Knowledge

Interpretation (logic)

Source 📝

4766: 1515:, so this second approach is the same as only studying interpretations that happen to be normal models. The advantage of this approach is that the axioms related to equality are automatically satisfied by every normal model, and so they do not need to be explicitly included in first-order theories when equality is treated this way. This second approach is sometimes called 2495: 2418: 1547:
of variables. The idea is different sorts of variables represent different types of objects. Every sort of variable can be quantified; thus an interpretation for a many-sorted language has a separate domain for each of the sorts of variables to range over (there is an infinite collection of variables
1458:
fails in any structure with an empty domain. Thus the proof theory of first-order logic becomes more complicated when empty structures are permitted. However, the gain in allowing them is negligible, as both the intended interpretations and the interesting interpretations of the theories people study
899:
Given any truth assignment for a set of propositional symbols, there is a unique extension to an interpretation for all the propositional formulas built up from those variables. This extended interpretation is defined inductively, using the truth-table definitions of the logical connectives discussed
1595:
looks much the same as a formal language for first-order logic. The difference is that there are now many different types of variables. Some variables correspond to elements of the domain, as in first-order logic. Other variables correspond to objects of higher type: subsets of the domain, functions
1462:
Empty relations do not cause any problem for first-order interpretations, because there is no similar notion of passing a relation symbol across a logical connective, enlarging its scope in the process. Thus it is acceptable for relation symbols to be interpreted as being identically false. However,
1139:
is an element of the domain. There are two ways of handling this technical issue. The first is to pass to a larger language in which each element of the domain is named by a constant symbol. The second is to add to the interpretation a function that assigns each variable to an element of the domain.
1668:
Many formal languages are associated with a particular interpretation that is used to motivate them. For example, the first-order signature for set theory includes only one binary relation, ∈, which is intended to represent set membership, and the domain of discourse in a first-order theory of the
1603:
require that, once the domain of discourse is satisfied, the higher-order variables range over all possible elements of the correct type (all subsets of the domain, all functions from the domain to itself, etc.). Thus the specification of a full interpretation is the same as the specification of a
947:
Given a signature σ, the corresponding formal language is known as the set of σ-formulas. Each σ-formula is built up out of atomic formulas by means of logical connectives; atomic formulas are built from terms using predicate symbols. The formal definition of the set of σ-formulas proceeds in the
582:
So under a given interpretation of all the sentence letters Φ and Ψ (i.e., after assigning a truth-value to each sentence letter), we can determine the truth-values of all formulas that have them as constituents, as a function of the logical connectives. The following table shows how this kind of
948:
other direction: first, terms are assembled from the constant and function symbols together with the variables. Then, terms can be combined into an atomic formula using a predicate symbol (relation symbol) from the signature or the special predicate symbol "=" for equality (see the section "
1474:
The first approach is to treat equality as no different than any other binary relation. In this case, if an equality symbol is included in the signature, it is usually necessary to add various axioms about equality to axiom systems (for example, the substitution axiom saying that if
515:, no sentence can be made both true and false by the same interpretation, although this is not true of glut logics such as LP. Even in classical logic, however, it is possible that the truth value of the same sentence can be different under different interpretations. A sentence is 550:
The truth-functional connectives enable compound sentences to be built up from simpler sentences. In this way, the truth value of the compound sentence is defined as a certain truth function of the truth values of the simpler sentences. The connectives are usually taken to be
2343: 1530:
interpretation on a subset of the original domain. Thus there is little additional generality in studying non-normal models. Second, if non-normal models are considered, then every consistent theory has an infinite model; this affects the statements of results such as the
583:
thing looks. The first two columns show the truth-values of the sentence letters as determined by the four possible interpretations. The other columns show the truth-values of formulas built from these sentence letters, with truth-values determined recursively.
485:
Logical constants are always given the same meaning by every interpretation of the standard kind, so that only the meanings of the non-logical symbols are changed. Logical constants include quantifier symbols ∀ ("all") and ∃ ("some"), symbols for
2280: 2426: 2349: 1608:, which are essentially multi-sorted first-order semantics, require the interpretation to specify a separate domain for each type of higher-order variable to range over. Thus an interpretation in Henkin semantics includes a domain 1335: 1510:
The second approach is to treat the equality relation symbol as a logical constant that must be interpreted by the real equality relation in any interpretation. An interpretation that interprets equality this way is known as a
2179: 908:
Unlike propositional logic, where every language is the same apart from a choice of a different set of propositional variables, there are many different first-order languages. Each first-order language is defined by a
924:
is also assigned. The alphabet for the formal language consists of logical constants, the equality relation symbol =, all the symbols from the signature, and an additional infinite set of symbols known as variables.
801:
in a formal language for propositional logic are the propositional symbols, which are often denoted by capital letters. To make the formal language precise, a specific set of propositional symbols must be fixed.
1341:
is not a free variable of φ, are logically valid. This equivalence holds in every interpretation with a nonempty domain, but does not always hold when empty domains are permitted. For example, the equivalence
1632:
The interpretations of propositional logic and predicate logic described above are not the only possible interpretations. In particular, there are other types of interpretations that are used in the study of
1147:
in first-order logic, which must then also be interpreted. A propositional variable can stand on its own as an atomic formula. The interpretation of a propositional variable is one of the two truth values
2286: 1994: 773:
correspondence between certain elementary statements of the theory, and certain statements related to the subject matter. If every elementary statement in the theory has a correspondent it is called a
1853: 1272:
As stated above, a first-order interpretation is usually required to specify a nonempty set as the domain of discourse. The reason for this requirement is to guarantee that equivalences such as
1162:, they do not associate each predicate symbol with a property (or relation), but rather with the extension of that property (or relation). In other words, these first-order interpretations are 1906:(or in other contexts: a non-intended arbitrary interpretation used to clarify such an intended factually-true descriptive interpretation.) All models are interpretations that have the same 259: 547:
that represent truth functions — functions that take truth values as arguments and return truth values as outputs (in other words, these are operations on truth values of sentences).
436: 1140:
Then the T-schema can quantify over variations of the original interpretation in which this variable assignment function is changed, instead of quantifying over substitution instances.
1053:, which is a definition of first-order semantics developed by Alfred Tarski. The T-schema interprets the logical connectives using truth tables, as discussed above. Thus, for example, 1522:
There are a few other reasons to restrict study of first-order logic to normal models. First, it is known that any first-order interpretation in which equality is interpreted by an
2134: 2094: 2062: 2030: 1956: 1596:
from the domain, functions that take a subset of the domain and return a function from the domain to subsets of the domain, etc. All of these types of variables can be quantified.
1805: 1770: 2755:
The extension of a property (also called an attribute) is a set of individuals, so a property is a unary relation. E.g. The properties "yellow" and "prime" are unary relations.
1456: 3145: 1254: 1200: 460: 370: 283: 221: 2223: 1548:
of each of the different sorts). Function and relation symbols, in addition to having arities, are specified so that each of their arguments must come from a certain sort.
498:
Many of the commonly studied interpretations associate each sentence in a formal language with a single truth value, either True or False. These interpretations are called
2235: 1275: 177:
over which the language is defined. To distinguish the strings of symbols that are in a formal language from arbitrary strings of symbols, the former are sometimes called
390: 323: 303: 932:, there are constant symbols 0 and 1, two binary function symbols + and ·, and no binary relation symbols. (Here the equality relation is taken as a logical constant.) 3820: 410: 343: 470:
In the specific cases of propositional logic and predicate logic, the formal languages considered have alphabets that are divided into two sets: the logical symbols (
2199: 112:
is to stand for tall and 'a' for Abraham Lincoln. Nor does logical interpretation have anything to say about logical connectives like 'and', 'or' and 'not'. Though
1873: 2490:{\displaystyle \blacksquare \ \bigstar \ \blacksquare \ \blacksquare \ \blacksquare \ \blacklozenge \ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare } 2413:{\displaystyle \blacksquare \ \bigstar \ \blacksquare \ \blacksquare \ \blacksquare \ \blacklozenge \ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare } 1555:. There are two sorts; points and lines. There is an equality relation symbol for points, an equality relation symbol for lines, and a binary incidence relation 3903: 3044: 913:. The signature consists of a set of non-logical symbols and an identification of each of these symbols as either a constant symbol, a function symbol, or a 183:(wff). The essential feature of a formal language is that its syntax can be defined without reference to interpretation. For example, we can determine that ( 502:; they include the usual interpretations of propositional and first-order logic. The sentences that are made true by a particular assignment are said to be 2497:" can be interpreted as meaning "One plus three equals four." A different interpretation would be to read it backwards as "Four minus three equals one." 1499:) holds as well). This approach to equality is most useful when studying signatures that do not include the equality relation, such as the signature for 1559:
which takes one point variable and one line variable. The intended interpretation of this language has the point variables range over all points on the
69:
terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called
939:, as consisting of individual symbols a, b, and c; predicate symbols F, G, H, I and J; variables x, y, z; no function letters; no sentential symbols. 2143: 555:, meaning that the meaning of the connectives is always the same, independent of what interpretations are given to the other symbols in a formula. 4217: 2505:
There are other uses of the term "interpretation" that are commonly used, which do not refer to the assignment of meanings to formal languages.
735:
is True. Now the only other possible interpretation of Φ makes it False, and if so, ¬Φ is made True by the negation function. That would make
4375: 2955: 2895: 4870: 3163: 4946: 4230: 3553: 1045:
The information specified in the interpretation provides enough information to give a truth value to any atomic formula, after each of its
4802: 2609: 1049:, if any, has been replaced by an element of the domain. The truth value of an arbitrary sentence is then defined inductively using the 3815: 4235: 4225: 3962: 3168: 2600: 4865: 3713: 3159: 4910: 4371: 2927: 2741: 1471:
The equality relation is often treated specially in first order logic and other predicate logics. There are two general approaches.
2338:{\displaystyle \blacksquare \ \bigstar \ \blacksquare \ \blacksquare \ \blacklozenge \ \blacksquare \ \blacksquare \ \blacksquare } 727:: (Φ ∨ ¬Φ). If our interpretation function makes Φ True, then ¬Φ is made False by the negation connective. Since the disjunct Φ of 4468: 4212: 3037: 4895: 3773: 3466: 3207: 2629: 1961: 1532: 952:
below). Finally, the formulas of the language are assembled from atomic formulas using the logical connectives and quantifiers.
4956: 31: 1810: 529:
if it is satisfied by every interpretation (if φ is satisfied by every interpretation that satisfies ψ then φ is said to be a
4729: 4431: 4194: 4189: 4014: 3435: 3119: 2788: 1035: 910: 4724: 4507: 4424: 4137: 4068: 3945: 3187: 2779: 2619: 2553: 1734: 124: 96:
of symbols and strings of symbols of an object language. For example, an interpretation function could take the predicate
3795: 88:
analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a
4649: 4475: 4161: 3394: 490:∧ ("and"), ∨ ("or"), ¬ ("not"), parentheses and other grouping symbols, and (in many treatments) the equality symbol =. 62: 4920: 3800: 116:
may take these symbols to stand for certain things or concepts, this is not determined by the interpretation function.
4132: 3871: 3129: 3030: 2765: 1345: 760: 173: 128: 93: 4915: 4527: 4522: 226: 805:
The standard kind of interpretation in this setting is a function that maps each propositional symbol to one of the
4853: 4456: 4046: 3440: 3408: 3099: 2971: 3173: 415: 4941: 4746: 4695: 4592: 4090: 4051: 3528: 4838: 4587: 3202: 793:
consists of formulas built up from propositional symbols (also called sentential symbols, sentential variables,
4517: 4056: 3908: 3891: 3614: 3094: 817:
function. In many presentations, it is literally a truth value that is assigned, but some presentations assign
104:} (for "Abraham Lincoln"). All our interpretation does is assign the extension {a} to the non-logical constant 70: 2948:
The Concept and the Role of the Model in Mathematics and Natural and Social Sciences (Colloquium proceedings)
4858: 4795: 4419: 4396: 4357: 4243: 4184: 3830: 3750: 3594: 3538: 3151: 2729: 2614: 2568: 1527: 1504: 1463:
the interpretation of a function symbol must always assign a well-defined and total function to the symbol.
961: 828:
distinct propositional variables there are 2 distinct possible interpretations. For any particular variable
4709: 4436: 4381: 4274: 4120: 4105: 4078: 4029: 3913: 3848: 3673: 3639: 3634: 3508: 3339: 3316: 2202: 1507:
in which there is only an equality relation for numbers, but not an equality relation for set of numbers.
1167: 1163: 1144: 794: 89: 4951: 4639: 4492: 4284: 4002: 3738: 3644: 3503: 3488: 3369: 3344: 1779: 1744: 1720: 4765: 1645: 2107: 2067: 2035: 2003: 1929: 1684:, it consists of the natural numbers with their ordinary arithmetical operations. All models that are 4885: 4880: 4832: 4612: 4574: 4451: 4255: 4095: 4019: 3997: 3825: 3783: 3682: 3649: 3513: 3301: 3212: 2275:{\displaystyle \blacksquare \ \bigstar \ \blacksquare \ \blacklozenge \ \blacksquare \ \blacksquare } 1915: 1876: 1723: 1708: 1649: 1638: 1523: 132: 42: 1235: 1181: 966:
To ascribe meaning to all sentences of a first-order language, the following information is needed.
441: 351: 264: 202: 4826: 4741: 4632: 4617: 4597: 4554: 4441: 4391: 4317: 4262: 4199: 3992: 3987: 3935: 3703: 3692: 3364: 3264: 3192: 3183: 3179: 3114: 3109: 2208: 1907: 1634: 971: 790: 531: 179: 159: 77: 4961: 4788: 4770: 4539: 4502: 4487: 4480: 4463: 4249: 4115: 4041: 4024: 3977: 3790: 3699: 3533: 3518: 3478: 3430: 3415: 3403: 3359: 3334: 3104: 3053: 2869: 2853: 2816: 2800: 1887: 1738: 1716: 1624:, etc. The relationship between these two semantics is an important topic in higher order logic. 1592: 1552: 1085: 929: 798: 544: 487: 4267: 3723: 375: 308: 288: 4705: 4512: 4322: 4312: 4204: 4085: 3920: 3896: 3677: 3661: 3566: 3543: 3420: 3389: 3354: 3249: 3084: 2951: 2923: 2891: 2737: 1891: 743:
s disjuncts, ¬Φ, would be true under this interpretation. Since these two interpretations for
395: 328: 4848: 4719: 4714: 4607: 4564: 4386: 4347: 4342: 4327: 4153: 4110: 4007: 3805: 3755: 3329: 3291: 2943: 2845: 2792: 2733: 2722: 2690: 2595: 1911: 1886:
Most formal systems have many more models than they were intended to have (the existence of
1712: 1700: 1681: 1677: 914: 552: 471: 2865: 2812: 2184: 4815: 4700: 4690: 4644: 4627: 4582: 4544: 4446: 4366: 4173: 4100: 4073: 4061: 3967: 3881: 3855: 3810: 3778: 3579: 3381: 3324: 3274: 3239: 3197: 3012: 2861: 2808: 1858: 1560: 512: 144: 81: 50: 46: 1699:
While the intended interpretation can have no explicit indication in the strictly formal
1535:, which are usually stated under the assumption that only normal models are considered. 1519:, but many authors adopt it for the general study of first-order logic without comment. 4905: 4685: 4664: 4622: 4602: 4497: 4352: 3950: 3940: 3930: 3925: 3859: 3733: 3609: 3498: 3493: 3471: 3072: 2992: 2624: 1704: 918: 17: 4935: 4659: 4337: 3844: 3629: 3619: 3589: 3574: 3244: 3017: 2916: 2911: 2833: 2685: 2668: 1330:{\displaystyle (\phi \lor \exists x\psi )\leftrightarrow \exists x(\phi \lor \psi ),} 1213:
Individual constants: a: The white King, b: The black Queen, c: The white King's pawn
1046: 2873: 2820: 2032:
which is at least 6 symbols long, and which is not infinitely long, is a formula of
478:
symbols have the same meaning regardless of the subject matter being studied, while
4559: 4406: 4307: 4299: 4179: 4127: 4036: 3972: 3955: 3886: 3745: 3604: 3306: 3089: 3007: 2997: 2717: 2639: 2604: 2509: 2101: 1880: 1773: 1693: 1689: 1653: 2777:
Hailperin, Theodore (1953), "Quantification theory and empty individual-domains",
1563:, the line variable range over all lines on the plane, and the incidence relation 1599:
There are two kinds of interpretations commonly employed for higher-order logic.
1135:) mentioned above is not a formula in the original formal language of φ, because 127:
in a language. If a given interpretation assigns the value True to a sentence or
4900: 4843: 4780: 4669: 4549: 3728: 3718: 3665: 3349: 3269: 3254: 3134: 3079: 2644: 2634: 1657: 818: 806: 770: 517: 504: 120: 85: 54: 3002: 2174:{\displaystyle \blacksquare \ \bigstar \ast \blacklozenge \ \blacksquare \ast } 723:
Now it is easier to see what makes a formula logically valid. Take the formula
3599: 3454: 3425: 3231: 1685: 1500: 1159: 1100:
is true under an interpretation exactly when every substitution instance of φ(
1688:
to the one just given are also called standard; these models all satisfy the
1543:
A generalization of first order logic considers languages with more than one
769:
is the relationship between a theory and some subject matter when there is a
191:) is a well-formed formula even without knowing whether it is true or false. 4875: 4811: 4751: 4654: 3707: 3624: 3584: 3548: 3484: 3296: 3286: 3259: 751:
comes out True for both, we say that it is logically valid or tautologous.
2976:
Metalogic: An Introduction to the Metatheory of Standard First Order Logic
2886:
Roland Müller (2009). "The Notion of a Model". In Anthonie Meijers (ed.).
2540:
and these functions and relations. In some settings, it is not the domain
4736: 4534: 3982: 3687: 3281: 1719:
are chosen so that their counterparts in the intended interpretation are
1526:
and satisfies the substitution axioms for equality can be cut down to an
1050: 119:
An interpretation often (but not always) provides a way to determine the
474:) and the non-logical symbols. The idea behind this terminology is that 4332: 3124: 2857: 2804: 1895: 543:
Some of the logical symbols of a language (other than quantifiers) are
1158:
Because the first-order interpretations described here are defined in
3022: 1108:
is replaced by some element of the domain, is satisfied. The formula
66: 2849: 2796: 1694:
non-standard models of the (first-order version of the) Peano axioms
3876: 3222: 3067: 2649: 1731: 1727: 1260:
the following are true sentences: F(a), G(c), H(b), I(a), J(b, c),
921: 558:
This is how we define logical connectives in propositional logic:
482:
symbols change in meaning depending on the area of investigation.
58: 1696:, which contain elements not correlated with any natural number. 1131:
Strictly speaking, a substitution instance such as the formula φ(
521:
if it is true under at least one interpretation; otherwise it is
171:. The inventory from which these letters are taken is called the 2890:. Handbook of the Philosophy of Science. Vol. 9. Elsevier. 4784: 3026: 1060:
This leaves the issue of how to interpret formulas of the form
575:(Φ → Ψ) is True iff ¬Φ is True or Ψ is True (or both are True). 1669:
natural numbers is intended to be the set of natural numbers.
572:(Φ ∨ Ψ) is True iff Φ is True or Ψ is True (or both are True). 563: 856:
there are 2=4 possible interpretations: 1) both are assigned
2117: 2113: 2077: 2073: 2045: 2041: 2013: 2009: 1939: 1935: 1834: 1817: 1786: 1751: 1241: 1187: 447: 357: 270: 208: 1989:{\displaystyle \{\blacksquare ,\bigstar ,\blacklozenge \}} 1644:
Interpretations used to study non-classical logic include
832:, for example, there are 2=2 possible interpretations: 1) 747:
are the only possible logical interpretations, and since
149:
A formal language consists of a possibly infinite set of
27:
Assignment of meaning to the symbols of a formal language
1848:{\displaystyle {\mathcal {I}}_{i}\to {\mathcal {I}}_{j}} 1057:
is satisfied if and only if both φ and ψ are satisfied.
578:(Φ ↔ Ψ) is True iff (Φ → Ψ) is True and (Ψ → Φ) is True. 2673:
An Introduction to Non-Classical Logic: from If to Is,
1715:
must permit expression of the concepts to be modeled;
494:
General properties of truth-functional interpretations
2429: 2352: 2289: 2238: 2211: 2187: 2146: 2110: 2070: 2038: 2006: 1964: 1932: 1926:
Given a simple formal system (we shall call this one
1861: 1813: 1782: 1747: 1348: 1278: 1238: 1184: 1088:
for these quantifiers. The idea is that the sentence
444: 418: 398: 378: 354: 331: 311: 291: 267: 229: 205: 4678: 4573: 4405: 4298: 4150: 3843: 3766: 3660: 3564: 3453: 3380: 3315: 3230: 3221: 3143: 3060: 2918:
Introduction to Symbolic Logic and its Applications
917:. In the case of function and predicate symbols, a 2915: 2721: 2689: 2489: 2412: 2337: 2274: 2217: 2193: 2173: 2128: 2088: 2056: 2024: 1988: 1958:) whose alphabet α consists only of three symbols 1950: 1904:intended factually-true descriptive interpretation 1867: 1847: 1799: 1764: 1450: 1329: 1248: 1194: 1034:An object carrying this information is known as a 454: 430: 404: 384: 364: 337: 317: 297: 277: 253: 215: 2993:Stanford Enc. Phil: Classical Logic, 4. Semantics 2888:Philosophy of technology and engineering sciences 1263:the following are false sentences: J(a, c), G(a). 1898:to be a model of our science, to speak about an 1890:is an example). When we speak about 'models' in 2836:(1954), "Quantification and the empty domain", 1879:, as usual. These requirements ensure that all 1551:One example of many-sorted logic is for planar 977:, usually required to be non-empty (see below). 254:{\displaystyle \alpha =\{\triangle ,\square \}} 2844:(3), Association for Symbolic Logic: 177–179, 2229:A formal proof can be constructed as follows: 1120:is satisfied if there is at least one element 935:Again, we might define a first-order language 438:would denote 101 under this interpretation of 4796: 3038: 3013:mathworld.wolfram.com: Propositional Calculus 1042:-structure (of language L), or as a "model". 8: 2707:Sometimes called the "universe of discourse" 2548:modulo an equivalence relation definable in 1983: 1965: 1026:as its interpretation (that is, a subset of 809:true and false. This function is known as a 569:(Φ ∧ Ψ) is True iff Φ is True and Ψ is True. 431:{\displaystyle \triangle \square \triangle } 248: 236: 76:The most commonly studied formal logics are 2536:is isomorphic to the structure with domain 2528:, and definable relations and functions on 1003:as its interpretation (that is, a function 4803: 4789: 4781: 3864: 3459: 3227: 3045: 3031: 3023: 1996:and whose formation rule for formulas is: 1902:. A model in the empirical sciences is an 1672:The intended interpretation is called the 949: 108:, and does not make a claim about whether 100:(for "tall") and assign it the extension { 2428: 2351: 2288: 2237: 2210: 2186: 2145: 2112: 2111: 2109: 2072: 2071: 2069: 2040: 2039: 2037: 2008: 2007: 2005: 1963: 1934: 1933: 1931: 1860: 1839: 1833: 1832: 1822: 1816: 1815: 1812: 1791: 1785: 1784: 1781: 1756: 1750: 1749: 1746: 1703:, it naturally affects the choice of the 1347: 1277: 1240: 1239: 1237: 1186: 1185: 1183: 980:For every constant symbol, an element of 956:Interpretations of a first-order language 446: 445: 443: 417: 397: 377: 356: 355: 353: 330: 310: 290: 269: 268: 266: 228: 207: 206: 204: 3018:mathworld.wolfram.com: First Order Logic 1711:of the syntactical system. For example, 585: 2661: 2423:In this example the theorem produced " 1174:Example of a first-order interpretation 785:Interpretations for propositional logic 1855:turns out to be a true sentence, with 943:Formal languages for first-order logic 372:could assign the decimal digit '1' to 305:and is composed solely of the symbols 3008:mathworld.wolfram.com: Interpretation 2998:mathworld.wolfram.com: FormalLanguage 1660:is also studied using Kripke models. 1038:(of signature σ), or σ-structure, or 7: 2563:is said to interpret another theory 1883:sentences also come out to be true. 1641:), and in the study of modal logic. 1084:. The domain of discourse forms the 797:) and logical connectives. The only 2675:2nd ed. Cambridge University Press. 2610:Formal semantics (natural language) 1741:must be such that, if the sentence 731:is True under that interpretation, 2552:. For additional information, see 2205:standing for a finite string of " 1800:{\displaystyle {\mathcal {I}}_{i}} 1765:{\displaystyle {\mathcal {I}}_{j}} 1412: 1403: 1376: 1352: 1303: 1288: 425: 419: 379: 312: 292: 239: 25: 3003:mathworld.wolfram.com: Connective 2978:. University of California Press. 2692:Foundations of Mathematical Logic 2516:is said to interpret a structure 1616:, a collection of functions from 223:can be defined with the alphabet 131:, the interpretation is called a 4764: 2922:. New York: Dover publications. 2724:Elementary Logic, Second Edition 2501:Other concepts of interpretation 2129:{\displaystyle {\mathcal {FS'}}} 2089:{\displaystyle {\mathcal {FS'}}} 2057:{\displaystyle {\mathcal {FS'}}} 2025:{\displaystyle {\mathcal {FS'}}} 1951:{\displaystyle {\mathcal {FS'}}} 1451:{\displaystyle \equiv \exists x} 928:For example, in the language of 53:. Many formal languages used in 4871:Gödel's incompleteness theorems 2520:if there is a definable subset 2064:. Nothing else is a formula of 1910:as the intended one, but other 1517:first order logic with equality 1206:described above is as follows. 32:Interpretation (disambiguation) 2789:Association for Symbolic Logic 1862: 1828: 1445: 1430: 1418: 1409: 1397: 1394: 1382: 1370: 1358: 1349: 1321: 1309: 1300: 1297: 1279: 1249:{\displaystyle {\mathcal {I}}} 1195:{\displaystyle {\mathcal {I}}} 455:{\displaystyle {\mathcal {W}}} 365:{\displaystyle {\mathcal {W}}} 278:{\displaystyle {\mathcal {W}}} 216:{\displaystyle {\mathcal {W}}} 1: 4725:History of mathematical logic 2838:The Journal of Symbolic Logic 2780:The Journal of Symbolic Logic 2620:Interpretation (model theory) 2554:Interpretation (model theory) 2218:{\displaystyle \blacksquare } 1628:Non-classical interpretations 1612:, a collection of subsets of 1587:Higher-order predicate logics 1575:) holds if and only if point 1539:Many-sorted first-order logic 1178:An example of interpretation 525:. A sentence φ is said to be 348:A possible interpretation of 4866:Gödel's completeness theorem 4650:Primitive recursive function 1680:in 1960). In the context of 1604:first-order interpretation. 1593:higher-order predicate logic 1268:Non-empty domain requirement 545:truth-functional connectives 163:) built from a fixed set of 135:of that sentence or theory. 63:theoretical computer science 4947:Interpretation (philosophy) 2766:Extension (predicate logic) 777:, otherwise it is called a 761:Theory (mathematical logic) 261:, and with a word being in 4978: 4854:Foundations of mathematics 3714:Schröder–Bernstein theorem 3441:Monadic predicate calculus 3100:Foundations of mathematics 2000:'Any string of symbols of 1124:of the domain such that φ( 1018:-ary predicate symbol, an 959: 767:interpretation of a theory 758: 755:Interpretation of a theory 385:{\displaystyle \triangle } 318:{\displaystyle \triangle } 298:{\displaystyle \triangle } 142: 29: 4822: 4760: 4747:Philosophy of mathematics 4696:Automated theorem proving 3867: 3821:Von Neumann–Bernays–Gödel 3462: 2544:that is used, but rather 991:-ary function symbol, an 739:True again, since one of 4896:Löwenheim–Skolem theorem 2630:Löwenheim–Skolem theorem 2569:extension by definitions 1664:Intended interpretations 1533:Löwenheim–Skolem theorem 1459:have non-empty domains. 1228:J(x, y): x can capture y 1143:Some authors also admit 789:The formal language for 405:{\displaystyle \square } 338:{\displaystyle \square } 4921:Use–mention distinction 4397:Self-verifying theories 4218:Tarski's axiomatization 3169:Tarski's undefinability 3164:incompleteness theorems 2730:Oxford University Press 2615:Herbrand interpretation 1737:in the interpretation; 1528:elementarily equivalent 1505:second-order arithmetic 1145:propositional variables 962:Interpretation function 860:, 2) both are assigned 795:propositional variables 4957:Philosophy of language 4916:Type–token distinction 4771:Mathematics portal 4382:Proof of impossibility 4030:propositional variable 3340:Propositional calculus 2491: 2414: 2339: 2276: 2219: 2203:metasyntactic variable 2195: 2175: 2130: 2090: 2058: 2026: 1990: 1952: 1894:, we mean, if we want 1869: 1849: 1801: 1766: 1676:(a term introduced by 1591:A formal language for 1452: 1331: 1250: 1232:In the interpretation 1196: 984:as its interpretation. 950:Interpreting equality" 779:partial interpretation 456: 432: 406: 386: 366: 339: 319: 299: 279: 255: 217: 65:are defined in solely 18:Logical interpretation 4640:Kolmogorov complexity 4593:Computably enumerable 4493:Model complete theory 4285:Principia Mathematica 3345:Propositional formula 3174:Banach–Tarski paradox 2567:if there is a finite 2492: 2415: 2340: 2277: 2220: 2196: 2194:{\displaystyle \ast } 2176: 2131: 2091: 2059: 2027: 1991: 1953: 1916:non-logical constants 1870: 1850: 1802: 1767: 1724:declarative sentences 1650:Boolean-valued models 1503:or the signature for 1467:Interpreting equality 1453: 1332: 1251: 1197: 457: 433: 407: 387: 367: 340: 320: 300: 280: 256: 218: 4839:Church–Turing thesis 4833:Entscheidungsproblem 4588:Church–Turing thesis 4575:Computability theory 3784:continuum hypothesis 3302:Square of opposition 3160:Gödel's completeness 2427: 2350: 2287: 2236: 2209: 2185: 2144: 2108: 2068: 2036: 2004: 1962: 1930: 1868:{\displaystyle \to } 1859: 1811: 1780: 1745: 1730:need to come out as 1709:transformation rules 1639:intuitionistic logic 1524:equivalence relation 1346: 1276: 1236: 1182: 824:For a language with 587:Logical connectives 508:by that assignment. 442: 416: 396: 376: 352: 329: 309: 289: 265: 227: 203: 41:is an assignment of 30:For other uses, see 4742:Mathematical object 4633:P versus NP problem 4598:Computable function 4392:Reverse mathematics 4318:Logical consequence 4195:primitive recursive 4190:elementary function 3963:Free/bound variable 3816:Tarski–Grothendieck 3335:Logical connectives 3265:Logical equivalence 3115:Logical consequence 1908:domain of discourse 1888:non-standard models 1728:primitive sentences 1717:sentential formulas 1635:non-classical logic 1210:Domain: A chess set 995:-ary function from 972:domain of discourse 799:non-logical symbols 791:propositional logic 775:full interpretation 588: 539:Logical connectives 532:logical consequence 488:logical connectives 180:well-formed formulæ 78:propositional logic 4540:Transfer principle 4503:Semantics of logic 4488:Categorical theory 4464:Non-standard model 3978:Logical connective 3105:Information theory 3054:Mathematical logic 2946:, ed. (Jan 1960). 2487: 2410: 2335: 2272: 2215: 2191: 2171: 2126: 2086: 2054: 2022: 1986: 1948: 1892:empirical sciences 1865: 1845: 1797: 1762: 1739:rules of inference 1646:topological models 1553:Euclidean geometry 1448: 1327: 1246: 1216:F(x): x is a piece 1192: 586: 452: 428: 402: 382: 362: 335: 315: 295: 285:if it begins with 275: 251: 213: 199:A formal language 153:(variously called 92:that provides the 4929: 4928: 4778: 4777: 4710:Abstract category 4513:Theories of truth 4323:Rule of inference 4313:Natural deduction 4294: 4293: 3839: 3838: 3544:Cartesian product 3449: 3448: 3355:Many-valued logic 3330:Boolean functions 3213:Russell's paradox 3188:diagonal argument 3085:First-order logic 2957:978-94-010-3669-6 2897:978-0-444-51667-1 2483: 2477: 2471: 2465: 2459: 2453: 2447: 2441: 2435: 2406: 2400: 2394: 2388: 2382: 2376: 2370: 2364: 2358: 2331: 2325: 2319: 2313: 2307: 2301: 2295: 2268: 2262: 2256: 2250: 2244: 2164: 2152: 1701:syntactical rules 1692:. There are also 1219:G(x): x is a pawn 1022:-ary relation on 904:First-order logic 721: 720: 553:logical constants 472:logical constants 466:Logical constants 16:(Redirected from 4969: 4942:Formal languages 4849:Effective method 4827:Cantor's theorem 4805: 4798: 4791: 4782: 4769: 4768: 4720:History of logic 4715:Category of sets 4608:Decision problem 4387:Ordinal analysis 4328:Sequent calculus 4226:Boolean algebras 4166: 4165: 4140: 4111:logical/constant 3865: 3851: 3774:Zermelo–Fraenkel 3525:Set operations: 3460: 3397: 3228: 3208:Löwenheim–Skolem 3095:Formal semantics 3047: 3040: 3033: 3024: 2980: 2979: 2968: 2962: 2961: 2944:Hans Freudenthal 2940: 2934: 2933: 2921: 2908: 2902: 2901: 2883: 2877: 2876: 2830: 2824: 2823: 2774: 2768: 2762: 2756: 2753: 2747: 2746: 2727: 2714: 2708: 2705: 2699: 2697: 2695: 2682: 2676: 2666: 2596:Conceptual model 2582:is contained in 2496: 2494: 2493: 2488: 2481: 2475: 2469: 2463: 2457: 2451: 2445: 2439: 2433: 2419: 2417: 2416: 2411: 2404: 2398: 2392: 2386: 2380: 2374: 2368: 2362: 2356: 2344: 2342: 2341: 2336: 2329: 2323: 2317: 2311: 2305: 2299: 2293: 2281: 2279: 2278: 2273: 2266: 2260: 2254: 2248: 2242: 2224: 2222: 2221: 2216: 2200: 2198: 2197: 2192: 2180: 2178: 2177: 2172: 2162: 2150: 2135: 2133: 2132: 2127: 2125: 2124: 2123: 2095: 2093: 2092: 2087: 2085: 2084: 2083: 2063: 2061: 2060: 2055: 2053: 2052: 2051: 2031: 2029: 2028: 2023: 2021: 2020: 2019: 1995: 1993: 1992: 1987: 1957: 1955: 1954: 1949: 1947: 1946: 1945: 1874: 1872: 1871: 1866: 1854: 1852: 1851: 1846: 1844: 1843: 1838: 1837: 1827: 1826: 1821: 1820: 1806: 1804: 1803: 1798: 1796: 1795: 1790: 1789: 1776:from a sentence 1771: 1769: 1768: 1763: 1761: 1760: 1755: 1754: 1682:Peano arithmetic 1678:Abraham Robinson 1606:Henkin semantics 1457: 1455: 1454: 1449: 1336: 1334: 1333: 1328: 1255: 1253: 1252: 1247: 1245: 1244: 1225:I(x): x is white 1222:H(x): x is black 1202:of the language 1201: 1199: 1198: 1193: 1191: 1190: 1128:) is satisfied. 1119: 1099: 1083: 1071: 1056: 915:predicate symbol 811:truth assignment 589: 500:truth functional 461: 459: 458: 453: 451: 450: 437: 435: 434: 429: 411: 409: 408: 403: 391: 389: 388: 383: 371: 369: 368: 363: 361: 360: 344: 342: 341: 336: 324: 322: 321: 316: 304: 302: 301: 296: 284: 282: 281: 276: 274: 273: 260: 258: 257: 252: 222: 220: 219: 214: 212: 211: 139:Formal languages 71:formal semantics 21: 4977: 4976: 4972: 4971: 4970: 4968: 4967: 4966: 4932: 4931: 4930: 4925: 4818: 4816:metamathematics 4809: 4779: 4774: 4763: 4756: 4701:Category theory 4691:Algebraic logic 4674: 4645:Lambda calculus 4583:Church encoding 4569: 4545:Truth predicate 4401: 4367:Complete theory 4290: 4159: 4155: 4151: 4146: 4138: 3858: and  3854: 3849: 3835: 3811:New Foundations 3779:axiom of choice 3762: 3724:Gödel numbering 3664: and  3656: 3560: 3445: 3395: 3376: 3325:Boolean algebra 3311: 3275:Equiconsistency 3240:Classical logic 3217: 3198:Halting problem 3186: and  3162: and  3150: and  3149: 3144:Theorems ( 3139: 3056: 3051: 2989: 2984: 2983: 2972:Geoffrey Hunter 2970: 2969: 2965: 2958: 2942: 2941: 2937: 2930: 2910: 2909: 2905: 2898: 2885: 2884: 2880: 2850:10.2307/2268615 2832: 2831: 2827: 2797:10.2307/2267402 2776: 2775: 2771: 2763: 2759: 2754: 2750: 2744: 2716: 2715: 2711: 2706: 2702: 2684: 2683: 2679: 2667: 2663: 2658: 2592: 2503: 2425: 2424: 2348: 2347: 2285: 2284: 2234: 2233: 2207: 2206: 2183: 2182: 2142: 2141: 2116: 2106: 2105: 2076: 2066: 2065: 2044: 2034: 2033: 2012: 2002: 2001: 1960: 1959: 1938: 1928: 1927: 1924: 1857: 1856: 1831: 1814: 1809: 1808: 1783: 1778: 1777: 1748: 1743: 1742: 1713:primitive signs 1666: 1630: 1589: 1561:Euclidean plane 1541: 1469: 1344: 1343: 1274: 1273: 1270: 1234: 1233: 1180: 1179: 1176: 1109: 1089: 1073: 1061: 1054: 964: 958: 945: 906: 848:. For the pair 787: 763: 757: 541: 527:logically valid 513:classical logic 496: 468: 440: 439: 414: 413: 394: 393: 374: 373: 350: 349: 327: 326: 307: 306: 287: 286: 263: 262: 225: 224: 201: 200: 197: 147: 145:Formal language 141: 82:predicate logic 51:formal language 35: 28: 23: 22: 15: 12: 11: 5: 4975: 4973: 4965: 4964: 4959: 4954: 4949: 4944: 4934: 4933: 4927: 4926: 4924: 4923: 4918: 4913: 4908: 4906:Satisfiability 4903: 4898: 4893: 4891:Interpretation 4888: 4883: 4878: 4873: 4868: 4863: 4862: 4861: 4851: 4846: 4841: 4836: 4829: 4823: 4820: 4819: 4810: 4808: 4807: 4800: 4793: 4785: 4776: 4775: 4761: 4758: 4757: 4755: 4754: 4749: 4744: 4739: 4734: 4733: 4732: 4722: 4717: 4712: 4703: 4698: 4693: 4688: 4686:Abstract logic 4682: 4680: 4676: 4675: 4673: 4672: 4667: 4665:Turing machine 4662: 4657: 4652: 4647: 4642: 4637: 4636: 4635: 4630: 4625: 4620: 4615: 4605: 4603:Computable set 4600: 4595: 4590: 4585: 4579: 4577: 4571: 4570: 4568: 4567: 4562: 4557: 4552: 4547: 4542: 4537: 4532: 4531: 4530: 4525: 4520: 4510: 4505: 4500: 4498:Satisfiability 4495: 4490: 4485: 4484: 4483: 4473: 4472: 4471: 4461: 4460: 4459: 4454: 4449: 4444: 4439: 4429: 4428: 4427: 4422: 4415:Interpretation 4411: 4409: 4403: 4402: 4400: 4399: 4394: 4389: 4384: 4379: 4369: 4364: 4363: 4362: 4361: 4360: 4350: 4345: 4335: 4330: 4325: 4320: 4315: 4310: 4304: 4302: 4296: 4295: 4292: 4291: 4289: 4288: 4280: 4279: 4278: 4277: 4272: 4271: 4270: 4265: 4260: 4240: 4239: 4238: 4236:minimal axioms 4233: 4222: 4221: 4220: 4209: 4208: 4207: 4202: 4197: 4192: 4187: 4182: 4169: 4167: 4148: 4147: 4145: 4144: 4143: 4142: 4130: 4125: 4124: 4123: 4118: 4113: 4108: 4098: 4093: 4088: 4083: 4082: 4081: 4076: 4066: 4065: 4064: 4059: 4054: 4049: 4039: 4034: 4033: 4032: 4027: 4022: 4012: 4011: 4010: 4005: 4000: 3995: 3990: 3985: 3975: 3970: 3965: 3960: 3959: 3958: 3953: 3948: 3943: 3933: 3928: 3926:Formation rule 3923: 3918: 3917: 3916: 3911: 3901: 3900: 3899: 3889: 3884: 3879: 3874: 3868: 3862: 3845:Formal systems 3841: 3840: 3837: 3836: 3834: 3833: 3828: 3823: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3787: 3786: 3781: 3770: 3768: 3764: 3763: 3761: 3760: 3759: 3758: 3748: 3743: 3742: 3741: 3734:Large cardinal 3731: 3726: 3721: 3716: 3711: 3697: 3696: 3695: 3690: 3685: 3670: 3668: 3658: 3657: 3655: 3654: 3653: 3652: 3647: 3642: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3582: 3577: 3571: 3569: 3562: 3561: 3559: 3558: 3557: 3556: 3551: 3546: 3541: 3536: 3531: 3523: 3522: 3521: 3516: 3506: 3501: 3499:Extensionality 3496: 3494:Ordinal number 3491: 3481: 3476: 3475: 3474: 3463: 3457: 3451: 3450: 3447: 3446: 3444: 3443: 3438: 3433: 3428: 3423: 3418: 3413: 3412: 3411: 3401: 3400: 3399: 3386: 3384: 3378: 3377: 3375: 3374: 3373: 3372: 3367: 3362: 3352: 3347: 3342: 3337: 3332: 3327: 3321: 3319: 3313: 3312: 3310: 3309: 3304: 3299: 3294: 3289: 3284: 3279: 3278: 3277: 3267: 3262: 3257: 3252: 3247: 3242: 3236: 3234: 3225: 3219: 3218: 3216: 3215: 3210: 3205: 3200: 3195: 3190: 3178:Cantor's  3176: 3171: 3166: 3156: 3154: 3141: 3140: 3138: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3097: 3092: 3087: 3082: 3077: 3076: 3075: 3064: 3062: 3058: 3057: 3052: 3050: 3049: 3042: 3035: 3027: 3021: 3020: 3015: 3010: 3005: 3000: 2995: 2988: 2987:External links 2985: 2982: 2981: 2963: 2956: 2935: 2928: 2903: 2896: 2878: 2825: 2769: 2757: 2748: 2742: 2709: 2700: 2696:. Mcgraw Hill. 2677: 2669:Priest, Graham 2660: 2659: 2657: 2654: 2653: 2652: 2647: 2642: 2637: 2632: 2627: 2625:Logical system 2622: 2617: 2612: 2607: 2601:Free variables 2598: 2591: 2588: 2512:, a structure 2502: 2499: 2486: 2480: 2474: 2468: 2462: 2456: 2450: 2444: 2438: 2432: 2421: 2420: 2409: 2403: 2397: 2391: 2385: 2379: 2373: 2367: 2361: 2355: 2345: 2334: 2328: 2322: 2316: 2310: 2304: 2298: 2292: 2282: 2271: 2265: 2259: 2253: 2247: 2241: 2227: 2226: 2214: 2190: 2170: 2167: 2161: 2158: 2155: 2149: 2122: 2119: 2115: 2098: 2097: 2082: 2079: 2075: 2050: 2047: 2043: 2018: 2015: 2011: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1944: 1941: 1937: 1923: 1920: 1900:intended model 1864: 1842: 1836: 1830: 1825: 1819: 1794: 1788: 1759: 1753: 1674:standard model 1665: 1662: 1629: 1626: 1601:Full semantics 1588: 1585: 1540: 1537: 1468: 1465: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1269: 1266: 1265: 1264: 1261: 1243: 1230: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1189: 1175: 1172: 1047:free variables 1032: 1031: 1012: 985: 978: 957: 954: 944: 941: 919:natural number 905: 902: 786: 783: 759:Main article: 756: 753: 719: 718: 715: 712: 709: 706: 703: 700: 697: 693: 692: 689: 686: 683: 680: 677: 674: 671: 667: 666: 663: 660: 657: 654: 651: 648: 645: 641: 640: 637: 634: 631: 628: 625: 622: 619: 615: 614: 611: 608: 605: 602: 599: 596: 593: 592:Interpretation 580: 579: 576: 573: 570: 567: 540: 537: 495: 492: 467: 464: 449: 427: 424: 421: 401: 381: 359: 334: 314: 294: 272: 250: 247: 244: 241: 238: 235: 232: 210: 196: 193: 143:Main article: 140: 137: 39:interpretation 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4974: 4963: 4960: 4958: 4955: 4953: 4950: 4948: 4945: 4943: 4940: 4939: 4937: 4922: 4919: 4917: 4914: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4872: 4869: 4867: 4864: 4860: 4857: 4856: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4834: 4830: 4828: 4825: 4824: 4821: 4817: 4813: 4806: 4801: 4799: 4794: 4792: 4787: 4786: 4783: 4773: 4772: 4767: 4759: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4731: 4728: 4727: 4726: 4723: 4721: 4718: 4716: 4713: 4711: 4707: 4704: 4702: 4699: 4697: 4694: 4692: 4689: 4687: 4684: 4683: 4681: 4677: 4671: 4668: 4666: 4663: 4661: 4660:Recursive set 4658: 4656: 4653: 4651: 4648: 4646: 4643: 4641: 4638: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4610: 4609: 4606: 4604: 4601: 4599: 4596: 4594: 4591: 4589: 4586: 4584: 4581: 4580: 4578: 4576: 4572: 4566: 4563: 4561: 4558: 4556: 4553: 4551: 4548: 4546: 4543: 4541: 4538: 4536: 4533: 4529: 4526: 4524: 4521: 4519: 4516: 4515: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4482: 4479: 4478: 4477: 4474: 4470: 4469:of arithmetic 4467: 4466: 4465: 4462: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4438: 4435: 4434: 4433: 4430: 4426: 4423: 4421: 4418: 4417: 4416: 4413: 4412: 4410: 4408: 4404: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4377: 4376:from ZFC 4373: 4370: 4368: 4365: 4359: 4356: 4355: 4354: 4351: 4349: 4346: 4344: 4341: 4340: 4339: 4336: 4334: 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4306: 4305: 4303: 4301: 4297: 4287: 4286: 4282: 4281: 4276: 4275:non-Euclidean 4273: 4269: 4266: 4264: 4261: 4259: 4258: 4254: 4253: 4251: 4248: 4247: 4245: 4241: 4237: 4234: 4232: 4229: 4228: 4227: 4223: 4219: 4216: 4215: 4214: 4210: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4177: 4175: 4171: 4170: 4168: 4163: 4157: 4152:Example  4149: 4141: 4136: 4135: 4134: 4131: 4129: 4126: 4122: 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4103: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4080: 4077: 4075: 4072: 4071: 4070: 4067: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4044: 4043: 4040: 4038: 4035: 4031: 4028: 4026: 4023: 4021: 4018: 4017: 4016: 4013: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3980: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3938: 3937: 3934: 3932: 3929: 3927: 3924: 3922: 3919: 3915: 3912: 3910: 3909:by definition 3907: 3906: 3905: 3902: 3898: 3895: 3894: 3893: 3890: 3888: 3885: 3883: 3880: 3878: 3875: 3873: 3870: 3869: 3866: 3863: 3861: 3857: 3852: 3846: 3842: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3796:Kripke–Platek 3794: 3792: 3789: 3785: 3782: 3780: 3777: 3776: 3775: 3772: 3771: 3769: 3765: 3757: 3754: 3753: 3752: 3749: 3747: 3744: 3740: 3737: 3736: 3735: 3732: 3730: 3727: 3725: 3722: 3720: 3717: 3715: 3712: 3709: 3705: 3701: 3698: 3694: 3691: 3689: 3686: 3684: 3681: 3680: 3679: 3675: 3672: 3671: 3669: 3667: 3663: 3659: 3651: 3648: 3646: 3643: 3641: 3640:constructible 3638: 3637: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3576: 3573: 3572: 3570: 3568: 3563: 3555: 3552: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3526: 3524: 3520: 3517: 3515: 3512: 3511: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3486: 3482: 3480: 3477: 3473: 3470: 3469: 3468: 3465: 3464: 3461: 3458: 3456: 3452: 3442: 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3410: 3407: 3406: 3405: 3402: 3398: 3393: 3392: 3391: 3388: 3387: 3385: 3383: 3379: 3371: 3368: 3366: 3363: 3361: 3358: 3357: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3322: 3320: 3318: 3317:Propositional 3314: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3276: 3273: 3272: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3245:Logical truth 3243: 3241: 3238: 3237: 3235: 3233: 3229: 3226: 3224: 3220: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3185: 3181: 3177: 3175: 3172: 3170: 3167: 3165: 3161: 3158: 3157: 3155: 3153: 3147: 3142: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3074: 3071: 3070: 3069: 3066: 3065: 3063: 3059: 3055: 3048: 3043: 3041: 3036: 3034: 3029: 3028: 3025: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2990: 2986: 2977: 2973: 2967: 2964: 2959: 2953: 2949: 2945: 2939: 2936: 2931: 2929:9780486604534 2925: 2920: 2919: 2913: 2912:Rudolf Carnap 2907: 2904: 2899: 2893: 2889: 2882: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2829: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2781: 2773: 2770: 2767: 2761: 2758: 2752: 2749: 2745: 2743:0-19-501491-X 2739: 2735: 2731: 2726: 2725: 2719: 2718:Mates, Benson 2713: 2710: 2704: 2701: 2694: 2693: 2687: 2686:Haskell Curry 2681: 2678: 2674: 2670: 2665: 2662: 2655: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2602: 2599: 2597: 2594: 2593: 2589: 2587: 2585: 2581: 2577: 2573: 2570: 2566: 2562: 2557: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2506: 2500: 2498: 2484: 2478: 2472: 2466: 2460: 2454: 2448: 2442: 2436: 2430: 2407: 2401: 2395: 2389: 2383: 2377: 2371: 2365: 2359: 2353: 2346: 2332: 2326: 2320: 2314: 2308: 2302: 2296: 2290: 2283: 2269: 2263: 2257: 2251: 2245: 2239: 2232: 2231: 2230: 2212: 2204: 2188: 2168: 2165: 2159: 2156: 2153: 2147: 2139: 2138: 2137: 2120: 2103: 2080: 2048: 2016: 1999: 1998: 1997: 1980: 1977: 1974: 1971: 1968: 1942: 1921: 1919: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1884: 1882: 1878: 1840: 1823: 1792: 1775: 1757: 1740: 1736: 1733: 1729: 1725: 1722: 1718: 1714: 1710: 1706: 1702: 1697: 1695: 1691: 1687: 1683: 1679: 1675: 1670: 1663: 1661: 1659: 1655: 1654:Kripke models 1651: 1647: 1642: 1640: 1636: 1627: 1625: 1623: 1619: 1615: 1611: 1607: 1602: 1597: 1594: 1586: 1584: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1549: 1546: 1538: 1536: 1534: 1529: 1525: 1520: 1518: 1514: 1508: 1506: 1502: 1498: 1494: 1491:) holds then 1490: 1486: 1482: 1478: 1472: 1466: 1464: 1460: 1442: 1439: 1436: 1433: 1427: 1424: 1421: 1415: 1406: 1400: 1391: 1388: 1385: 1379: 1373: 1367: 1364: 1361: 1355: 1340: 1324: 1318: 1315: 1312: 1306: 1294: 1291: 1285: 1282: 1267: 1262: 1259: 1258: 1257: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1208: 1207: 1205: 1173: 1171: 1169: 1165: 1161: 1156: 1155: 1151: 1146: 1141: 1138: 1134: 1129: 1127: 1123: 1117: 1113: 1107: 1103: 1097: 1093: 1087: 1081: 1077: 1069: 1065: 1058: 1052: 1048: 1043: 1041: 1037: 1029: 1025: 1021: 1017: 1013: 1010: 1007: →  1006: 1002: 998: 994: 990: 986: 983: 979: 976: 973: 969: 968: 967: 963: 955: 953: 951: 942: 940: 938: 933: 931: 926: 923: 920: 916: 912: 903: 901: 897: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 843: 839: 835: 831: 827: 822: 820: 816: 812: 808: 803: 800: 796: 792: 784: 782: 780: 776: 772: 768: 762: 754: 752: 750: 746: 742: 738: 734: 730: 726: 716: 713: 710: 707: 704: 701: 698: 695: 694: 690: 687: 684: 681: 678: 675: 672: 669: 668: 664: 661: 658: 655: 652: 649: 646: 643: 642: 638: 635: 632: 629: 626: 623: 620: 617: 616: 612: 609: 606: 603: 600: 597: 594: 591: 590: 584: 577: 574: 571: 568: 565: 561: 560: 559: 556: 554: 548: 546: 538: 536: 534: 533: 528: 524: 520: 519: 514: 509: 507: 506: 501: 493: 491: 489: 483: 481: 477: 473: 465: 463: 422: 399: 346: 332: 245: 242: 233: 230: 194: 192: 190: 186: 182: 181: 176: 175: 170: 166: 162: 161: 156: 152: 146: 138: 136: 134: 130: 126: 122: 117: 115: 111: 107: 103: 99: 95: 91: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 4952:Model theory 4911:Independence 4890: 4886:Decidability 4881:Completeness 4831: 4762: 4560:Ultraproduct 4414: 4407:Model theory 4372:Independence 4308:Formal proof 4300:Proof theory 4283: 4256: 4213:real numbers 4185:second-order 4096:Substitution 3973:Metalanguage 3914:conservative 3887:Axiom schema 3831:Constructive 3801:Morse–Kelley 3767:Set theories 3746:Aleph number 3739:inaccessible 3645:Grothendieck 3529:intersection 3416:Higher-order 3404:Second-order 3350:Truth tables 3307:Venn diagram 3090:Formal proof 2975: 2966: 2950:. Springer. 2947: 2938: 2917: 2906: 2887: 2881: 2841: 2837: 2834:Quine, W. V. 2828: 2784: 2778: 2772: 2760: 2751: 2728:, New York: 2723: 2712: 2703: 2691: 2680: 2672: 2664: 2640:Model theory 2605:Name binding 2583: 2579: 2575: 2571: 2564: 2560: 2558: 2549: 2545: 2541: 2537: 2533: 2532:, such that 2529: 2525: 2521: 2517: 2513: 2510:model theory 2507: 2504: 2422: 2228: 2102:axiom schema 2099: 1925: 1903: 1899: 1885: 1772:is directly 1698: 1690:Peano axioms 1673: 1671: 1667: 1643: 1631: 1621: 1617: 1613: 1609: 1605: 1600: 1598: 1590: 1580: 1576: 1572: 1568: 1564: 1556: 1550: 1544: 1542: 1521: 1516: 1513:normal model 1512: 1509: 1496: 1492: 1488: 1484: 1480: 1476: 1473: 1470: 1461: 1338: 1271: 1231: 1203: 1177: 1157: 1153: 1149: 1142: 1136: 1132: 1130: 1125: 1121: 1115: 1111: 1105: 1101: 1095: 1091: 1079: 1075: 1067: 1063: 1059: 1044: 1039: 1033: 1027: 1023: 1019: 1015: 1008: 1004: 1000: 996: 992: 988: 981: 974: 965: 946: 936: 934: 927: 907: 898: 893: 892:is assigned 889: 885: 884:is assigned 881: 877: 876:is assigned 873: 869: 868:is assigned 865: 861: 857: 853: 849: 845: 844:is assigned 841: 837: 836:is assigned 833: 829: 825: 823: 819:truthbearers 814: 810: 807:truth values 804: 788: 778: 774: 766: 764: 748: 744: 740: 736: 732: 728: 724: 722: 581: 557: 549: 542: 530: 526: 523:inconsistent 522: 516: 510: 503: 499: 497: 484: 479: 475: 469: 347: 198: 188: 184: 178: 172: 168: 164: 158: 154: 150: 148: 121:truth values 118: 113: 109: 105: 101: 97: 75: 38: 36: 4901:Metatheorem 4859:of geometry 4844:Consistency 4670:Type theory 4618:undecidable 4550:Truth value 4437:equivalence 4116:non-logical 3729:Enumeration 3719:Isomorphism 3666:cardinality 3650:Von Neumann 3615:Ultrafilter 3580:Uncountable 3514:equivalence 3431:Quantifiers 3421:Fixed-point 3390:First-order 3270:Consistency 3255:Proposition 3232:Traditional 3203:Lindström's 3193:Compactness 3135:Type theory 3080:Cardinality 2791:: 197–200, 2732:, pp.  2645:Satisfiable 2635:Modal logic 2181:" (where " 2100:The single 1912:assignments 1877:implication 1658:Modal logic 1579:is on line 1168:intensional 1164:extensional 771:many-to-one 566:Φ is False. 562:¬Φ is True 480:non-logical 392:and '0' to 55:mathematics 4936:Categories 4481:elementary 4174:arithmetic 4042:Quantifier 4020:functional 3892:Expression 3610:Transitive 3554:identities 3539:complement 3472:hereditary 3455:Set theory 2698:Here: p.48 2656:References 2578:such that 1721:meaningful 1686:isomorphic 1501:set theory 1160:set theory 1014:For every 987:For every 960:See also: 518:consistent 84:and their 4962:Semantics 4876:Soundness 4812:Metalogic 4752:Supertask 4655:Recursion 4613:decidable 4447:saturated 4425:of models 4348:deductive 4343:axiomatic 4263:Hilbert's 4250:Euclidean 4231:canonical 4154:axiomatic 4086:Signature 4015:Predicate 3904:Extension 3826:Ackermann 3751:Operation 3630:Universal 3620:Recursive 3595:Singleton 3590:Inhabited 3575:Countable 3565:Types of 3549:power set 3519:partition 3436:Predicate 3382:Predicate 3297:Syllogism 3287:Soundness 3260:Inference 3250:Tautology 3152:paradoxes 2764:see also 2559:A theory 2485:◼ 2479:◼ 2473:◼ 2467:◼ 2461:⧫ 2455:◼ 2449:◼ 2443:◼ 2437:★ 2431:◼ 2408:◼ 2402:◼ 2396:◼ 2390:◼ 2384:⧫ 2378:◼ 2372:◼ 2366:◼ 2360:★ 2354:◼ 2333:◼ 2327:◼ 2321:◼ 2315:⧫ 2309:◼ 2303:◼ 2297:★ 2291:◼ 2270:◼ 2264:◼ 2258:⧫ 2252:◼ 2246:★ 2240:◼ 2213:◼ 2189:∗ 2169:∗ 2166:◼ 2160:⧫ 2157:∗ 2154:★ 2148:◼ 1981:⧫ 1975:★ 1969:◼ 1863:→ 1829:→ 1774:derivable 1735:sentences 1705:formation 1637:(such as 1434:∨ 1413:∀ 1404:∃ 1401:≡ 1377:∃ 1374:∨ 1353:∀ 1319:ψ 1316:∨ 1313:ϕ 1304:∃ 1301:↔ 1295:ψ 1289:∃ 1286:∨ 1283:ϕ 1104:), where 1036:structure 911:signature 821:instead. 815:valuation 505:satisfied 426:△ 423:◻ 420:△ 400:◻ 380:△ 333:◻ 313:△ 293:△ 246:◻ 240:△ 231:α 151:sentences 125:sentences 94:extension 67:syntactic 4737:Logicism 4730:timeline 4706:Concrete 4565:Validity 4535:T-schema 4528:Kripke's 4523:Tarski's 4518:semantic 4508:Strength 4457:submodel 4452:spectrum 4420:function 4268:Tarski's 4257:Elements 4244:geometry 4200:Robinson 4121:variable 4106:function 4079:spectrum 4069:Sentence 4025:variable 3968:Language 3921:Relation 3882:Automata 3872:Alphabet 3856:language 3710:-jection 3688:codomain 3674:Function 3635:Universe 3605:Infinite 3509:Relation 3292:Validity 3282:Argument 3180:theorem, 2974:(1992). 2914:(1958). 2874:27053902 2821:40988137 2720:(1972), 2688:(1963). 2671:, 2008. 2590:See also 2121:′ 2081:′ 2049:′ 2017:′ 1943:′ 1881:provable 1875:meaning 1051:T-schema 880:, or 4) 840:, or 2) 613:(Φ ↔ Ψ) 174:alphabet 160:formulas 90:function 4679:Related 4476:Diagram 4374: ( 4353:Hilbert 4338:Systems 4333:Theorem 4211:of the 4156:systems 3936:Formula 3931:Grammar 3847: ( 3791:General 3504:Forcing 3489:Element 3409:Monadic 3184:paradox 3125:Theorem 3061:General 2866:0064715 2858:2268615 2813:0057820 2805:2267402 2201:" is a 1922:Example 1896:reality 1807:, then 900:above. 610:(Φ → Ψ) 607:(Φ ∨ Ψ) 604:(Φ ∧ Ψ) 535:of ψ). 476:logical 412:. Then 195:Example 169:symbols 165:letters 47:symbols 45:to the 43:meaning 4442:finite 4205:Skolem 4158:  4133:Theory 4101:Symbol 4091:String 4074:atomic 3951:ground 3946:closed 3941:atomic 3897:ground 3860:syntax 3756:binary 3683:domain 3600:Finite 3365:finite 3223:Logics 3182:  3130:Theory 2954:  2926:  2894:  2872:  2864:  2856:  2819:  2811:  2803:  2740:  2482:  2476:  2470:  2464:  2458:  2452:  2446:  2440:  2434:  2405:  2399:  2393:  2387:  2381:  2375:  2369:  2363:  2357:  2330:  2324:  2318:  2312:  2306:  2300:  2294:  2267:  2261:  2255:  2249:  2243:  2163:  2151:  1652:, and 1337:where 1256:of L: 1154:false. 129:theory 61:, and 4432:Model 4180:Peano 4037:Proof 3877:Arity 3806:Naive 3693:image 3625:Fuzzy 3585:Empty 3534:union 3479:Class 3120:Model 3110:Lemma 3068:Axiom 2870:S2CID 2854:JSTOR 2817:S2CID 2801:JSTOR 2787:(3), 2650:Truth 2574:′ of 1086:range 1055:φ ∧ ψ 930:rings 922:arity 864:, 3) 155:words 133:model 86:modal 59:logic 49:of a 4814:and 4555:Type 4358:list 4162:list 4139:list 4128:Term 4062:rank 3956:open 3850:list 3662:Maps 3567:sets 3426:Free 3396:list 3146:list 3073:list 2952:ISBN 2924:ISBN 2892:ISBN 2738:ISBN 2603:and 2225:"s ) 2136:is: 1914:for 1732:true 1707:and 1545:sort 1483:and 1166:not 1152:and 1150:true 1072:and 888:and 872:and 325:and 4242:of 4224:of 4172:of 3704:Sur 3678:Map 3485:Ur- 3467:Set 2846:doi 2793:doi 2586:′. 2524:of 2508:In 2104:of 1620:to 999:to 813:or 765:An 564:iff 511:In 187:or 167:or 157:or 123:of 37:An 4938:: 4628:NP 4252:: 4246:: 4176:: 3853:), 3708:Bi 3700:In 2868:, 2862:MR 2860:, 2852:, 2842:19 2840:, 2815:, 2809:MR 2807:, 2799:, 2785:18 2783:, 2736:, 2734:56 2556:. 2140:" 2096:.' 1918:. 1726:; 1656:. 1648:, 1583:. 1479:= 1170:. 1114:φ( 1110:∃ 1094:φ( 1090:∀ 1078:φ( 1074:∃ 1066:φ( 1062:∀ 1030:). 1011:). 970:A 896:. 852:, 781:. 717:T 696:#4 691:F 670:#3 665:F 644:#2 639:T 618:#1 601:¬Φ 462:. 345:. 114:we 80:, 73:. 57:, 4804:e 4797:t 4790:v 4708:/ 4623:P 4378:) 4164:) 4160:( 4057:∀ 4052:! 4047:∃ 4008:= 4003:↔ 3998:→ 3993:∧ 3988:∨ 3983:¬ 3706:/ 3702:/ 3676:/ 3487:) 3483:( 3370:∞ 3360:3 3148:) 3046:e 3039:t 3032:v 2960:. 2932:. 2900:. 2848:: 2795:: 2584:T 2580:S 2576:T 2572:T 2565:S 2561:T 2550:A 2546:D 2542:D 2538:D 2534:B 2530:D 2526:A 2522:D 2518:B 2514:A 2118:S 2114:F 2078:S 2074:F 2046:S 2042:F 2014:S 2010:F 1984:} 1978:, 1972:, 1966:{ 1940:S 1936:F 1841:j 1835:I 1824:i 1818:I 1793:i 1787:I 1758:j 1752:I 1622:D 1618:D 1614:D 1610:D 1581:l 1577:p 1573:l 1571:, 1569:p 1567:( 1565:E 1557:E 1497:b 1495:( 1493:R 1489:a 1487:( 1485:R 1481:b 1477:a 1446:] 1443:x 1440:= 1437:x 1431:) 1428:y 1425:= 1422:y 1419:( 1416:y 1410:[ 1407:x 1398:] 1395:) 1392:x 1389:= 1386:x 1383:( 1380:x 1371:) 1368:y 1365:= 1362:y 1359:( 1356:y 1350:[ 1339:x 1325:, 1322:) 1310:( 1307:x 1298:) 1292:x 1280:( 1242:I 1204:L 1188:I 1137:d 1133:d 1126:d 1122:d 1118:) 1116:x 1112:x 1106:x 1102:x 1098:) 1096:x 1092:x 1082:) 1080:x 1076:x 1070:) 1068:x 1064:x 1040:L 1028:D 1024:D 1020:n 1016:n 1009:D 1005:D 1001:D 997:D 993:n 989:n 982:D 975:D 937:L 894:T 890:b 886:F 882:a 878:F 874:b 870:T 866:a 862:F 858:T 854:b 850:a 846:F 842:a 838:T 834:a 830:a 826:n 749:F 745:F 741:F 737:F 733:F 729:F 725:F 714:T 711:F 708:F 705:T 702:F 699:F 688:T 685:T 682:F 679:T 676:T 673:F 662:F 659:T 656:F 653:F 650:F 647:T 636:T 633:T 630:T 627:F 624:T 621:T 598:Ψ 595:Φ 448:W 358:W 271:W 249:} 243:, 237:{ 234:= 209:W 189:Q 185:P 110:T 106:T 102:a 98:T 34:. 20:)

Index

Logical interpretation
Interpretation (disambiguation)
meaning
symbols
formal language
mathematics
logic
theoretical computer science
syntactic
formal semantics
propositional logic
predicate logic
modal
function
extension
truth values
sentences
theory
model
Formal language
formulas
alphabet
well-formed formulæ
logical constants
logical connectives
satisfied
classical logic
consistent
logical consequence
truth-functional connectives

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.