Knowledge (XXG)

Cartesian closed category

Source 📝

4116: 4363: 4383: 4373: 1040: 1339: 647: 1568: 2320: 1658: 909: 344: 1246: 489: 468: 1124: 2959: 1427: 728: 2891: 2175:
is Cartesian closed if and only if it is equivalent to a category with only one object and one identity morphism. Indeed, if 0 is an initial object and 1 is a final object and we have
1210: 2717: 864: 807: 2811: 3055: 3097: 2986: 2204: 2753: 2360: 3013: 2199: 2451: 3377:
Note however that the above list is not complete; type isomorphism in the free BCCC is not finitely axiomatizable, and its decidability is still an open problem.
3147:
One may ask what other such equations are valid in all Cartesian closed categories. It turns out that all of them follow logically from the following axioms:
2565: 3760: 1035:{\displaystyle Z^{Y}\times Y^{X}\times X{\xrightarrow {\mathrm {id} \times \mathrm {ev} _{X,Y}}}Z^{Y}\times Y{\xrightarrow {\mathrm {ev} _{Y,Z}}}Z} 1583: 3265: 264: 3440: 2595: 3264:, with products distributing over coproducts. Their equational theory is extended with the following axioms, yielding something similar to 2366:. The tensor product is not a categorical product, so this does not contradict the above. We obtain instead that the category of modules is 2042: 1334:{\displaystyle {\begin{array}{ccc}\Gamma _{Y}(p)&\to &X^{Y}\\\downarrow &&\downarrow \\1&\to &Y^{Y}\end{array}}} 642:{\displaystyle \mathrm {papply} _{X,Y,Z}:Z^{X\times Y}\times X\cong (Z^{Y})^{X}\times X{\xrightarrow {\mathrm {ev} _{X,Z^{Y}}}}Z^{Y}.} 3548: 90:(1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of 3473: 2034: 410: 3753: 2068:, whose continuous maps do form a Cartesian closed category (that is, the objects are the cpos, and the morphisms are the 1051: 54:
can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in
182:
The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of
3957: 3912: 2568:
provides a deep isomorphism between intuitionistic logic, simply-typed lambda calculus and Cartesian closed categories.
63: 2561:; it has led to the realization that simply-typed lambda calculus can be interpreted in any Cartesian closed category. 1984:-sets can be seen as a special case of functor categories: every group can be considered as a one-object category, and 1563:{\displaystyle \hom _{C/Y}(X\times Y{\xrightarrow {\pi _{2}}}Y,Z{\xrightarrow {p}}Y)\cong \hom _{C}(X,\Gamma _{Y}(p)).} 4386: 4326: 3253: 3727: 368:
Take care to note that a Cartesian closed category need not have finite limits; only finite products are guaranteed.
2906: 662: 4407: 4376: 4162: 4026: 3934: 2831: 2587: 1803: 4335: 3979: 3917: 138: 47: 4412: 4366: 4322: 3927: 3746: 2367: 67: 51: 1146: 3922: 3904: 2667: 2041:
with smooth maps is Cartesian closed. Substitute categories have therefore been considered: the category of
813: 756: 4129: 3895: 3875: 3798: 3418: 2057: 1681: 1364: 350: 248: 35: 2761: 4011: 3850: 2363: 2082:
are continuous functions in the Scott topology, and currying, together with apply, provide the adjoint.
3018: 3823: 3818: 2330: 3423: 2315:{\displaystyle \mathrm {Hom} (X,Y)\cong \mathrm {Hom} (1,Y^{X})\cong \mathrm {Hom} (0,Y^{X})\cong 1} 4167: 4115: 4045: 4041: 3845: 3060: 2412: 2150: 1799: 479: 383:
is locally Cartesian closed, it need not actually be Cartesian closed; that happens if and only if
95: 75: 3520: 4021: 4016: 3998: 3880: 3855: 3694: 3618: 3446: 3408: 2964: 2026: 168: 71: 55: 17: 2726: 2339: 2046: 4330: 4267: 4255: 4157: 4082: 4077: 4035: 4031: 3813: 3808: 3686: 3544: 3479: 3469: 3436: 2991: 2591: 2178: 2030: 1934:
into the category of sets, with natural transformations as morphisms, is Cartesian closed. If
1677: 91: 87: 59: 4291: 4177: 4152: 4087: 4072: 4067: 4006: 3835: 3803: 3678: 3652: 3610: 3583: 3428: 2554: 2326: 2069: 1904: 236: 2424: 2029:, Cartesian closed categories are particularly easy to work with. Neither the category of 4203: 3769: 3713: 3497: 2090: 2086: 1899:
of all small categories (with functors as morphisms) is Cartesian closed; the exponential
119: 31: 4240: 1251: 4235: 4219: 4182: 4172: 4092: 3261: 2901: 2334: 2065: 2002: 1923: 372: 111: 3601:
Solov'ev, S.V. (1983). "The category of finite sets and Cartesian closed categories".
4401: 4230: 4062: 3939: 3865: 3622: 3450: 195: 191: 3698: 1998:
is Cartesian closed; this is a functor category as explained under functor category.
3984: 3885: 3393: 2053: 1995: 1421:
on the slice category, which is right adjoint to a variant of the product functor:
4245: 3397: 2575:, have been proposed as a general setting for mathematics, instead of traditional 4225: 4097: 3967: 3432: 2583: 2172: 3669:
Seely, R. A. G. (1984). "Locally cartesian closed categories and type theory".
3656: 3637: 1232:, suppose the following pullback square exists, which defines the subobject of 4277: 4215: 3828: 3682: 3116: 2576: 1788: 3690: 3483: 4271: 3962: 3565:"Ct.category theory - is the category commutative monoids cartesian closed?" 3257: 1653:{\displaystyle Z^{Y}\cong \Gamma _{Y}(Z\times Y{\xrightarrow {\pi _{2}}}Y).} 252: 2541:) can always be represented as a "function of one variable" (the morphism λ 1791:
sets, with functions as morphisms, is Cartesian closed for the same reason.
3638:"Remarks on isomorphisms in typed lambda calculi with empty and sum types" 3587: 2525:
In Cartesian closed categories, a "function of two variables" (a morphism
2380:
Every elementary topos is locally Cartesian closed. This example includes
4340: 3972: 3870: 2558: 2098: 2073: 2038: 1729: 43: 404:, the counit of the exponential adjunction is a natural transformation 339:{\displaystyle \mathrm {Hom} (X\times Y,Z)\cong \mathrm {Hom} (X,Z^{Y})} 4310: 4300: 3949: 3860: 3614: 2325:
In particular, any non-trivial category with a zero object, such as an
256: 202: 3407:. Lecture Notes in Physics. Vol. 813. Springer. pp. 95–174. 4305: 3564: 2614:
has all pullbacks, because the pullback of two arrows with codomain
1627: 1497: 1469: 1004: 947: 594: 1712:. The adjointness is expressed by the following fact: the function 4187: 3738: 3413: 3107:
In every Cartesian closed category (using exponential notation), (
2828:
can be expressed in terms of the dependent product by the formula
2572: 2459:
does not have a terminal object, and thus is not Cartesian closed.
2126: 2078: 2019: 3732:
The n-Category Café: A group blog on math, physics and philosophy
3717: 3524: 4127: 3780: 3742: 3671:
Mathematical Proceedings of the Cambridge Philosophical Society
2501:
is locally Cartesian closed, then all of its slice categories
201:
The third condition is equivalent to the requirement that the
2598:
is more consciously modelled on Cartesian closed categories.
2509:
Non-examples of locally Cartesian closed categories include:
2411:
whose objects are topological spaces and whose morphisms are
3398:"Physics, Topology, Logic and Computation: A Rosetta Stone" 1348:
and the arrow on the bottom corresponds to the identity on
2093:. An important example arises from topological spaces. If 1045:
the corresponding arrow under the exponential adjunction
2896:
The reason for these names is because, when interpreting
2376:
Examples of locally Cartesian closed categories include:
738:
Evaluating the exponential in one argument at a morphism
1962:
is given by the set of all natural transformations from
198:
in a category is the terminal object of that category.
463:{\displaystyle \mathrm {ev} _{Y,Z}:Z^{Y}\times Y\to Z} 3063: 3021: 2994: 2967: 2909: 2834: 2764: 2729: 2670: 2427: 2342: 2207: 2181: 1988:-sets are nothing but functors from this category to 1586: 1430: 1249: 1149: 1054: 912: 816: 759: 665: 492: 413: 267: 2490:
given by taking pullbacks has a right adjoint, then
1119:{\displaystyle c_{X,Y,Z}:Z^{Y}\times Y^{X}\to Z^{X}} 4290: 4254: 4202: 4195: 4146: 4055: 3997: 3948: 3903: 3894: 3791: 2590:, which in retrospect bears some similarity to the 869:corresponding to the operation of composition with 3091: 3049: 3007: 2980: 2953: 2885: 2805: 2747: 2711: 2445: 2354: 2314: 2193: 1652: 1562: 1333: 1204: 1118: 1034: 858: 801: 722: 641: 462: 338: 2129:is a Cartesian closed category: the "product" of 1668:Examples of Cartesian closed categories include: 3580:Function level programs as mathematical objects 3256:extend Cartesian closed categories with binary 1684:as morphisms, is Cartesian closed. The product 94:, which was later generalized to the notion of 2954:{\displaystyle y:Y\vdash P(y):\mathrm {Type} } 2333:is not Cartesian closed. However, the functor 2329:, is not Cartesian closed. So the category of 1140:, this is the ordinary composition operation: 723:{\displaystyle \mathrm {ev} _{Y,Z}(f,y)=f(y).} 251:, this can be expressed by the existence of a 3754: 2886:{\displaystyle Q^{P}\cong \Pi _{p}(p^{*}(Q))} 2610:be a locally Cartesian closed category. Then 114:it satisfies the following three properties: 58:and the theory of programming, in that their 8: 2109:) for which there is a unique morphism from 1915:, with natural transformations as morphisms. 371:If a category has the property that all its 3636:Fiore, M.; Cosmo, R. Di; Balat, V. (2006). 3539:Barendregt, H.P. (1984). "Theorem 1.2.16". 2661:which has both a left and a right adjoint. 2586:has advocated a variable-free notation, or 2045:is Cartesian closed, as is the category of 1403:, then it can be assembled into a functor Γ 1236:corresponding to maps whose composite with 656:, these reduce to the ordinary operations: 194:of the categorical product and because the 4382: 4372: 4199: 4143: 4124: 3900: 3788: 3777: 3761: 3747: 3739: 1930:consisting of all covariant functors from 477:map. More generally, we can construct the 3422: 3412: 3068: 3062: 3026: 3020: 2999: 2993: 2972: 2966: 2937: 2908: 2865: 2852: 2839: 2833: 2795: 2781: 2769: 2763: 2728: 2701: 2687: 2675: 2669: 2571:Certain Cartesian closed categories, the 2426: 2419:is equivalent to the category of sheaves 2341: 2297: 2273: 2261: 2237: 2208: 2206: 2180: 1954:is the functor whose value on the object 1632: 1622: 1604: 1591: 1585: 1539: 1517: 1492: 1474: 1464: 1439: 1435: 1429: 1321: 1284: 1258: 1250: 1248: 1154: 1148: 1110: 1097: 1084: 1059: 1053: 1014: 1006: 999: 987: 968: 960: 948: 942: 930: 917: 911: 847: 834: 821: 815: 790: 777: 764: 758: 675: 667: 664: 630: 615: 604: 596: 589: 577: 567: 539: 514: 494: 491: 442: 423: 415: 412: 327: 303: 268: 266: 3466:Categories for the Working Mathematician 1205:{\displaystyle c_{X,Y,Z}(g,f)=g\circ f.} 888:. Alternate notations for the operation 873:. Alternate notations for the operation 375:are Cartesian closed, then it is called 3385: 3200:(here 1 denotes the terminal object of 1577:can be expressed in terms of sections: 1136:In the particular case of the category 652:In the particular case of the category 3582:. New York, New York, USA: ACM Press. 2712:{\displaystyle \Sigma _{p}:C/X\to C/Y} 2018:Even more generally, every elementary 859:{\displaystyle Z^{p}:Z^{Y}\to Z^{X},} 802:{\displaystyle p^{Z}:X^{Z}\to Y^{Z},} 239:, usually denoted –, for all objects 229:and morphisms φ to φ × id 7: 2043:compactly generated Hausdorff spaces 3498:"cartesian closed category in nLab" 2806:{\displaystyle \Pi _{p}:C/X\to C/Y} 2641:denote the corresponding object of 2415:is locally Cartesian closed, since 27:Type of category in category theory 3131:. We write this as the "equation" 3065: 3023: 3015:correspond to the type formations 2996: 2969: 2947: 2944: 2941: 2938: 2849: 2766: 2672: 2566:Curry–Howard–Lambek correspondence 2505:are also locally Cartesian closed. 2466:has pullbacks and for every arrow 2280: 2277: 2274: 2244: 2241: 2238: 2215: 2212: 2209: 1601: 1536: 1255: 1010: 1007: 964: 961: 952: 949: 903:Evaluation maps can be chained as 671: 668: 600: 597: 510: 507: 504: 501: 498: 495: 419: 416: 310: 307: 304: 275: 272: 269: 25: 3521:Locally cartesian closed category 2105:form the objects of a category O( 2097:is a topological space, then the 1825:is the set of all functions from 1728:is naturally identified with the 1704:is the set of all functions from 18:Locally cartesian closed category 4381: 4371: 4362: 4361: 4114: 3645:Annals of Pure and Applied Logic 3050:{\displaystyle \Sigma _{x:P(y)}} 2594:of Cartesian closed categories. 2516:is not locally Cartesian closed. 2362:with a fixed module does have a 2125:and no morphism otherwise. This 2089:is a Cartesian closed (bounded) 2064:s) have a natural topology, the 1907:consisting of all functors from 1344:where the arrow on the right is 2557:applications, this is known as 2001:In particular, the category of 1892:-sets is also Cartesian closed. 3084: 3078: 3042: 3036: 2931: 2925: 2880: 2877: 2871: 2858: 2789: 2742: 2736: 2695: 2440: 2434: 2303: 2284: 2267: 2248: 2231: 2219: 1644: 1610: 1554: 1551: 1545: 1526: 1507: 1452: 1372:. It is often abbreviated as Γ 1312: 1300: 1294: 1275: 1270: 1264: 1184: 1172: 1103: 840: 783: 714: 708: 699: 687: 574: 560: 454: 333: 314: 297: 279: 1: 3254:Bicartesian closed categories 3249:Bicartesian closed categories 3092:{\displaystyle \Pi _{x:P(y)}} 2723:and is given by composition 2494:is locally Cartesian closed. 2322:which has only one element. 1926:, then the functor category 1692:is the Cartesian product of 1395:) exists for every morphism 64:simply typed lambda calculus 4056:Constructions on categories 3464:Saunders, Mac Lane (1978). 3433:10.1007/978-3-642-12821-9_2 3266:Tarski's high school axioms 2981:{\displaystyle \Sigma _{p}} 2618:is given by the product in 1802:, then the category of all 110:is called Cartesian closed 78:and classical computation. 70:, whose internal language, 4429: 4163:Higher-dimensional algebra 3657:10.1016/j.apal.2005.09.001 3468:(2nd ed.). Springer. 3405:New Structures for Physics 2748:{\displaystyle p\circ (-)} 2588:Function-level programming 2355:{\displaystyle -\otimes M} 68:closed monoidal categories 66:. They are generalized by 42:if, roughly speaking, any 4357: 4136: 4123: 4112: 3787: 3776: 3728:"CCCs and the λ-calculus" 3714:Cartesian closed category 3683:10.1017/S0305004100061284 2645:. Taking pullbacks along 2602:Dependent sum and product 2037:maps nor the category of 1129:is called the (internal) 190:, because of the natural 3403:. In Coecke, Bob (ed.). 3008:{\displaystyle \Pi _{p}} 2194:{\displaystyle 0\cong 1} 1809:is Cartesian closed. If 377:locally cartesian closed 249:locally small categories 74:, are suitable for both 3973:Cokernels and quotients 3896:Universal constructions 2137:is the intersection of 2058:complete partial orders 2009: : Δ → 1980:The earlier example of 1950:, then the exponential 1888:The category of finite 387:has a terminal object. 209:(i.e. the functor from 4130:Higher category theory 3876:Natural transformation 3734:. University of Texas. 3093: 3051: 3009: 2982: 2955: 2887: 2807: 2749: 2713: 2447: 2356: 2316: 2195: 2013:) is Cartesian closed. 1942:are two functors from 1654: 1564: 1335: 1206: 1120: 1036: 860: 803: 724: 643: 473:called the (internal) 464: 340: 3588:10.1145/800223.806757 3578:Backus, John (1981). 3396:; Stay, Mike (2011). 3094: 3052: 3010: 2983: 2956: 2888: 2808: 2750: 2714: 2448: 2446:{\displaystyle Sh(X)} 2400:for small categories 2357: 2317: 2196: 1655: 1565: 1336: 1207: 1121: 1037: 861: 804: 725: 644: 483:map as the composite 465: 341: 3999:Algebraic categories 3061: 3019: 2992: 2965: 2907: 2832: 2762: 2727: 2668: 2425: 2413:local homeomorphisms 2340: 2205: 2179: 2145:and the exponential 2022:is Cartesian closed. 2005:(which are functors 1994:The category of all 1584: 1428: 1247: 1147: 1052: 910: 814: 757: 663: 490: 411: 265: 4168:Homotopy hypothesis 3846:Commutative diagram 3726:Baez, John (2006). 3541:The Lambda Calculus 2820:The exponential by 2582:Computer scientist 2331:modules over a ring 1837:action defined by ( 1638: 1573:The exponential by 1501: 1480: 1026: 980: 623: 480:partial application 391:Basic constructions 186:admit a product in 96:categorical product 72:linear type systems 3881:Universal property 3615:10.1007/BF01084396 3089: 3047: 3005: 2978: 2951: 2883: 2803: 2758:The right adjoint 2745: 2709: 2443: 2392:-sets for a group 2352: 2312: 2191: 2171:A category with a 2031:topological spaces 2027:algebraic topology 1650: 1560: 1365:object of sections 1331: 1329: 1202: 1116: 1032: 856: 799: 720: 639: 460: 336: 217:that maps objects 56:mathematical logic 4408:Closed categories 4395: 4394: 4353: 4352: 4349: 4348: 4331:monoidal category 4286: 4285: 4158:Enriched category 4110: 4109: 4106: 4105: 4083:Quotient category 4078:Opposite category 3993: 3992: 3543:. North-Holland. 3442:978-3-642-12821-9 3268:but with a zero: 3103:Equational theory 2815:dependent product 2664:The left adjoint 2592:internal language 1639: 1502: 1481: 1240:is the identity: 1027: 981: 624: 92:Cartesian product 60:internal language 16:(Redirected from 4420: 4385: 4384: 4375: 4374: 4365: 4364: 4200: 4178:Simplex category 4153:Categorification 4144: 4125: 4118: 4088:Product category 4073:Kleisli category 4068:Functor category 3913:Terminal objects 3901: 3836:Adjoint functors 3789: 3778: 3763: 3756: 3749: 3740: 3735: 3702: 3661: 3660: 3642: 3633: 3627: 3626: 3609:(3): 1387–1400. 3598: 3592: 3591: 3575: 3569: 3568: 3561: 3555: 3554: 3536: 3530: 3518: 3512: 3511: 3509: 3508: 3494: 3488: 3487: 3461: 3455: 3454: 3426: 3416: 3402: 3390: 3119:for all objects 3098: 3096: 3095: 3090: 3088: 3087: 3056: 3054: 3053: 3048: 3046: 3045: 3014: 3012: 3011: 3006: 3004: 3003: 2987: 2985: 2984: 2979: 2977: 2976: 2960: 2958: 2957: 2952: 2950: 2892: 2890: 2889: 2884: 2870: 2869: 2857: 2856: 2844: 2843: 2812: 2810: 2809: 2804: 2799: 2785: 2774: 2773: 2754: 2752: 2751: 2746: 2718: 2716: 2715: 2710: 2705: 2691: 2680: 2679: 2649:gives a functor 2625:For every arrow 2555:computer science 2454: 2452: 2450: 2449: 2444: 2361: 2359: 2358: 2353: 2327:abelian category 2321: 2319: 2318: 2313: 2302: 2301: 2283: 2266: 2265: 2247: 2218: 2200: 2198: 2197: 2192: 2167: 2070:Scott continuous 2047:Frölicher spaces 2039:smooth manifolds 1972: 1968:,−) ×  1905:functor category 1903:is given by the 1787:The category of 1659: 1657: 1656: 1651: 1640: 1637: 1636: 1623: 1609: 1608: 1596: 1595: 1569: 1567: 1566: 1561: 1544: 1543: 1522: 1521: 1503: 1493: 1482: 1479: 1478: 1465: 1448: 1447: 1443: 1362:) is called the 1340: 1338: 1337: 1332: 1330: 1326: 1325: 1298: 1289: 1288: 1263: 1262: 1211: 1209: 1208: 1203: 1171: 1170: 1125: 1123: 1122: 1117: 1115: 1114: 1102: 1101: 1089: 1088: 1076: 1075: 1041: 1039: 1038: 1033: 1028: 1025: 1024: 1013: 1000: 992: 991: 982: 979: 978: 967: 955: 943: 935: 934: 922: 921: 865: 863: 862: 857: 852: 851: 839: 838: 826: 825: 808: 806: 805: 800: 795: 794: 782: 781: 769: 768: 750:gives morphisms 729: 727: 726: 721: 686: 685: 674: 648: 646: 645: 640: 635: 634: 625: 622: 621: 620: 619: 603: 590: 582: 581: 572: 571: 550: 549: 531: 530: 513: 469: 467: 466: 461: 447: 446: 434: 433: 422: 400:For each object 373:slice categories 345: 343: 342: 337: 332: 331: 313: 278: 155:Any two objects 125:Any two objects 40:Cartesian closed 21: 4428: 4427: 4423: 4422: 4421: 4419: 4418: 4417: 4413:Lambda calculus 4398: 4397: 4396: 4391: 4345: 4315: 4282: 4259: 4250: 4207: 4191: 4142: 4132: 4119: 4102: 4051: 3989: 3958:Initial objects 3944: 3890: 3783: 3772: 3770:Category theory 3767: 3725: 3710: 3705: 3668: 3664: 3640: 3635: 3634: 3630: 3600: 3599: 3595: 3577: 3576: 3572: 3563: 3562: 3558: 3551: 3538: 3537: 3533: 3519: 3515: 3506: 3504: 3496: 3495: 3491: 3476: 3463: 3462: 3458: 3443: 3424:10.1.1.296.1044 3400: 3392: 3391: 3387: 3383: 3251: 3105: 3064: 3059: 3058: 3022: 3017: 3016: 2995: 2990: 2989: 2968: 2963: 2962: 2961:, the functors 2905: 2904: 2861: 2848: 2835: 2830: 2829: 2765: 2760: 2759: 2725: 2724: 2671: 2666: 2665: 2604: 2523: 2423: 2422: 2420: 2368:monoidal closed 2338: 2337: 2293: 2257: 2203: 2202: 2177: 2176: 2154: 2121:is a subset of 2087:Heyting algebra 2003:simplicial sets 1996:directed graphs 1963: 1666: 1628: 1600: 1587: 1582: 1581: 1535: 1513: 1470: 1431: 1426: 1425: 1408: 1390: 1377: 1357: 1328: 1327: 1317: 1315: 1310: 1304: 1303: 1297: 1291: 1290: 1280: 1278: 1273: 1254: 1245: 1244: 1220:For a morphism 1218: 1150: 1145: 1144: 1106: 1093: 1080: 1055: 1050: 1049: 1005: 983: 959: 926: 913: 908: 907: 883: 843: 830: 817: 812: 811: 786: 773: 760: 755: 754: 736: 666: 661: 660: 626: 611: 595: 573: 563: 535: 493: 488: 487: 438: 414: 409: 408: 398: 393: 379:. Note that if 323: 263: 262: 234: 120:terminal object 104: 84: 32:category theory 28: 23: 22: 15: 12: 11: 5: 4426: 4424: 4416: 4415: 4410: 4400: 4399: 4393: 4392: 4390: 4389: 4379: 4369: 4358: 4355: 4354: 4351: 4350: 4347: 4346: 4344: 4343: 4338: 4333: 4319: 4313: 4308: 4303: 4297: 4295: 4288: 4287: 4284: 4283: 4281: 4280: 4275: 4264: 4262: 4257: 4252: 4251: 4249: 4248: 4243: 4238: 4233: 4228: 4223: 4212: 4210: 4205: 4197: 4193: 4192: 4190: 4185: 4183:String diagram 4180: 4175: 4173:Model category 4170: 4165: 4160: 4155: 4150: 4148: 4141: 4140: 4137: 4134: 4133: 4128: 4121: 4120: 4113: 4111: 4108: 4107: 4104: 4103: 4101: 4100: 4095: 4093:Comma category 4090: 4085: 4080: 4075: 4070: 4065: 4059: 4057: 4053: 4052: 4050: 4049: 4039: 4029: 4027:Abelian groups 4024: 4019: 4014: 4009: 4003: 4001: 3995: 3994: 3991: 3990: 3988: 3987: 3982: 3977: 3976: 3975: 3965: 3960: 3954: 3952: 3946: 3945: 3943: 3942: 3937: 3932: 3931: 3930: 3920: 3915: 3909: 3907: 3898: 3892: 3891: 3889: 3888: 3883: 3878: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3832: 3831: 3826: 3821: 3816: 3811: 3806: 3795: 3793: 3785: 3784: 3781: 3774: 3773: 3768: 3766: 3765: 3758: 3751: 3743: 3737: 3736: 3723: 3709: 3708:External links 3706: 3704: 3703: 3665: 3663: 3662: 3651:(1–2): 35–50. 3628: 3593: 3570: 3556: 3549: 3531: 3513: 3489: 3474: 3456: 3441: 3384: 3382: 3379: 3375: 3374: 3368: 3362: 3352: 3343: 3314: 3287: 3262:initial object 3250: 3247: 3246: 3245: 3235: 3217: 3208: 3205: 3191: 3174: 3145: 3144: 3104: 3101: 3099:respectively. 3086: 3083: 3080: 3077: 3074: 3071: 3067: 3044: 3041: 3038: 3035: 3032: 3029: 3025: 3002: 2998: 2975: 2971: 2949: 2946: 2943: 2940: 2936: 2933: 2930: 2927: 2924: 2921: 2918: 2915: 2912: 2902:dependent type 2882: 2879: 2876: 2873: 2868: 2864: 2860: 2855: 2851: 2847: 2842: 2838: 2813:is called the 2802: 2798: 2794: 2791: 2788: 2784: 2780: 2777: 2772: 2768: 2744: 2741: 2738: 2735: 2732: 2719:is called the 2708: 2704: 2700: 2697: 2694: 2690: 2686: 2683: 2678: 2674: 2603: 2600: 2522: 2519: 2518: 2517: 2507: 2506: 2495: 2478:, the functor 2460: 2442: 2439: 2436: 2433: 2430: 2405: 2374: 2373: 2372: 2371: 2351: 2348: 2345: 2335:tensor product 2311: 2308: 2305: 2300: 2296: 2292: 2289: 2286: 2282: 2279: 2276: 2272: 2269: 2264: 2260: 2256: 2253: 2250: 2246: 2243: 2240: 2236: 2233: 2230: 2227: 2224: 2221: 2217: 2214: 2211: 2190: 2187: 2184: 2169: 2083: 2066:Scott topology 2050: 2023: 2016: 2015: 2014: 1999: 1992: 1924:small category 1916: 1893: 1886: 1792: 1785: 1665: 1662: 1661: 1660: 1649: 1646: 1643: 1635: 1631: 1626: 1621: 1618: 1615: 1612: 1607: 1603: 1599: 1594: 1590: 1571: 1570: 1559: 1556: 1553: 1550: 1547: 1542: 1538: 1534: 1531: 1528: 1525: 1520: 1516: 1512: 1509: 1506: 1500: 1496: 1491: 1488: 1485: 1477: 1473: 1468: 1463: 1460: 1457: 1454: 1451: 1446: 1442: 1438: 1434: 1404: 1399:with codomain 1386: 1373: 1353: 1342: 1341: 1324: 1320: 1316: 1314: 1311: 1309: 1306: 1305: 1302: 1299: 1296: 1293: 1292: 1287: 1283: 1279: 1277: 1274: 1272: 1269: 1266: 1261: 1257: 1253: 1252: 1217: 1214: 1213: 1212: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1169: 1166: 1163: 1160: 1157: 1153: 1127: 1126: 1113: 1109: 1105: 1100: 1096: 1092: 1087: 1083: 1079: 1074: 1071: 1068: 1065: 1062: 1058: 1043: 1042: 1031: 1023: 1020: 1017: 1012: 1009: 1003: 998: 995: 990: 986: 977: 974: 971: 966: 963: 958: 954: 951: 946: 941: 938: 933: 929: 925: 920: 916: 881: 867: 866: 855: 850: 846: 842: 837: 833: 829: 824: 820: 809: 798: 793: 789: 785: 780: 776: 772: 767: 763: 735: 732: 731: 730: 719: 716: 713: 710: 707: 704: 701: 698: 695: 692: 689: 684: 681: 678: 673: 670: 650: 649: 638: 633: 629: 618: 614: 610: 607: 602: 599: 593: 588: 585: 580: 576: 570: 566: 562: 559: 556: 553: 548: 545: 542: 538: 534: 529: 526: 523: 520: 517: 512: 509: 506: 503: 500: 497: 471: 470: 459: 456: 453: 450: 445: 441: 437: 432: 429: 426: 421: 418: 397: 394: 392: 389: 347: 346: 335: 330: 326: 322: 319: 316: 312: 309: 306: 302: 299: 296: 293: 290: 287: 284: 281: 277: 274: 271: 230: 180: 179: 153: 123: 112:if and only if 103: 100: 88:René Descartes 83: 80: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4425: 4414: 4411: 4409: 4406: 4405: 4403: 4388: 4380: 4378: 4370: 4368: 4360: 4359: 4356: 4342: 4339: 4337: 4334: 4332: 4328: 4324: 4320: 4318: 4316: 4309: 4307: 4304: 4302: 4299: 4298: 4296: 4293: 4289: 4279: 4276: 4273: 4269: 4266: 4265: 4263: 4261: 4253: 4247: 4244: 4242: 4239: 4237: 4234: 4232: 4231:Tetracategory 4229: 4227: 4224: 4221: 4220:pseudofunctor 4217: 4214: 4213: 4211: 4209: 4201: 4198: 4194: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4145: 4139: 4138: 4135: 4131: 4126: 4122: 4117: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4063:Free category 4061: 4060: 4058: 4054: 4047: 4046:Vector spaces 4043: 4040: 4037: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4004: 4002: 4000: 3996: 3986: 3983: 3981: 3978: 3974: 3971: 3970: 3969: 3966: 3964: 3961: 3959: 3956: 3955: 3953: 3951: 3947: 3941: 3940:Inverse limit 3938: 3936: 3933: 3929: 3926: 3925: 3924: 3921: 3919: 3916: 3914: 3911: 3910: 3908: 3906: 3902: 3899: 3897: 3893: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3866:Kan extension 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3830: 3827: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3805: 3802: 3801: 3800: 3797: 3796: 3794: 3790: 3786: 3779: 3775: 3771: 3764: 3759: 3757: 3752: 3750: 3745: 3744: 3741: 3733: 3729: 3724: 3722: 3720: 3715: 3712: 3711: 3707: 3700: 3696: 3692: 3688: 3684: 3680: 3676: 3672: 3667: 3666: 3658: 3654: 3650: 3646: 3639: 3632: 3629: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3594: 3589: 3585: 3581: 3574: 3571: 3566: 3560: 3557: 3552: 3550:0-444-87508-5 3546: 3542: 3535: 3532: 3529: 3527: 3522: 3517: 3514: 3503: 3499: 3493: 3490: 3485: 3481: 3477: 3471: 3467: 3460: 3457: 3452: 3448: 3444: 3438: 3434: 3430: 3425: 3420: 3415: 3410: 3406: 3399: 3395: 3394:Baez, John C. 3389: 3386: 3380: 3378: 3372: 3369: 3366: 3363: 3361: 3357: 3353: 3351: 3347: 3344: 3342: 3338: 3334: 3330: 3326: 3322: 3318: 3315: 3312: 3308: 3304: 3300: 3296: 3292: 3288: 3286: 3282: 3278: 3274: 3271: 3270: 3269: 3267: 3263: 3259: 3255: 3248: 3244: 3240: 3236: 3234: 3230: 3226: 3222: 3218: 3216: 3212: 3209: 3206: 3203: 3199: 3195: 3192: 3190: 3186: 3182: 3178: 3175: 3173: 3169: 3165: 3161: 3157: 3153: 3150: 3149: 3148: 3142: 3138: 3134: 3133: 3132: 3130: 3126: 3122: 3118: 3114: 3110: 3102: 3100: 3081: 3075: 3072: 3069: 3039: 3033: 3030: 3027: 3000: 2973: 2934: 2928: 2922: 2919: 2916: 2913: 2910: 2903: 2899: 2894: 2874: 2866: 2862: 2853: 2845: 2840: 2836: 2827: 2823: 2818: 2816: 2800: 2796: 2792: 2786: 2782: 2778: 2775: 2770: 2756: 2739: 2733: 2730: 2722: 2721:dependent sum 2706: 2702: 2698: 2692: 2688: 2684: 2681: 2676: 2662: 2660: 2656: 2652: 2648: 2644: 2640: 2636: 2632: 2628: 2623: 2621: 2617: 2613: 2609: 2601: 2599: 2597: 2593: 2589: 2585: 2580: 2578: 2574: 2569: 2567: 2562: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2520: 2515: 2512: 2511: 2510: 2504: 2500: 2496: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2458: 2437: 2431: 2428: 2418: 2414: 2410: 2407:The category 2406: 2403: 2399: 2396:, as well as 2395: 2391: 2387: 2383: 2379: 2378: 2377: 2369: 2365: 2364:right adjoint 2349: 2346: 2343: 2336: 2332: 2328: 2324: 2323: 2309: 2306: 2298: 2294: 2290: 2287: 2270: 2262: 2258: 2254: 2251: 2234: 2228: 2225: 2222: 2188: 2185: 2182: 2174: 2170: 2165: 2161: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2081: 2080: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2021: 2017: 2012: 2008: 2004: 2000: 1997: 1993: 1991: 1987: 1983: 1979: 1978: 1976: 1971: 1967: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1914: 1910: 1906: 1902: 1898: 1895:The category 1894: 1891: 1887: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1806: 1801: 1797: 1793: 1790: 1786: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1672:The category 1671: 1670: 1669: 1663: 1647: 1641: 1633: 1629: 1624: 1619: 1616: 1613: 1605: 1597: 1592: 1588: 1580: 1579: 1578: 1576: 1557: 1548: 1540: 1532: 1529: 1523: 1518: 1514: 1510: 1504: 1498: 1494: 1489: 1486: 1483: 1475: 1471: 1466: 1461: 1458: 1455: 1449: 1444: 1440: 1436: 1432: 1424: 1423: 1422: 1420: 1416: 1412: 1407: 1402: 1398: 1394: 1389: 1383: 1381: 1376: 1371: 1367: 1366: 1361: 1356: 1351: 1347: 1322: 1318: 1307: 1285: 1281: 1267: 1259: 1243: 1242: 1241: 1239: 1235: 1231: 1227: 1223: 1215: 1199: 1196: 1193: 1190: 1187: 1181: 1178: 1175: 1167: 1164: 1161: 1158: 1155: 1151: 1143: 1142: 1141: 1139: 1134: 1132: 1111: 1107: 1098: 1094: 1090: 1085: 1081: 1077: 1072: 1069: 1066: 1063: 1060: 1056: 1048: 1047: 1046: 1029: 1021: 1018: 1015: 1001: 996: 993: 988: 984: 975: 972: 969: 956: 944: 939: 936: 931: 927: 923: 918: 914: 906: 905: 904: 901: 899: 895: 891: 887: 880: 876: 872: 853: 848: 844: 835: 831: 827: 822: 818: 810: 796: 791: 787: 778: 774: 770: 765: 761: 753: 752: 751: 749: 745: 741: 733: 717: 711: 705: 702: 696: 693: 690: 682: 679: 676: 659: 658: 657: 655: 636: 631: 627: 616: 612: 608: 605: 591: 586: 583: 578: 568: 564: 557: 554: 551: 546: 543: 540: 536: 532: 527: 524: 521: 518: 515: 486: 485: 484: 482: 481: 476: 457: 451: 448: 443: 439: 435: 430: 427: 424: 407: 406: 405: 403: 395: 390: 388: 386: 382: 378: 374: 369: 366: 364: 360: 356: 352: 328: 324: 320: 317: 300: 294: 291: 288: 285: 282: 261: 260: 259: 258: 254: 250: 246: 242: 238: 237:right adjoint 233: 228: 224: 220: 216: 212: 208: 204: 199: 197: 196:empty product 193: 192:associativity 189: 185: 177: 173: 170: 166: 162: 158: 154: 151: 147: 143: 140: 136: 132: 128: 124: 121: 117: 116: 115: 113: 109: 106:The category 101: 99: 97: 93: 89: 81: 79: 77: 73: 69: 65: 61: 57: 53: 49: 46:defined on a 45: 41: 37: 33: 19: 4311: 4292:Categorified 4196:n-categories 4147:Key concepts 3985:Direct limit 3968:Coequalizers 3886:Yoneda lemma 3840: 3792:Key concepts 3782:Key concepts 3731: 3718: 3677:(1): 33–48. 3674: 3670: 3648: 3644: 3631: 3606: 3602: 3596: 3579: 3573: 3559: 3540: 3534: 3525: 3516: 3505:. Retrieved 3501: 3492: 3465: 3459: 3404: 3388: 3376: 3370: 3364: 3359: 3355: 3349: 3345: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3310: 3306: 3302: 3298: 3294: 3290: 3284: 3280: 3276: 3272: 3252: 3242: 3238: 3232: 3228: 3224: 3220: 3214: 3210: 3201: 3197: 3193: 3188: 3184: 3180: 3176: 3171: 3167: 3163: 3159: 3155: 3151: 3146: 3140: 3136: 3128: 3124: 3120: 3112: 3108: 3106: 2897: 2895: 2825: 2821: 2819: 2814: 2757: 2720: 2663: 2658: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2624: 2619: 2615: 2611: 2607: 2605: 2581: 2570: 2563: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2524: 2521:Applications 2513: 2508: 2502: 2498: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2456: 2455:. However, 2416: 2408: 2401: 2397: 2393: 2389: 2385: 2381: 2375: 2163: 2159: 2155: 2146: 2142: 2138: 2134: 2130: 2122: 2118: 2114: 2110: 2106: 2102: 2094: 2077: 2072:maps). Both 2061: 2054:order theory 2010: 2006: 1989: 1985: 1981: 1974: 1969: 1965: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1919: 1912: 1908: 1900: 1896: 1889: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1857:.y) for all 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1821:-sets, then 1818: 1814: 1810: 1804: 1795: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1673: 1667: 1574: 1572: 1418: 1414: 1410: 1405: 1400: 1396: 1392: 1387: 1384: 1379: 1374: 1369: 1363: 1359: 1354: 1349: 1345: 1343: 1237: 1233: 1229: 1225: 1221: 1219: 1137: 1135: 1130: 1128: 1044: 902: 897: 893: 889: 885: 878: 874: 870: 868: 747: 743: 739: 737: 653: 651: 478: 474: 472: 401: 399: 384: 380: 376: 370: 367: 362: 358: 354: 348: 255:between the 244: 240: 231: 226: 222: 218: 214: 210: 206: 200: 187: 183: 181: 175: 171: 164: 160: 156: 149: 145: 141: 134: 130: 126: 107: 105: 86:Named after 85: 39: 29: 4260:-categories 4236:Kan complex 4226:Tricategory 4208:-categories 4098:Subcategory 3856:Exponential 3824:Preadditive 3819:Pre-abelian 3502:ncatlab.org 2584:John Backus 2173:zero object 1744:defined by 1131:composition 734:Composition 169:exponential 4402:Categories 4278:3-category 4268:2-category 4241:∞-groupoid 4216:Bicategory 3963:Coproducts 3923:Equalizers 3829:Bicategory 3603:J Math Sci 3507:2017-09-17 3475:1441931236 3381:References 3258:coproducts 3117:isomorphic 2577:set theory 2035:continuous 1768:) for all 475:evaluation 396:Evaluation 102:Definition 4327:Symmetric 4272:2-functor 4012:Relations 3935:Pullbacks 3691:1469-8064 3623:122693163 3484:851741862 3451:115169297 3419:CiteSeerX 3414:0903.0340 3066:Π 3024:Σ 2997:Π 2970:Σ 2920:⊢ 2867:∗ 2850:Π 2846:≅ 2790:→ 2767:Π 2740:− 2734:∘ 2696:→ 2673:Σ 2347:⊗ 2344:− 2307:≅ 2271:≅ 2235:≅ 2186:≅ 2099:open sets 1732:function 1682:functions 1630:π 1617:× 1602:Γ 1598:≅ 1537:Γ 1524:⁡ 1511:≅ 1472:π 1459:× 1450:⁡ 1313:→ 1301:↓ 1295:↓ 1276:→ 1256:Γ 1194:∘ 1104:→ 1091:× 994:× 957:× 937:× 924:× 841:→ 784:→ 584:× 558:≅ 552:× 544:× 455:→ 449:× 349:which is 301:≅ 286:× 253:bijection 205:– × 118:It has a 82:Etymology 4387:Glossary 4367:Category 4341:n-monoid 4294:concepts 3950:Colimits 3918:Products 3871:Morphism 3814:Concrete 3809:Additive 3799:Category 3699:15115721 2653: : 2629: : 2559:currying 2545: : 2529: : 2482: : 2470: : 2151:interior 2074:currying 1817:are two 1736: : 1716: : 1664:Examples 1625:→ 1495:→ 1467:→ 1409: : 1352:. Then Γ 1216:Sections 1002:→ 945:→ 892:include 877:include 742: : 592:→ 257:hom-sets 235:) has a 225: × 167:have an 144: × 44:morphism 36:category 4377:Outline 4336:n-group 4301:2-group 4256:Strict 4246:∞-topos 4042:Modules 3980:Pushout 3928:Kernels 3861:Functor 3804:Abelian 3716:at the 3523:at the 3260:and an 3111:) and ( 2453:⁠ 2421:⁠ 2201:, then 2149:is the 2091:lattice 1730:curried 1680:, with 1676:of all 351:natural 247:. For 203:functor 139:product 137:have a 76:quantum 62:is the 52:objects 50:of two 48:product 4323:Traced 4306:2-ring 4036:Fields 4022:Groups 4017:Magmas 3905:Limits 3697:  3689:  3621:  3547:  3482:  3472:  3449:  3439:  3421:  3367:×0 = 0 3115:) are 2637:, let 2553:). In 2386:FinSet 1789:finite 1700:, and 361:, and 4317:-ring 4204:Weak 4188:Topos 4032:Rings 3695:S2CID 3641:(PDF) 3619:S2CID 3447:S2CID 3409:arXiv 3401:(PDF) 3207:1 = 1 3196:×1 = 3162:) = ( 3139:) = ( 2900:as a 2573:topoi 2127:poset 2079:apply 2033:with 2020:topos 1922:is a 1833:with 1807:-sets 1800:group 1798:is a 1133:map. 4007:Sets 3687:ISSN 3545:ISBN 3480:OCLC 3470:ISBN 3437:ISBN 3354:0 + 3327:) = 3297:) + 3241:) = 3227:) = 3127:and 3057:and 2988:and 2606:Let 2596:CAML 2564:The 2417:LH/X 2141:and 2133:and 2076:and 1938:and 1877:and 1849:) = 1813:and 1776:and 1756:) = 1696:and 1678:sets 1385:If Γ 896:and 884:and 159:and 129:and 34:, a 3851:End 3841:CCC 3721:Lab 3679:doi 3653:doi 3649:141 3611:doi 3584:doi 3528:Lab 3429:doi 3373:= 1 3350:x×x 3305:+ ( 2826:C/Y 2824:in 2659:C/X 2655:C/Y 2643:C/Y 2620:C/Z 2514:Cat 2503:C/X 2497:If 2488:C/X 2484:C/Y 2462:If 2398:Set 2382:Set 2153:of 2117:if 2113:to 2101:in 2062:cpo 2052:In 2025:In 2011:Set 1990:Set 1973:to 1958:of 1948:Set 1946:to 1928:Set 1918:If 1911:to 1897:Cat 1881:in 1861:in 1853:.F( 1829:to 1794:If 1780:in 1772:in 1708:to 1674:Set 1515:hom 1433:hom 1382:). 1368:of 1138:Set 898:-∘p 886:p∘- 654:Set 353:in 243:in 221:to 213:to 174:in 163:of 148:in 133:of 38:is 30:In 4404:: 4329:) 4325:)( 3730:. 3693:. 3685:. 3675:95 3673:. 3647:. 3643:. 3617:. 3607:22 3605:. 3500:. 3478:. 3445:. 3435:. 3427:. 3417:. 3358:= 3348:= 3335:+ 3323:+ 3319:×( 3309:+ 3301:= 3293:+ 3283:+ 3279:= 3275:+ 3213:= 3183:= 3170:)× 3154:×( 3143:). 3123:, 2893:. 2817:. 2755:. 2657:→ 2633:→ 2622:. 2579:. 2549:→ 2537:→ 2486:→ 2474:→ 2457:LH 2409:LH 2388:, 2384:, 2158:∪( 2085:A 2056:, 1977:. 1873:→ 1865:, 1845:)( 1752:)( 1740:→ 1724:→ 1417:→ 1228:→ 900:. 746:→ 365:. 357:, 98:. 4321:( 4314:n 4312:E 4274:) 4270:( 4258:n 4222:) 4218:( 4206:n 4048:) 4044:( 4038:) 4034:( 3762:e 3755:t 3748:v 3719:n 3701:. 3681:: 3659:. 3655:: 3625:. 3613:: 3590:. 3586:: 3567:. 3553:. 3526:n 3510:. 3486:. 3453:. 3431:: 3411:: 3371:x 3365:x 3360:x 3356:x 3346:x 3341:z 3339:× 3337:x 3333:y 3331:× 3329:x 3325:z 3321:y 3317:x 3313:) 3311:z 3307:y 3303:x 3299:z 3295:y 3291:x 3289:( 3285:x 3281:y 3277:y 3273:x 3243:x 3239:x 3237:( 3233:y 3231:× 3229:x 3225:y 3223:× 3221:x 3219:( 3215:x 3211:x 3204:) 3202:C 3198:x 3194:x 3189:x 3187:× 3185:y 3181:y 3179:× 3177:x 3172:z 3168:y 3166:× 3164:x 3160:z 3158:× 3156:y 3152:x 3141:x 3137:x 3135:( 3129:Z 3125:Y 3121:X 3113:X 3109:X 3085:) 3082:y 3079:( 3076:P 3073:: 3070:x 3043:) 3040:y 3037:( 3034:P 3031:: 3028:x 3001:p 2974:p 2948:e 2945:p 2942:y 2939:T 2935:: 2932:) 2929:y 2926:( 2923:P 2917:Y 2914:: 2911:y 2898:P 2881:) 2878:) 2875:Q 2872:( 2863:p 2859:( 2854:p 2841:P 2837:Q 2822:P 2801:Y 2797:/ 2793:C 2787:X 2783:/ 2779:C 2776:: 2771:p 2743:) 2737:( 2731:p 2707:Y 2703:/ 2699:C 2693:X 2689:/ 2685:C 2682:: 2677:p 2651:p 2647:p 2639:P 2635:Y 2631:X 2627:p 2616:Z 2612:C 2608:C 2551:Z 2547:X 2543:f 2539:Z 2535:Y 2533:× 2531:X 2527:f 2499:C 2492:C 2480:p 2476:Y 2472:X 2468:p 2464:C 2441:) 2438:X 2435:( 2432:h 2429:S 2404:. 2402:C 2394:G 2390:G 2370:. 2350:M 2310:1 2304:) 2299:X 2295:Y 2291:, 2288:0 2285:( 2281:m 2278:o 2275:H 2268:) 2263:X 2259:Y 2255:, 2252:1 2249:( 2245:m 2242:o 2239:H 2232:) 2229:Y 2226:, 2223:X 2220:( 2216:m 2213:o 2210:H 2189:1 2183:0 2168:. 2166:) 2164:V 2162:\ 2160:X 2156:U 2147:U 2143:V 2139:U 2135:V 2131:U 2123:V 2119:U 2115:V 2111:U 2107:X 2103:X 2095:X 2060:( 2049:. 2007:X 1986:G 1982:G 1975:F 1970:G 1966:X 1964:( 1960:C 1956:X 1952:F 1944:C 1940:G 1936:F 1932:C 1920:C 1913:C 1909:D 1901:C 1890:G 1885:. 1883:Y 1879:y 1875:Z 1871:Y 1869:: 1867:F 1863:G 1859:g 1855:g 1851:g 1847:y 1843:F 1841:. 1839:g 1835:G 1831:Z 1827:Y 1823:Z 1819:G 1815:Z 1811:Y 1805:G 1796:G 1784:. 1782:Y 1778:y 1774:X 1770:x 1766:y 1764:, 1762:x 1760:( 1758:f 1754:y 1750:x 1748:( 1746:g 1742:Z 1738:X 1734:g 1726:Z 1722:Y 1720:× 1718:X 1714:f 1710:Z 1706:Y 1702:Z 1698:Y 1694:X 1690:Y 1688:× 1686:X 1648:. 1645:) 1642:Y 1634:2 1620:Y 1614:Z 1611:( 1606:Y 1593:Y 1589:Z 1575:Y 1558:. 1555:) 1552:) 1549:p 1546:( 1541:Y 1533:, 1530:X 1527:( 1519:C 1508:) 1505:Y 1499:p 1490:Z 1487:, 1484:Y 1476:2 1462:Y 1456:X 1453:( 1445:Y 1441:/ 1437:C 1419:C 1415:Y 1413:/ 1411:C 1406:Y 1401:Y 1397:p 1393:p 1391:( 1388:Y 1380:X 1378:( 1375:Y 1370:p 1360:p 1358:( 1355:Y 1350:Y 1346:p 1323:Y 1319:Y 1308:1 1286:Y 1282:X 1271:) 1268:p 1265:( 1260:Y 1238:p 1234:X 1230:Y 1226:X 1224:: 1222:p 1200:. 1197:f 1191:g 1188:= 1185:) 1182:f 1179:, 1176:g 1173:( 1168:Z 1165:, 1162:Y 1159:, 1156:X 1152:c 1112:X 1108:Z 1099:X 1095:Y 1086:Y 1082:Z 1078:: 1073:Z 1070:, 1067:Y 1064:, 1061:X 1057:c 1030:Z 1022:Z 1019:, 1016:Y 1011:v 1008:e 997:Y 989:Y 985:Z 976:Y 973:, 970:X 965:v 962:e 953:d 950:i 940:X 932:X 928:Y 919:Y 915:Z 894:p 890:Z 882:* 879:p 875:p 871:p 854:, 849:X 845:Z 836:Y 832:Z 828:: 823:p 819:Z 797:, 792:Z 788:Y 779:Z 775:X 771:: 766:Z 762:p 748:Y 744:X 740:p 718:. 715:) 712:y 709:( 706:f 703:= 700:) 697:y 694:, 691:f 688:( 683:Z 680:, 677:Y 672:v 669:e 637:. 632:Y 628:Z 617:Y 613:Z 609:, 606:X 601:v 598:e 587:X 579:X 575:) 569:Y 565:Z 561:( 555:X 547:Y 541:X 537:Z 533:: 528:Z 525:, 522:Y 519:, 516:X 511:y 508:l 505:p 502:p 499:a 496:p 458:Z 452:Y 444:Y 440:Z 436:: 431:Z 428:, 425:Y 420:v 417:e 402:Y 385:C 381:C 363:Z 359:Y 355:X 334:) 329:Y 325:Z 321:, 318:X 315:( 311:m 308:o 305:H 298:) 295:Z 292:, 289:Y 283:X 280:( 276:m 273:o 270:H 245:C 241:Y 232:Y 227:Y 223:X 219:X 215:C 211:C 207:Y 188:C 184:C 178:. 176:C 172:Z 165:C 161:Z 157:Y 152:. 150:C 146:Y 142:X 135:C 131:Y 127:X 122:. 108:C 20:)

Index

Locally cartesian closed category
category theory
category
morphism
product
objects
mathematical logic
internal language
simply typed lambda calculus
closed monoidal categories
linear type systems
quantum
René Descartes
Cartesian product
categorical product
if and only if
terminal object
product
exponential
associativity
empty product
functor
right adjoint
locally small categories
bijection
hom-sets
natural
slice categories
partial application
object of sections

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.