Knowledge (XXG)

Low-voltage electron microscope

Source 📝

103: 91: 38:. While its architecture is very similar to a conventional transmission electron microscope, it has a few key differences that enable it to take advantage of a 5 keV electron source, but trading off many advantages of higher voltage operations, including higher resolution, the possibility of X-ray microanalysis and 125:
step for TEM imaging of light elements (H, C, N, O, S, P). While staining is beneficial for experiments aimed at high resolution structure determination, it is highly undesirable in certain protein sample preparations, because it could destabilize the protein sample due to its acid pH and relatively
67:
Further, a relatively low mean free path (15 nm) for organic samples at 5 kV means that for samples with constant thickness, high contrast will be obtained from small variations in density. For example, for 5% contrast in the LVEM bright field image, we only need a difference in density between
154:
Currently available low voltage microscopes are only able to obtain resolutions of 1–3 nanometers (nm). While this is well beyond resolutions possible from optical (light) microscopes, they are not yet able to compete with the atomic resolution obtainable from conventional (higher voltage) electron
129:
LVEM experiments carried out on an extracted membrane protein sample that was analyzed with and without the staining procedure show a marked improvement in the appearance of the sample when standard staining is omitted. Results show that LVEM could be even more useful than conventional EM for this
145:
The first low-voltage electron microscopes were capable of spatial resolutions of about 2.5 nm in TEM, 2.0 nm in STEM, and 3.0 nm in SEM modes. The SEM resolution has been improved to ~1.2 nm at 800 eV by 2010, while a 0.14 nm TEM resolution at 15 keV has been reported in
158:
Low voltage limits the maximum thickness of samples which can be studied in the TEM or STEM mode. Whereas it is about 50–90 nm in conventional TEM, it decreases to around 20–65 nm for LVEM at 5 kV. However, thicknesses of the order of 20 nm or less are required to attain the maximal
59:
of light elements. The comparison images below show that decreasing the acceleration voltage from 80 kV to 5 kV significantly enhances the contrast of test samples. The improved contrast is a direct result of increased electron scattering associated with a reduced accelerating voltage.
63:
LVEM brings an enhancement of imaging contrast nearly twenty times higher than for 100 kV. This is very promising for biological specimens which are composed of light elements and do not exhibit sufficient contrast in classical TEMs.
440:
Asmar, G.A.; Hanson, M.A.; Ward, A.B.; Lasalde, J.A.; Stevens, R.C.; Potter, C.; Kuhn, P. M. (2004). "Low-Voltage Electron Microscopy (LVEM) as a probe for solubilized membrane protein aggregation states".
166:
in 2015 these limitations were overcome with a 25 kV low voltage electron microscope that can produce high quality results with thin sectioned samples up to around 100 nm+.
426: 186: 372: 130:
particular application because it avoids the potentially disrupting staining step, thus providing an undisturbed image of the protein's aggregation state.
126:
high heavy metal concentration. The addition of stain to sectioned samples such as biological materials or polymers can also introduce imaging artifacts.
198: 42:, etc. Recently a new low voltage transmission electron microscope has been introduced that operates at variable voltage ranges between 6–25 kV. 485: 391:
Drummy, Lawrence, F.; Yang, Junyan; Martin, David C. (2004). "Low-voltage electron microscopy of polymer and organic molecular thin films".
133:
Additionally, The ability to eliminate the staining step could aid to improve safety in the lab, as common heavy metal stains, such as
90: 180: 35: 501:
Van Aken, R. H.; Maas, D. J.; Hagen, C. W.; Barth, J. E.; Kruit, P (2010). "Design of an aberration corrected low-voltage SEM".
68:
the phases of 0.07 g/cm. This means that the usual need to stain polymers for enhanced contrast in the TEM (typically done with
215: 612: 204: 607: 345:
Nebesářová1, Jana; Vancová, Marie (2007). "How to Observe Small Biological Objects in Low Voltage Electron Microscope".
192: 538:"Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope" 102: 587: 420: 366: 159:
resolution in the TEM and STEM modes 5 kV. These thickness are sometimes achievable with the use of an
28:(keV) or less. Traditional electron microscopes use accelerating voltages in the range of 10-1000 keV. 549: 450: 210: 175: 73: 21: 31:
Low voltage imaging in transmitted electrons is possible in many new scanning electron detectors.
121:
The improved contrast allows for the significant reduction, or elimination, of the heavy metal
567: 518: 481: 408: 257: 56: 557: 510: 458: 400: 354: 272: 553: 454: 242: 160: 134: 122: 601: 267: 562: 537: 514: 404: 262: 237: 25: 55:
A substantial decrease in electron energy allows for a significant improvement of
462: 358: 295: 232: 536:
Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka (2016).
277: 252: 247: 571: 522: 412: 76:) may not be necessary with the low voltage electron microscopy technique. 287: 282: 300: 69: 39: 81:
Comparison – TEM images of unstained thin section of rat heart
227:
LVEM is especially efficient for the following applications.
34:
A low cost alternative is a dedicated tabletop low voltage
593:
LVEM5 low voltage electron microscope from Delong America
592: 330: 319: 24:
which operates at accelerating voltages of a few kilo
386: 384: 382: 187:High-resolution transmission electron microscopy 96:Low voltage (5 kV) image showing higher contrast 8: 425:: CS1 maint: multiple names: authors list ( 371:: CS1 maint: numeric names: authors list ( 561: 199:Scanning transmission electron microscope 478:Structural genomics on membrane proteins 340: 338: 312: 86: 418: 364: 18:Low-voltage electron microscope (LVEM) 7: 14: 137:do have associated health risks. 181:Transmission electron microscope 101: 89: 36:transmission electron microscope 588:WENDMANs VIEWS on NANOTECH Blog 480:. CRC Press. pp. 271–274. 216:Low-energy electron diffraction 563:10.1103/PhysRevLett.117.153004 515:10.1016/j.ultramic.2010.07.012 405:10.1016/j.ultramic.2004.01.011 205:Low-energy electron microscopy 108:Conventional TEM (80 kV) image 1: 443:Microscopy and Microanalysis 347:Microscopy and Microanalysis 193:Scanning electron microscope 476:Lundstrom, Kenneth (2006). 629: 331:LVEM25 from Delong America 463:10.1017/S1431927604886069 359:10.1017/S143192760708124X 320:LVEM5 from Delong America 542:Physical Review Letters 613:Scientific techniques 211:Electron diffraction 608:Electron microscopy 554:2016PhRvL.117o3004M 455:2004MiMic..10S1492A 176:Electron microscope 74:ruthenium tetroxide 22:electron microscope 117:Stain not required 487:978-1-57444-526-8 258:Materials science 223:Application areas 123:negative staining 620: 576: 575: 565: 533: 527: 526: 498: 492: 491: 473: 467: 466: 449:(2): 1492–1493. 437: 431: 430: 424: 416: 388: 377: 376: 370: 362: 342: 333: 328: 322: 317: 105: 93: 628: 627: 623: 622: 621: 619: 618: 617: 598: 597: 584: 579: 535: 534: 530: 503:Ultramicroscopy 500: 499: 495: 488: 475: 474: 470: 439: 438: 434: 417: 393:Ultramicroscopy 390: 389: 380: 363: 344: 343: 336: 329: 325: 318: 314: 310: 305: 225: 172: 152: 143: 119: 114: 113: 112: 109: 106: 97: 94: 83: 82: 53: 51:Higher contrast 48: 12: 11: 5: 626: 624: 616: 615: 610: 600: 599: 596: 595: 590: 583: 582:External links 580: 578: 577: 548:(15): 153004. 528: 509:(11): 1411–9. 493: 486: 468: 432: 399:(4): 247–256. 378: 353:(3): 248–249. 334: 323: 311: 309: 306: 304: 303: 298: 293: 292:Tissue samples 290: 285: 280: 275: 270: 265: 260: 255: 250: 245: 243:Drug discovery 240: 235: 229: 224: 221: 220: 219: 213: 208: 202: 196: 190: 184: 178: 171: 168: 161:ultramicrotome 151: 148: 142: 139: 135:uranyl acetate 118: 115: 111: 110: 107: 100: 98: 95: 88: 85: 84: 80: 79: 78: 52: 49: 47: 44: 13: 10: 9: 6: 4: 3: 2: 625: 614: 611: 609: 606: 605: 603: 594: 591: 589: 586: 585: 581: 573: 569: 564: 559: 555: 551: 547: 543: 539: 532: 529: 524: 520: 516: 512: 508: 504: 497: 494: 489: 483: 479: 472: 469: 464: 460: 456: 452: 448: 444: 436: 433: 428: 422: 414: 410: 406: 402: 398: 394: 387: 385: 383: 379: 374: 368: 360: 356: 352: 348: 341: 339: 335: 332: 327: 324: 321: 316: 313: 307: 302: 299: 297: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 268:Nanoparticles 266: 264: 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 230: 228: 222: 217: 214: 212: 209: 206: 203: 200: 197: 194: 191: 188: 185: 182: 179: 177: 174: 173: 169: 167: 164: 162: 156: 155:microscopes. 149: 147: 140: 138: 136: 131: 127: 124: 116: 104: 99: 92: 87: 77: 75: 71: 65: 61: 58: 50: 45: 43: 41: 37: 32: 29: 27: 26:electronvolts 23: 19: 545: 541: 531: 506: 502: 496: 477: 471: 446: 442: 435: 421:cite journal 396: 392: 367:cite journal 350: 346: 326: 315: 263:Nanomedicine 238:Cell biology 226: 165: 157: 153: 144: 132: 128: 120: 66: 62: 54: 33: 30: 17: 15: 150:Limitations 602:Categories 308:References 296:Toxicology 233:Antibodies 141:Resolution 46:Advantages 278:Pathology 273:Nanotubes 253:Histology 248:Education 572:27768334 523:20728276 413:15149719 288:Proteins 283:Polymers 170:See also 57:contrast 550:Bibcode 451:Bibcode 301:Viruses 189:(HRTEM) 570:  521:  484:  411:  218:(LEED) 207:(LEEM) 201:(STEM) 146:2016. 70:osmium 20:is an 195:(SEM) 183:(TEM) 568:PMID 519:PMID 482:ISBN 427:link 409:PMID 373:link 40:EELS 558:doi 546:117 511:doi 507:110 459:doi 401:doi 355:doi 72:or 604:: 566:. 556:. 544:. 540:. 517:. 505:. 457:. 447:10 445:. 423:}} 419:{{ 407:. 397:99 395:. 381:^ 369:}} 365:{{ 351:13 349:. 337:^ 163:. 16:A 574:. 560:: 552:: 525:. 513:: 490:. 465:. 461:: 453:: 429:) 415:. 403:: 375:) 361:. 357::

Index

electron microscope
electronvolts
transmission electron microscope
EELS
contrast
osmium
ruthenium tetroxide
Unstained thin section of rat heart (5 kV)
Unstained thin section of rat heart (80 kV)
negative staining
uranyl acetate
ultramicrotome
Electron microscope
Transmission electron microscope
High-resolution transmission electron microscopy
Scanning electron microscope
Scanning transmission electron microscope
Low-energy electron microscopy
Electron diffraction
Low-energy electron diffraction
Antibodies
Cell biology
Drug discovery
Education
Histology
Materials science
Nanomedicine
Nanoparticles
Nanotubes
Pathology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.