140: 3134: 3118:10.2741/1576 3109: 3105: 3095: 3068: 3064: 3054: 3035: 3005: 2995: 2950: 2946: 2936: 2917: 2911: 2860: 2856: 2810: 2806: 2742: 2738: 2728: 2687: 2683: 2673: 2630: 2626: 2616: 2591: 2587: 2581: 2556: 2552: 2546: 2521: 2518:Biochemistry 2517: 2511: 2486: 2483:Biochemistry 2482: 2476: 2431: 2427: 2417: 2376: 2372: 2366: 2339: 2336:J. Lipid Res 2335: 2325: 2274: 2270: 2260: 2235: 2231: 2224: 2199: 2195: 2189: 2172: 2168: 2162: 2119: 2115: 2065: 2061: 2055: 2010: 2006: 1996: 1975: 1929: 1925: 1915: 1870: 1866: 1856: 1834:(2): 211–7. 1831: 1828:J. Mol. Biol 1827: 1806:. Retrieved 1802:the original 1791: 1756: 1750: 1740: 1707: 1703: 1697: 1653: 1644:Alec Bangham 1640: 1628: 1620: 1608: 1576: 1575:ermeability 1572: 1568: 1564: 1560: 1558: 1543: 1535:angiogenesis 1528: 1512:phagocytosis 1505: 1490: 1447: 1405: 1379: 1377: 1356: 1321: 1274: 1261: 1257: 1253: 1249: 1234: 1218: 1174: 1171:hydrophilic. 1145: 1129:transfection 1121: 1105: 1093: 1092:cells. This 1077: 1076: 1070: 1066: 1048: 1010: 973:ion channels 970: 921: 896: 876: 859: 822: 794: 785: 778: 757:ion channels 748: 739: 705:phagocytosis 698: 670: 647: 599:mitochondria 565: 544:biosynthetic 528: 506:growth plate 498:erythrocytes 483: 479:zwitterionic 456: 443: 422: 410: 386: 374: 366: 330: 321: 293:phospholipid 290: 288:techniques. 269: 223: 171: 135: 99:cell nucleus 66:) is a thin 63: 59: 57: 5838:: 343–418. 3862:Amino Acids 3293:10 November 3147:(1): 43–8. 2807:Soft Matter 2271:Soft Matter 1638:membranes. 1616:erythrocyte 1612:capacitance 1041:Endocytosis 994:Na-K ATPase 928:hydrocarbon 840:3d-Adapted 703:-triggered 611:hepatocytes 567:Prokaryotes 556:hydrophobic 552:hydrophilic 471:cholesterol 447:cholesterol 434:double bond 414:random walk 178:cholesterol 162:fluid state 145:hydrophobic 138:amphiphilic 123:hydrophilic 34:This fluid 6211:Categories 6152:Glycocalyx 5711:(5): 329. 5344:Ann. Oncol 5002:–1–17–41. 4681:Biophys. J 4564:Biophys. J 4292:Salmonella 4271:invasion. 4269:Salmonella 4253:Salmonella 4235:invasion. 4233:salmonella 3995:Biophys. J 3782:Biophys. J 3711:(1): 1–9. 3461:Biophys. J 3188:Biophys. J 2627:Biophys. J 2116:Biophys. J 1690:References 1684:Lipidomics 1669:Surfactant 1595:and skin. 1567:rtificial 1546:biosensors 1539:antibodies 1392:Eukaryotic 1332:Exocytosis 1328:eukaryotes 1303:See also: 1090:eukaryotic 1082:exocytosis 1067:Salmonella 1045:Exocytosis 1039:See also: 945:chloroform 907:quadrupole 809:exocytotic 752:resistance 709:scramblase 644:Lipid raft 638:See also: 591:organelles 587:eukaryotes 510:nucleation 401:molecules. 362:macrophage 119:nanometers 6192:Porosomes 5069:205012830 5026:199021983 4815:2045-2322 4733:thylakoid 2885:0006-3495 2835:1744-6848 2767:1542-0086 2720:248375027 2704:1432-1424 2317:235708094 2301:1744-683X 1636:organelle 1501:degrading 1493:liposomes 1420:hybridoma 1400:vesicular 1282:Λ 1191:Λ 1156:Mechanics 1137:lightning 977:ion pumps 899:ab initio 804:electrons 634:Signaling 627:catalyzes 603:lysosomes 575:cell wall 561:Organelle 502:apoptosis 492:(PE) and 370:flippases 358:apoptosis 327:Asymmetry 306:bacterium 297:phosphate 131:ion pumps 103:membranes 89:and many 87:organisms 75:molecules 6012:Archived 5960:14187392 5914:14476933 5871:13651159 5865:: 3–43. 5844:13742209 5817:13550367 5782:19868999 5733:36842138 5690:19872238 5641:17730464 5594:27395246 5586:19937821 5551:19591928 5502:15265506 5467:15734300 5432:14998573 5393:Archived 5366:14998859 5298:11489482 5194:17717971 5061:11252968 4977:14527322 4833:30150612 4719:14507698 4537:15241420 4494:16689633 4451:15241399 4408:11472916 4170:14415959 4162:12563290 4127:16323721 4119:16322449 4076:20394005 3933:12635233 3890:24350029 3882:11543596 3820:16617084 3760:56532332 3740:Langmuir 3725:12003236 3686:18254602 3638:16298110 3499:11259296 3364:12855459 3269:21635206 3169:26435152 3126:15569622 3087:10200509 2987:11535814 2903:17114215 2785:21767489 2712:35467109 2665:16214871 2573:15697284 2553:Langmuir 2409:34501546 2309:34212942 2154:10866959 2090:36212541 2082:12602343 2047:11438731 1956:11063882 1907:16592215 1783:14120598 1724:17263662 1663:See also 1571:embrane 1563:arallel 1503:lipids. 1476:Vesicles 1424:antibody 1374:process. 1348:lysozome 1262:micellar 1246:micelles 1056:vesicles 1004:via the 866:isotopic 813:synapses 677:proteome 579:proteins 469:such as 241:such as 167:Vesicles 115:proteins 52:liposome 6090:Sterols 6003:LIPIDAT 5922:2110051 5894:Bibcode 5773:2130960 5725:3539619 5681:2140799 5621:Bibcode 5613:Science 5542:2747801 5235:1527006 5185:2426795 5120:4161444 5112:1172191 5092:Bibcode 4938:6510702 4911:3801406 4876:1465571 4868:2139437 4824:6110749 4793:Bibcode 4710:1303459 4689:Bibcode 4662:2043611 4602:8457669 4593:1262346 4572:Bibcode 4545:4401688 4517:Bibcode 4459:4427370 4431:Bibcode 4378:Bibcode 4351:6329708 4219:1030706 4210:2109655 4099:Bibcode 4091:Science 4068:7932645 4033:8770210 4024:1224932 4003:Bibcode 3976:6048247 3941:4185197 3913:Bibcode 3811:1479081 3790:Bibcode 3666:Bibcode 3594:2110310 3554:4204985 3546:1083489 3526:Bibcode 3490:1301372 3469:Bibcode 3442:4509315 3410:Bibcode 3385:: 24–9. 3261:6242168 3226:1883932 3217:1260045 3196:Bibcode 3161:3103899 2955:Bibcode 2894:1783876 2865:Bibcode 2815:Bibcode 2776:3136766 2747:Bibcode 2656:1367021 2635:Bibcode 2608:1311950 2538:4407872 2503:4324203 2436:Bibcode 2401:4724478 2381:Bibcode 2373:Science 2358:7017050 2279:Bibcode 2252:4356540 2216:4502419 2145:1300937 2124:Bibcode 2015:Bibcode 1947:2747654 1875:Bibcode 1848:6854644 1775:7834746 1732:6521535 1599:History 1497:vesicle 1416:myeloma 1412:B-cells 1380:in vivo 1352:viruses 1254:sucrose 1071:in vivo 1021:neurons 937:cations 623:hormone 595:nucleus 536:archaea 531:aqueous 467:sterols 418:diffuse 377:vesicle 192:during 105:of the 91:viruses 5958:  5920:  5912:  5886:Nature 5869:  5842:  5815:  5780:  5770:  5731:  5723:  5688:  5678:  5639:  5592:  5584:  5549:  5539:  5500:  5465:  5430:  5364:  5296:  5233:  5192:  5182:  5141:  5118:  5110:  5084:Nature 5067:  5059:  5024:  5014:  4975:  4936:  4909:  4874:  4866:  4831:  4821:  4813:  4717:  4707:  4660:  4623:  4600:  4590:  4543:  4535:  4509:Nature 4492:  4457:  4449:  4423:Nature 4406:  4396:  4349:  4342:553119 4339:  4321:EMBO J 4217:  4207:  4168:  4160:  4125:  4117:  4074:  4066:  4031:  4021:  3974:  3939:  3931:  3905:Nature 3888:  3880:  3845:17 May 3818:  3808:  3758:  3723:  3684:  3636:  3601:  3591:  3552:  3544:  3518:Nature 3497:  3487:  3440:  3433:389821 3430:  3362:  3319:  3267:  3259:  3224:  3214:  3167:  3159:  3124:  3085:  3042:  3012:  2985:  2975:  2924:  2901:  2891:  2883:  2833:  2783:  2773:  2765:  2718:  2710:  2702:  2663:  2653:  2606:  2571:  2536:  2501:  2468:405668 2466:  2459:431015 2456:  2407:  2399:  2356:  2315:  2307:  2299:  2250:  2214:  2152:  2142:  2088:  2080:  2045:  2035:  1984:  1954:  1944:  1905:  1898:432308 1895:  1846:  1808:17 May 1781:  1773:  1730:  1722:  1585:Caco-2 1396:SNAREs 1338:of an 1323:Fusion 1299:Fusion 1052:fusion 1019:along 933:Anions 903:dipole 654:neuron 461:, but 438:alkane 284:, and 231:sugars 196:of an 101:, and 81:. The 6135:Other 5918:S2CID 5729:S2CID 5590:S2CID 5116:S2CID 5065:S2CID 5022:S2CID 4872:S2CID 4541:S2CID 4455:S2CID 4399:93040 4166:S2CID 4123:S2CID 4072:S2CID 3937:S2CID 3886:S2CID 3756:S2CID 3603:38256 3550:S2CID 3265:S2CID 3165:S2CID 2978:58519 2716:S2CID 2405:S2CID 2313:S2CID 2086:S2CID 2038:35418 1779:S2CID 1728:S2CID 1581:PAMPA 1579:ssay 1531:tumor 1516:serum 1508:renal 1414:with 1388:virus 1252:like 1211:and K 949:ether 924:polar 922:Most 488:(PS) 276:with 206:virus 202:sperm 200:by a 160:to a 150:phase 79:cells 72:lipid 36:lipid 5956:PMID 5910:PMID 5867:PMID 5840:PMID 5813:PMID 5778:PMID 5721:PMID 5686:PMID 5637:PMID 5582:PMID 5547:PMID 5498:PMID 5463:PMID 5428:PMID 5362:PMID 5294:PMID 5231:PMID 5190:PMID 5139:ISBN 5108:PMID 5057:PMID 5012:ISBN 4973:PMID 4934:PMID 4907:PMID 4864:PMID 4829:PMID 4811:ISSN 4715:PMID 4658:PMID 4621:ISBN 4598:PMID 4533:PMID 4490:PMID 4447:PMID 4404:PMID 4347:PMID 4215:PMID 4158:PMID 4115:PMID 4064:PMID 4029:PMID 3972:PMID 3929:PMID 3878:PMID 3847:2012 3816:PMID 3721:PMID 3682:PMID 3634:PMID 3599:PMID 3542:PMID 3495:PMID 3438:PMID 3360:PMID 3317:ISBN 3295:2012 3257:PMID 3222:PMID 3157:PMID 3122:PMID 3083:PMID 3040:ISBN 3010:ISBN 2983:PMID 2922:ISBN 2899:PMID 2881:ISSN 2831:ISSN 2781:PMID 2763:ISSN 2708:PMID 2700:ISSN 2661:PMID 2604:PMID 2592:1103 2569:PMID 2534:PMID 2499:PMID 2464:PMID 2397:PMID 2354:PMID 2305:PMID 2297:ISSN 2248:PMID 2212:PMID 2150:PMID 2078:PMID 2043:PMID 1982:ISBN 1952:PMID 1930:1469 1903:PMID 1844:PMID 1810:2012 1771:PMID 1752:Cell 1720:PMID 1318:mix. 1307:and 1094:myth 1043:and 975:and 947:and 905:and 681:CD59 666:fuse 642:and 605:and 465:and 343:and 300:the 249:and 212:and 111:ions 62:(or 58:The 5983:doi 5948:doi 5902:doi 5890:194 5805:doi 5768:PMC 5760:doi 5713:doi 5709:145 5676:PMC 5668:doi 5629:doi 5574:doi 5537:PMC 5529:doi 5490:doi 5455:doi 5420:doi 5352:doi 5321:doi 5286:doi 5258:doi 5221:doi 5217:267 5180:PMC 5172:doi 5100:doi 5088:256 5049:doi 5004:doi 4965:doi 4899:doi 4856:doi 4819:PMC 4801:doi 4762:doi 4705:PMC 4697:doi 4650:doi 4588:PMC 4580:doi 4525:doi 4513:430 4482:doi 4439:doi 4427:430 4394:PMC 4386:doi 4337:PMC 4329:doi 4205:PMC 4197:doi 4150:doi 4107:doi 4095:310 4056:doi 4052:140 4019:PMC 4011:doi 3964:doi 3960:135 3921:doi 3909:239 3870:doi 3806:PMC 3798:doi 3748:doi 3713:doi 3674:doi 3626:doi 3589:PMC 3581:doi 3534:doi 3522:260 3485:PMC 3477:doi 3428:PMC 3418:doi 3350:doi 3249:doi 3212:PMC 3204:doi 3149:doi 3114:doi 3073:doi 2973:PMC 2963:doi 2889:PMC 2873:doi 2823:doi 2771:PMC 2755:doi 2743:101 2692:doi 2688:255 2651:PMC 2643:doi 2596:doi 2561:doi 2526:doi 2491:doi 2454:PMC 2444:doi 2389:doi 2377:181 2344:doi 2287:doi 2240:doi 2236:323 2204:doi 2200:236 2177:doi 2140:PMC 2132:doi 2070:doi 2033:PMC 2023:doi 1942:PMC 1934:doi 1893:PMC 1883:doi 1836:doi 1832:166 1761:doi 1712:doi 1614:of 1342:by 1340:egg 1125:DNA 990:ATP 854:AFM 842:AFM 685:HIV 512:of 316:TEM 198:egg 154:gel 6213:: 5979:99 5977:. 5954:. 5942:. 5916:. 5908:. 5900:. 5888:. 5863:16 5861:. 5836:10 5834:. 5811:. 5799:. 5776:. 5766:. 5756:41 5754:. 5750:. 5727:. 5719:. 5707:. 5684:. 5674:. 5662:. 5658:. 5635:. 5627:. 5617:20 5615:. 5611:. 5588:. 5580:. 5568:. 5545:. 5535:. 5525:38 5523:. 5519:. 5496:. 5486:22 5484:. 5461:. 5451:24 5449:. 5426:. 5416:21 5414:. 5360:. 5348:15 5346:. 5342:. 5315:. 5292:. 5282:74 5280:. 5254:24 5252:. 5229:. 5215:. 5211:. 5188:. 5178:. 5166:. 5162:. 5114:. 5106:. 5098:. 5086:. 5063:. 5055:. 5043:. 5020:. 5010:. 5000:17 4971:. 4961:72 4959:. 4955:. 4928:. 4905:. 4895:25 4893:. 4870:. 4862:. 4852:22 4850:. 4827:. 4817:. 4809:. 4799:. 4787:. 4783:. 4758:41 4756:. 4713:. 4703:. 4695:. 4685:85 4683:. 4679:. 4656:. 4646:30 4644:. 4596:. 4586:. 4578:. 4568:64 4566:. 4562:. 4539:. 4531:. 4523:. 4511:. 4488:. 4478:35 4476:. 4453:. 4445:. 4437:. 4425:. 4402:. 4392:. 4384:. 4374:67 4372:. 4368:. 4345:. 4335:. 4323:. 4319:. 4302:33 4300:. 4296:. 4213:. 4203:. 4193:68 4191:. 4187:. 4164:. 4156:. 4144:. 4121:. 4113:. 4105:. 4093:. 4070:. 4062:. 4050:. 4027:. 4017:. 4009:. 3999:70 3997:. 3993:. 3970:. 3958:. 3935:. 3927:. 3919:. 3907:. 3884:. 3876:. 3864:. 3814:. 3804:. 3796:. 3786:91 3784:. 3780:. 3768:^ 3754:. 3744:19 3742:. 3719:. 3709:51 3707:. 3703:. 3680:. 3672:. 3660:. 3646:^ 3632:. 3622:29 3620:. 3597:. 3587:. 3577:81 3575:. 3571:. 3548:. 3540:. 3532:. 3520:. 3516:. 3493:. 3483:. 3475:. 3465:80 3463:. 3459:. 3436:. 3426:. 3416:. 3406:69 3404:. 3400:. 3383:11 3381:. 3358:. 3346:19 3344:. 3340:. 3303:^ 3263:. 3255:. 3245:21 3243:. 3220:. 3210:. 3202:. 3192:60 3190:. 3186:. 3163:. 3155:. 3145:40 3143:. 3120:. 3110:10 3108:. 3104:. 3081:. 3067:. 3063:. 3024:^ 3004:. 2981:. 2971:. 2961:. 2951:98 2949:. 2945:. 2897:. 2887:. 2879:. 2871:. 2861:92 2859:. 2855:. 2843:^ 2829:. 2821:. 2809:. 2805:. 2793:^ 2779:. 2769:. 2761:. 2753:. 2741:. 2737:. 2714:. 2706:. 2698:. 2686:. 2682:. 2659:. 2649:. 2641:. 2631:90 2629:. 2625:. 2602:. 2590:. 2567:. 2557:21 2555:. 2532:. 2522:13 2520:. 2497:. 2487:10 2485:. 2462:. 2452:. 2442:. 2432:74 2430:. 2426:. 2403:. 2395:. 2387:. 2375:. 2352:. 2340:22 2338:. 2334:. 2311:. 2303:. 2295:. 2285:. 2275:17 2273:. 2269:. 2246:. 2234:. 2210:. 2198:. 2171:. 2148:. 2138:. 2130:. 2120:79 2118:. 2114:. 2098:^ 2084:. 2076:. 2066:31 2064:. 2041:. 2031:. 2021:. 2011:98 2009:. 2005:. 1964:^ 1950:. 1940:. 1928:. 1924:. 1901:. 1891:. 1881:. 1871:72 1869:. 1865:. 1842:. 1830:. 1818:^ 1777:. 1769:. 1757:80 1755:. 1749:. 1726:. 1718:. 1708:36 1706:. 1659:. 1591:, 1334:, 1143:. 1008:. 1002:pH 823:P- 815:. 601:, 597:, 563:. 351:, 339:, 280:, 253:. 245:, 216:. 133:. 127:pH 113:, 6124:/ 6115:/ 6045:e 6038:t 6031:v 5989:. 5985:: 5962:. 5950:: 5944:8 5924:. 5904:: 5896:: 5873:. 5846:. 5819:. 5807:: 5801:1 5784:. 5762:: 5735:. 5715:: 5692:. 5670:: 5664:9 5643:. 5631:: 5623:: 5596:. 5576:: 5570:6 5553:. 5531:: 5504:. 5492:: 5469:. 5457:: 5434:. 5422:: 5368:. 5354:: 5327:. 5323:: 5317:9 5300:. 5288:: 5264:. 5260:: 5237:. 5223:: 5196:. 5174:: 5168:1 5147:. 5122:. 5102:: 5094:: 5071:. 5051:: 5045:2 5028:. 5006:: 4979:. 4967:: 4940:. 4930:3 4913:. 4901:: 4878:. 4858:: 4835:. 4803:: 4795:: 4789:8 4768:. 4764:: 4721:. 4699:: 4691:: 4664:. 4652:: 4629:. 4604:. 4582:: 4574:: 4547:. 4527:: 4519:: 4496:. 4484:: 4461:. 4441:: 4433:: 4410:. 4388:: 4380:: 4353:. 4331:: 4325:1 4221:. 4199:: 4172:. 4152:: 4146:4 4129:. 4109:: 4101:: 4078:. 4058:: 4035:. 4013:: 4005:: 3978:. 3966:: 3943:. 3923:: 3915:: 3892:. 3872:: 3866:6 3849:. 3822:. 3800:: 3792:: 3762:. 3750:: 3727:. 3715:: 3688:. 3676:: 3668:: 3662:8 3640:. 3628:: 3605:. 3583:: 3556:. 3536:: 3528:: 3501:. 3479:: 3471:: 3444:. 3420:: 3412:: 3366:. 3352:: 3325:. 3297:. 3271:. 3251:: 3228:. 3206:: 3198:: 3171:. 3151:: 3128:. 3116:: 3089:. 3075:: 3069:5 3048:. 3018:. 2989:. 2965:: 2957:: 2930:. 2905:. 2875:: 2867:: 2837:. 2825:: 2817:: 2811:4 2787:. 2757:: 2749:: 2722:. 2694:: 2667:. 2645:: 2637:: 2610:. 2598:: 2575:. 2563:: 2540:. 2528:: 2505:. 2493:: 2470:. 2446:: 2438:: 2411:. 2391:: 2383:: 2360:. 2346:: 2319:. 2289:: 2281:: 2254:. 2242:: 2218:. 2206:: 2183:. 2179:: 2173:7 2156:. 2134:: 2126:: 2092:. 2072:: 2049:. 2025:: 2017:: 1990:. 1958:. 1936:: 1909:. 1885:: 1877:: 1850:. 1838:: 1812:. 1785:. 1763:: 1734:. 1714:: 1577:a 1573:p 1569:m 1565:a 1561:p 1270:a 1266:b 1241:b 1237:a 1230:a 1222:a 1213:b 1209:a 1181:b 1177:a 1073:. 42:. 20:)

Index

Lipid bilayers

lipid
phosphatidylcholine

liposome
polar membrane
lipid
molecules
cells
cell membranes
organisms
viruses
nuclear membrane
cell nucleus
membranes
membrane-bound organelles
ions
proteins
nanometers
hydrophilic
pH
ion pumps
amphiphilic
phospholipids
hydrophobic
phase
gel
phase transition
fluid state

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑