Knowledge (XXG)

Littlewood conjecture

Source đź“ť

118: 212: 511: 544: 756: 49: 814: 542:
J.W.S. Cassels; H.P.F. Swinnerton-Dyer (1955-06-23). "On the product of three homogeneous linear forms and the indefinite ternary quadratic forms".
126: 725: 804: 262:-coordinate. This product will certainly be at most 1/4. The conjecture makes no statement about whether this sequence of values will 428: 267: 620:
M. Einsiedler; A. Katok; E. Lindenstrauss (2006-09-01). "Invariant measures and the set of exceptions to Littlewood's conjecture".
445: 310:. This can be formulated another way, in group-theoretic terms. There is now another conjecture, expected to hold for 442:
These results imply that non-trivial pairs satisfying the conjecture exist: indeed, given a real number α such that
717: 403:
Borel showed in 1909 that the exceptional set of real pairs (α,β) violating the statement of the conjecture is of
263: 32: 36: 432: 622: 522: 302:
point of a product of three linear forms in three real variables: the implication was shown in 1955 by
270:, and says that there is a subsequence for which the distances decay faster than the reciprocal, i.e. 809: 709: 641: 553: 420: 295: 665: 631: 585: 569: 416: 408: 373: 708:
Adamczewski, Boris; Bugeaud, Yann (2010). "8. Transcendence and diophantine approximation". In
721: 345: 783: 765: 731: 673: 649: 593: 561: 404: 388: 303: 779: 661: 581: 787: 775: 735: 677: 657: 597: 577: 307: 299: 645: 557: 113:{\displaystyle \liminf _{n\to \infty }\ n\,\Vert n\alpha \Vert \,\Vert n\beta \Vert =0,} 283: 513:, it is possible to construct an explicit β such that (α,β) satisfies the conjecture. 798: 589: 424: 412: 28: 770: 751: 669: 653: 40: 20: 752:"The work of Einsiedler, Katok, and Lindenstrauss on the Littlewood conjecture" 716:. Encyclopedia of Mathematics and its Applications. Vol. 135. Cambridge: 207:{\displaystyle \Vert x\Vert :=\min(|x-\lfloor x\rfloor |,|x-\lceil x\rceil |)} 392: 266:; it typically does not, in fact. The conjecture states something about the 565: 254:
For each of these, multiply the distance to the closest line with integer
636: 573: 258:-coordinate by the distance to the closest line with integer 387:
This in turn is a special case of a general conjecture of
435:
for diagonalizable actions of higher-rank groups, and an
230:) in the plane, and then consider the sequence of points 294:
It is known that this would follow from a result in the
506:{\displaystyle \inf _{n\geq 1}n\cdot ||n\alpha ||>0} 448: 129: 52: 505: 206: 112: 545:Philosophical Transactions of the Royal Society A 450: 142: 54: 431:zero. The result was proved by using a measure 423:zero; and in fact is a union of countably many 8: 193: 187: 165: 159: 136: 130: 98: 89: 85: 76: 714:Combinatorics, automata, and number theory 769: 635: 492: 487: 476: 471: 453: 447: 439:proved by Lindenstrauss and Barak Weiss. 196: 176: 168: 148: 128: 88: 75: 57: 51: 222:This means the following: take a point ( 214:is the distance to the nearest integer. 39:around 1930. It states that for any two 534: 699:Adamczewski & Bugeaud (2010) p.446 690:Adamczewski & Bugeaud (2010) p.445 610:Adamczewski & Bugeaud (2010) p.444 7: 298:, about the minimum on a non-zero 64: 14: 290:Connection to further conjectures 815:Unsolved problems in mathematics 750:Akshay Venkatesh (2007-10-29). 493: 488: 477: 472: 314:≥ 3: it is stated in terms of 201: 197: 177: 169: 149: 145: 61: 1: 771:10.1090/S0273-0979-07-01194-9 757:Bull. Amer. Math. Soc. (N.S.) 419:have shown that it must have 654:10.4007/annals.2006.164.513 218:Formulation and explanation 831: 718:Cambridge University Press 805:Diophantine approximation 33:Diophantine approximation 712:; Rigo, Michael (eds.). 37:John Edensor Littlewood 566:10.1098/rsta.1955.0010 507: 433:classification theorem 429:box-counting dimension 208: 114: 31:(as of April 2024) in 623:Annals of Mathematics 523:Littlewood polynomial 508: 209: 115: 25:Littlewood conjecture 720:. pp. 410–451. 446: 340:), and the subgroup 127: 50: 16:Mathematical problem 646:2006math.....12721E 558:1955RSPTA.248...73C 421:Hausdorff dimension 296:geometry of numbers 503: 464: 417:Elon Lindenstrauss 409:Manfred Einsiedler 374:relatively compact 204: 110: 68: 727:978-0-521-51597-9 449: 437:isolation theorem 346:diagonal matrices 284:little-o notation 71: 53: 822: 791: 773: 739: 700: 697: 691: 688: 682: 681: 639: 617: 611: 608: 602: 601: 539: 512: 510: 509: 504: 496: 491: 480: 475: 463: 405:Lebesgue measure 213: 211: 210: 205: 200: 180: 172: 152: 119: 117: 116: 111: 69: 67: 830: 829: 825: 824: 823: 821: 820: 819: 795: 794: 749: 746: 744:Further reading 728: 710:BerthĂ©, ValĂ©rie 707: 704: 703: 698: 694: 689: 685: 637:math.DS/0612721 619: 618: 614: 609: 605: 541: 540: 536: 531: 519: 444: 443: 401: 399:Partial results 334: 323: 308:Swinnerton-Dyer 292: 220: 125: 124: 48: 47: 17: 12: 11: 5: 828: 826: 818: 817: 812: 807: 797: 796: 793: 792: 764:(1): 117–134. 745: 742: 741: 740: 726: 702: 701: 692: 683: 630:(2): 513–560. 612: 603: 552:(940): 73–96. 533: 532: 530: 527: 526: 525: 518: 515: 502: 499: 495: 490: 486: 483: 479: 474: 470: 467: 462: 459: 456: 452: 400: 397: 332: 321: 291: 288: 280: 279: 268:limit inferior 252: 251: 219: 216: 203: 199: 195: 192: 189: 186: 183: 179: 175: 171: 167: 164: 161: 158: 155: 151: 147: 144: 141: 138: 135: 132: 121: 120: 109: 106: 103: 100: 97: 94: 91: 87: 84: 81: 78: 74: 66: 63: 60: 56: 55:lim inf 35:, proposed by 15: 13: 10: 9: 6: 4: 3: 2: 827: 816: 813: 811: 808: 806: 803: 802: 800: 789: 785: 781: 777: 772: 767: 763: 759: 758: 753: 748: 747: 743: 737: 733: 729: 723: 719: 715: 711: 706: 705: 696: 693: 687: 684: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 638: 633: 629: 625: 624: 616: 613: 607: 604: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 546: 538: 535: 528: 524: 521: 520: 516: 514: 500: 497: 484: 481: 468: 465: 460: 457: 454: 440: 438: 434: 430: 426: 422: 418: 414: 413:Anatole Katok 410: 406: 398: 396: 394: 390: 385: 383: 379: 375: 371: 368:/Γ such that 367: 363: 359: 358: 353: 351: 347: 343: 339: 335: 328: 324: 317: 313: 309: 305: 301: 297: 289: 287: 285: 277: 273: 272: 271: 269: 265: 261: 257: 249: 245: 241: 237: 233: 232: 231: 229: 225: 217: 215: 190: 184: 181: 173: 162: 156: 153: 139: 133: 107: 104: 101: 95: 92: 82: 79: 72: 58: 46: 45: 44: 42: 38: 34: 30: 26: 22: 761: 755: 713: 695: 686: 627: 621: 615: 606: 549: 543: 537: 441: 436: 425:compact sets 402: 386: 381: 377: 369: 365: 361: 356: 355: 354: 349: 341: 337: 330: 326: 319: 315: 311: 293: 281: 275: 259: 255: 253: 247: 243: 239: 235: 227: 223: 221: 122: 41:real numbers 29:open problem 24: 18: 810:Conjectures 384:is closed. 21:mathematics 799:Categories 788:1194.11075 736:1271.11073 678:1109.22004 598:0065.27905 529:References 393:Lie groups 380:/Γ), then 360:: for any 357:Conjecture 590:122708867 485:α 469:⋅ 458:≥ 194:⌉ 188:⌈ 185:− 166:⌋ 160:⌊ 157:− 137:‖ 131:‖ 99:‖ 96:β 90:‖ 86:‖ 83:α 77:‖ 65:∞ 62:→ 43:α and β, 517:See also 389:Margulis 264:converge 250:), ... . 780:2358379 662:2247967 642:Bibcode 582:0070653 554:Bibcode 329:), Γ = 304:Cassels 300:lattice 282:in the 786:  778:  734:  724:  676:  670:613883 668:  660:  596:  588:  580:  572:  407:zero. 123:where 70:  27:is an 23:, the 666:S2CID 632:arXiv 586:S2CID 574:91633 570:JSTOR 242:), (3 722:ISBN 498:> 415:and 376:(in 306:and 274:o(1/ 784:Zbl 766:doi 732:Zbl 674:Zbl 650:doi 628:164 594:Zbl 562:doi 550:248 451:inf 427:of 391:on 372:is 364:in 348:in 344:of 246:, 3 238:, 2 143:min 19:In 801:: 782:. 776:MR 774:. 762:45 760:. 754:. 730:. 672:. 664:. 658:MR 656:. 648:. 640:. 626:. 592:. 584:. 578:MR 576:. 568:. 560:. 548:. 411:, 395:. 382:Dg 370:Dg 352:. 331:SL 320:SL 318:= 286:. 234:(2 226:, 140::= 790:. 768:: 738:. 680:. 652:: 644:: 634:: 600:. 564:: 556:: 501:0 494:| 489:| 482:n 478:| 473:| 466:n 461:1 455:n 378:G 366:G 362:g 350:G 342:D 338:Z 336:( 333:n 327:R 325:( 322:n 316:G 312:n 278:) 276:n 260:y 256:x 248:β 244:α 240:β 236:α 228:β 224:α 202:) 198:| 191:x 182:x 178:| 174:, 170:| 163:x 154:x 150:| 146:( 134:x 108:, 105:0 102:= 93:n 80:n 73:n 59:n

Index

mathematics
open problem
Diophantine approximation
John Edensor Littlewood
real numbers
converge
limit inferior
little-o notation
geometry of numbers
lattice
Cassels
Swinnerton-Dyer
diagonal matrices
relatively compact
Margulis
Lie groups
Lebesgue measure
Manfred Einsiedler
Anatole Katok
Elon Lindenstrauss
Hausdorff dimension
compact sets
box-counting dimension
classification theorem
Littlewood polynomial
Philosophical Transactions of the Royal Society A
Bibcode
1955RSPTA.248...73C
doi
10.1098/rsta.1955.0010

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑