Knowledge (XXG)

Pulse tube refrigerator

Source đź“ť

1745: 31: 1601: 2385: 2028: 2445:
end of the cooler. By bending the PTR we get a U-shaped cooler. Both hot ends can be mounted on the flange of the vacuum chamber at room temperature. This is the most common shape of PTRs. For some applications it is preferable to have a cylindrical geometry. In that case the PTR can be constructed in a coaxial way so that the regenerator becomes a ring-shaped space surrounding the tube.
1889: 2441:
connects the high-pressure and the low-pressure side of the compressor to the hot end of the regenerator. As the high-temperature part of this type of PTR is the same as of GM-coolers, this type of PTR is called a GM-type PTR. The gas flows through the valves are accompanied by losses which are absent in the Stirling-type PTR.
2508:, and filters for telecommunication. PTRs are also suitable for cooling MRI-systems and energy-related systems using superconducting magnets. In so-called dry magnets, coolers are used so that no cryoliquid is needed at all or for the recondensation of the evaporated helium. Also the combination of cryocoolers with He-He 2375:
coolers and the popular Gifford-McMahon coolers have a displacer that ensures that the cooling (due to expansion) takes place in a different region of the machine than the heating (due to compression). Due to its clever design, the PTR does not have such a displacer, making the construction of a PTR
2452:
K. However, one PTR can be used to precool the other. The hot end of the second tube is connected to room temperature and not to the cold end of the first stage. In this clever way it is avoided that the heat, released at the hot end of the second tube, is a load on the first stage. In applications
2444:
PTRs can be classified according to their shape. If the regenerator and the tube are in line (as in fig. 1) we talk about a linear PTR. The disadvantage of the linear PTR is that the cold spot is in the middle of the cooler. For many applications it is preferable that the cooling is produced at the
2035:
Figure 3 shows a coaxial pulse tube, which is a more useful configuration in which the regenerator surrounds the central pulse tube. This is compact and places the cold head at an end, so it is easy to integrate with whatever is to be cooled. The displacer can be passively driven, and this recovers
2044:
The performance of the cooler is determined mainly by the quality of the regenerator. It has to satisfy conflicting requirements: it must have a low flow resistance (so it must be short with wide channels), but the heat exchange should also be good (so it must be long with narrow channels). The
2440:
K usually operate at frequencies of 1 to 2 Hz and with pressure variations from 10 to 25 bar. The swept volume of the compressor would be very high (up to one liter and more). Therefore, the compressor is uncoupled from the cooler. A system of valves (usually a rotating valve) alternately
2531:(STMs) have historically difficult due to the extreme vibration sensitivity of STM. Use of an exchange gas above the vibration sensitive scanning head enabled the first PTR based low temperature STMs. Now, there are commercially available PTR-based, cryogen free scanning probe systems. 1938:
The piston moves periodically from left to right and back. As a result, the gas also moves from left to right and back while the pressure within the system increases and decreases. If the gas from the compressor space moves to the right, it enters the regenerator with temperature
2396:
W. E. Gifford and R. C. Longsworth, in the 1960s, invented the so-called Basic Pulse Tube Refrigerator. The modern PTR was invented in 1984 by Mikulin who introduced an orifice to the basic pulse tube. He reached a temperature of
1320: 2270: 1934:
is thermally insulated from the surroundings, usually by vacuum. The pressure varies gradually and the velocities of the gas are low. So the name "pulse" tube cooler is misleading, since there are no pulses in the system.
2376:
simpler, cheaper, and more reliable. Furthermore, there are no mechanical vibrations and no electro-magnetic interferences. The basic operation of cryocoolers and related thermal machines is described by De Waele
2345: 1818:
medium with a large specific heat (which can be stainless steel wire mesh, copper wire mesh, phosphor bronze wire mesh, lead balls, lead shot, or rare earth materials) in which the gas flows back and forth
2172: 1995:(at the hot end), which move in and out of the tube through the orifice. Molecules flow into the tube (to the left) when the pressure in the tube is low (it is sucked into the tube via X 2118: 1859: 2401:
K. Soon after that, PTRs became better due to the invention of new variations. This is shown in figure 4, where the lowest temperature for PTRs is plotted as a function of time.
2453:
the first stage also operates as a temperature-anchoring platform for e.g. shield cooling of superconducting-magnet cryostats. Matsubara and Gao were the first to cool below 4
2006:. Later in the cycle, the same mass of gas is pushed out from the tube again when the pressure inside the tube is high. As a consequence, its temperature will be higher than 2288:
However, a pulse-tube refrigerator is not perfectly reversible due to the presence of the orifice, which has flow resistance. Instead, the COP of an ideal PTR is given by
1155: 1100: 1045: 852: 805: 720: 673: 585: 538: 1630: 756: 624: 990: 2192: 2082: 3497: 1331: 489: 1219: 828: 781: 696: 649: 561: 514: 2473:
The coefficient of performance of PTRs at room temperature is low, so it is not likely that they will play a role in domestic cooling. However, below about 80
2392:
K was reached in a collaboration between the groups of Giessen and Eindhoven. They used a superfluid vortex cooler as an additional cooling stage to the PTR.
3147:
Gan, Z.H.; Dong, W.Q.; Qiu, L.M.; Zhang, X.B.; Sun, H.; He, Y.L.; Radebaugh, R. (2009). "A single-stage GM-type pulse tube cryocooler operating at 10.6K".
453: 2420:
K by replacing the usual He as refrigerant by its rare isotope He. Later this record was broken by the Giessen Group that managed to get even below 1.3
2206: 1309: 3022: 2408:
K). Originally this was considered to be impossible. For some time it looked as if it would be impossible to cool below the lambda point of He (2.17
1953:, hence heat is transferred into the regenerator material. On its return, the heat stored within the regenerator is transferred back into the gas. 3659: 1342: 3450: 2550: 1728:
where it is not possible to replenish the cryogens as they are depleted. It has also been suggested that pulse tubes could be used to liquefy
2919: 2855: 2822: 2668: 912: 2489:)) and in the low-temperature region the advantages get the upper hand. PTRs are commercially available for temperatures in the region of 70 2296: 1623: 1210: 446: 324: 2195: 879: 3385: 1660: 262: 3490: 1394: 1368: 889: 343: 3725: 3096: 295: 1447: 2651: 918: 317: 3763: 3086: 1616: 2883:(2). Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, Volume 11, Issue 2, pp. 89-99: 89–99. 1655:
is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of
1991:
To understand why the low-pressure gas returns at a lower temperature, look at figure 1 and consider gas molecules close to X
1547: 79: 1956:
In the tube, the gas is thermally isolated (adiabatic), so the temperature of the gas in the tube varies with the pressure.
1442: 3091:. Proceedings of the 17th International Cryogenic Engineering Conference. Institute of Physics Publishing. pp. 11–16. 3809: 3483: 3190:
Matsubara, Y.; Gao, J.L. (1994). "Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K".
2978:
Matsubara, Y.; Gao, J.L. (1994). "Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K".
2528: 1782:
Figure 1 represents the Stirling-type single-orifice pulse-tube refrigerator (PTR), which is filled with a gas, typically
1522: 1295: 272: 3710: 1748:
Figure 1: Schematic drawing of a Stirling-type single-orifice PTR. From left to right: a compressor, a heat exchanger (X
907: 110: 100: 3799: 2527:
on measurement lines, which is a big disadvantage of PTRs. Particularly for scanning probe microscopy uses, PTR-based
1713: 115: 105: 2049:
K practically all materials are suitable. Bronze or stainless steel is often used. For temperatures between 10 and 50
3624: 3514: 2061: 1725: 1437: 1399: 1363: 75: 2935:
Zhu, Shaowei; Wu, Peiyi; Chen, Zhongqi (1990). "Double inlet pulse tube refrigerators: an important improvement".
2784: 2127: 3778: 1192: 940: 386: 199: 189: 3733: 2691:
David, M.; Maréchal, J.-C.; Simon, Y.; Guilpin, C. (1993). "Theory of ideal orifice pulse tube refrigerator".
3758: 3689: 2497:
K. They are applied in infrared detection systems, for reduction of thermal noise in devices based on (high-
1604: 1432: 1229: 932: 871: 407: 396: 62: 2087: 1828: 2838:
Longsworth, R. C. (1967). "An Experimental Investigation of Pulse Tube Refrigeration Heat Pumping Rates".
1671:
in the low temperature part of the device, making the cooler suitable for a wide variety of applications.
1537: 1457: 1254: 338: 92: 67: 3604: 3564: 2509: 1702: 1472: 1049: 362: 208: 57: 3386:"Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope" 3321:"Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope" 3748: 3407: 3342: 3242: 3156: 3051: 2944: 2902:
Mikulin, E. I.; Tarasov, A. A.; Shkrebyonock, M. P. (1984). "Low-Temperature Expansion Pulse Tubes".
2884: 2747: 2700: 2545: 1764:), a flow resistance (orifice), and a buffer volume. The cooling is generated at the low temperature 1552: 1477: 1467: 267: 141: 129: 3804: 3753: 3654: 3506: 1744: 1497: 1492: 1259: 281: 247: 242: 155: 3610: 3465: 3397: 3332: 3301: 3215: 3003: 2872: 2436:
For cooling, the source of the pressure variations is unimportant. PTRs for temperatures below 20
1586: 1249: 1197: 1110: 1055: 1000: 429: 413: 300: 252: 237: 227: 36: 30: 3276:
Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of dilution refrigerators – A review".
1244: 834: 787: 702: 655: 567: 520: 2606:. Proceedings of the Institute of Refrigeration (London) 1999–2000. Institute of Refrigeration. 3773: 3595: 3423: 3366: 3358: 3293: 3258: 3207: 3172: 3129: 3092: 3067: 2995: 2960: 2915: 2851: 2818: 2765: 2716: 2664: 1581: 1542: 1532: 1104: 902: 738: 730: 603: 232: 222: 164: 3715: 3415: 3350: 3285: 3250: 3199: 3164: 3121: 3059: 2987: 2952: 2907: 2843: 2810: 2755: 2708: 2598: 2579: 2371:
In most coolers gas is compressed and expanded periodically. Well-known coolers such as the
1717: 1695: 1502: 1487: 1427: 1422: 1239: 1234: 960: 884: 352: 217: 3116:. Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference. 3738: 2372: 2177: 2067: 1999:, coming from the orifice and the buffer). Upon entering the tube, it has the temperature 1721: 1687: 1684: 1656: 1452: 1300: 954: 595: 418: 179: 146: 2516:
mK is attractive since in this way the whole temperature range from room temperature to 2
3411: 3346: 3246: 3160: 3055: 2948: 2888: 2751: 2704: 2424:
K. In a collaboration between the groups from Giessen and Eindhoven a temperature of 1.2
471: 3705: 3664: 3649: 3634: 3569: 3559: 3554: 3529: 2461:
K, so just above the λ-point of helium, have been obtained. With a three-stage PTR 1.73
1804: 1507: 1277: 813: 766: 681: 634: 546: 499: 377: 257: 194: 184: 52: 22: 3254: 3233:
Xu, M.Y.; De Waele, A.T.A.M.; Ju, Y.L. (1999). "A pulse tube refrigerator below 2 K".
3063: 3042:
Xu, M.Y.; De Waele, A.T.A.M.; Ju, Y.L. (1999). "A pulse tube refrigerator below 2 K".
2674: 2477:
K the coefficient of performance is comparable with other coolers (compare equations (
3793: 3768: 3684: 3639: 3600: 3574: 3544: 3539: 3305: 3289: 3219: 3203: 3168: 3007: 2991: 2956: 2712: 2523:
For many low temperature experiments, mechanical vibrations caused by PTRs can cause
1680: 1576: 894: 463: 424: 136: 3674: 3669: 3644: 3590: 3549: 2524: 1706: 1668: 1527: 1512: 1462: 945: 3112:
Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A.T.A.M.; Thummes, G. (2004).
2616: 2600:
Development of the Pulse Tube Refrigerator as an Efficient and Reliable Cryocooler
2416:
of the Eindhoven University of Technology managed to cool to a temperature of 1.73
2384: 2057:
K one uses magnetic materials which are specially developed for this application.
2027: 1720:(an interferometer for cosmology studies). Pulse tubes are particularly useful in 2911: 2877:
Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers
2847: 2814: 2265:{\displaystyle \xi _{\text{C}}={\frac {T_{\text{L}}}{T_{\text{H}}-T_{\text{L}}}}} 3024:
Pulsröhrenkühler zur Erzeugung von Temperaturen im Bereich des flüssigen Heliums
1786:
at a pressure varying from 10 to 30 bar. From left to right the components are:
1482: 290: 2570:
Riabzev, S. V.; Pundak, N.; Leshets, A.; Meromi, A.; Veprik, A. M. (2001). "".
2404:
At the moment, the lowest temperature is below the boiling point of helium (4.2
3679: 2760: 2735: 2583: 2540: 1664: 1571: 1517: 3362: 3297: 3262: 3211: 3176: 3133: 3071: 2999: 2964: 2769: 2720: 1709: 169: 3427: 3370: 3319:
Kasai, Jun; Koyama, Tomoki; Yokota, Munenori; Iwaya, Katsuya (2022-04-01).
3029:
Pulse tube cooler for generating temperatures in the range of liquid helium
1691: 1679:
Pulse tube cryocoolers are used in niche industrial applications such as
1285: 1202: 994: 402: 174: 3470: 2638: 2388:
Figure 4: The temperature of PTRs over the years. The temperature of 1.2
1888: 1884:
a buffer volume (a large closed volume at practically constant pressure)
3475: 391: 3419: 3354: 3125: 3031:]. DKV-Tagungsbericht (in German). Vol. 23. pp. 147–159. 2448:
The lowest temperature reached with single-stage PTRs is just above 10
2340:{\displaystyle \xi _{\text{PTR}}={\frac {T_{\text{L}}}{T_{\text{H}}}}} 3384:
Kasai, Jun; Koyama, Tomoki; Yokota, Munenori; Iwaya, Katsuya (2022).
1815: 1791: 1783: 1729: 3320: 3402: 3337: 2805:
Gifford, W. E.; Longsworth, R. C. (1965). "Surface Heat Pumping".
2505: 2428:
K was reached by combining a PTR with a superfluid vortex cooler.
2045:
material must have a large heat capacity. At temperatures above 50
2026: 1887: 2457:
K with a three-stage PTR. With two-stage PTRs temperatures of 2.1
3455: 1878:
near room temperature where heat is released to the surroundings
1733: 367: 3479: 2084:) of coolers is defined as the ratio between the cooling power 1811:
where heat is released to the surroundings at room temperature
2736:"Basic Operation of Cryocoolers and Related Thermal Machines" 2663:. Vol. 45A. Montreal, Quebec, Canada. pp. 457–464. 2017:, it releases heat and cools down to the ambient temperature 2628:
QUBIC Bolometric interferometry: the concept (official site)
1946:
and leaves the regenerator at the cold end with temperature
3460: 2906:. Vol. 29. Boston, MA: Springer US. pp. 629–637. 2572:
Journal of Superconductivity: Incorporating Novel Magnetism
1959:
At the cold end of the tube, the gas enters the tube via X
2746:(5–6). Springer Science and Business Media LLC: 179–236. 2627: 2036:
work that would otherwise be dissipated in the orifice.
1970:
and returns when the pressure is low with a temperature
2659:. Proceedings of the Cryogenic Engineering Conference. 3021:
Thummes, G.; Wang, C.; Bender, S.; Heiden, C. (1996).
1712:
where liquid cryogens are typically used, such as the
3471:
The James Webb Space Telescope Cryocooler (JWST/NASA)
2639:
The James Webb Space Telescope Cryocooler (JWST/NASA)
2299: 2209: 2180: 2130: 2090: 2070: 1831: 1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 1825:, cooled by the gas, where the useful cooling power 3724: 3698: 3623: 3583: 3524: 3513: 3451:A Short History of Pulse Tube Refrigerators (NASA) 2465:K has been reached using He as the working fluid. 2339: 2264: 2186: 2166: 2112: 2076: 1915:): a gas element enters the tube with temperature 1900:): a gas element enters the tube with temperature 1853: 1701:In research, PTRs are often used as precoolers of 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 1705:. They are also being developed for cooling of 3491: 2031:Figure 3: Coaxial pulse tube with a displacer 1624: 8: 2167:{\displaystyle \xi ={\dot {Q}}_{\text{L}}/P} 1984:: this gives the desired cooling effect at X 1871:a tube in which the gas is pushed and pulled 3118:Unsolved Problems of Noise and Fluctuations 2363:which is lower than that of ideal coolers. 1963:when the pressure is high with temperature 1659:. In contrast with other cryocoolers (e.g. 3521: 3498: 3484: 3476: 3120:. Vol. 49B. AIP. pp. 1906–1913. 2783:Gifford, W. E.; Longsworth, R. C. (1964). 1794:moving back and forth at room temperature 1631: 1617: 1180: 332: 151: 29: 18: 3401: 3336: 2759: 2329: 2319: 2313: 2304: 2298: 2253: 2240: 2229: 2223: 2214: 2208: 2179: 2156: 2150: 2139: 2138: 2129: 2104: 2093: 2092: 2089: 2069: 1845: 1834: 1833: 1830: 1112: 1057: 1002: 962: 836: 815: 789: 768: 740: 704: 683: 657: 636: 605: 569: 548: 522: 501: 473: 3466:Pulse-tube animation (Thales Cryogenics) 3088:Classification of pulse tube cryocoolers 2650:Marquardt, E.D.; Radebaugh, Ray (2000). 2383: 1922:and leaves it with a higher temperature. 1907:and leaves it with a lower temperature. 1881:a flow resistance (often called orifice) 1743: 1694:applications such as for the cooling of 3660:Homogeneous charge compression ignition 2562: 1667:), this cryocooler can be made without 1377: 1354: 1308: 1268: 1218: 1183: 376: 351: 280: 207: 154: 21: 16:Device using sound waves to reduce heat 2734:de Waele, A. T. A. M. (10 June 2011). 2551:Timeline of low-temperature technology 2174:. For a perfectly reversible cooler, 2113:{\displaystyle {\dot {Q}}_{\text{L}}} 1854:{\displaystyle {\dot {Q}}_{\text{L}}} 1752:), a regenerator, a heat exchanger (X 7: 2512:for the temperature region down to 2 2290: 2200: 1868:, taken from the object to be cooled 1861:is delivered at the low temperature 2785:"Pulse Tube Refrigeration Progress" 2842:. Vol. 12. pp. 608–618. 2809:. Vol. 11. pp. 171–179. 2740:Journal of Low Temperature Physics 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 2904:Advances in Cryogenic Engineering 2840:Advances in Cryogenic Engineering 2807:Advances in Cryogenic Engineering 2661:Advances in Cryogenic Engineering 2053:K lead is most suitable. Below 10 3390:Review of Scientific Instruments 3325:Review of Scientific Instruments 3290:10.1016/j.cryogenics.2021.103390 3169:10.1016/j.cryogenics.2009.01.004 2792:Cryogenic Engineering Conference 1690:circuits. They are also used in 1600: 1599: 919:Table of thermodynamic equations 1395:Maxwell's thermodynamic surface 2529:scanning tunneling microscopes 1814:a regenerator consisting of a 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 3255:10.1016/s0011-2275(99)00101-0 3064:10.1016/s0011-2275(99)00101-0 2794:. University of Pennsylvania. 2367:Comparison with other coolers 1980:, hence taking up heat from X 1296:Mechanical equivalent of heat 3241:(10). Elsevier BV: 865–869. 3204:10.1016/0011-2275(94)90104-x 3050:(10). Elsevier BV: 865–869. 2992:10.1016/0011-2275(94)90104-x 2957:10.1016/0011-2275(90)90051-d 2912:10.1007/978-1-4613-9865-3_72 2848:10.1007/978-1-4757-0489-1_63 2815:10.1007/978-1-4757-0522-5_18 2713:10.1016/0011-2275(93)90129-c 2504:) superconductivity such as 908:Onsager reciprocal relations 3565:Stirling (pseudo/adiabatic) 3198:(4). Elsevier BV: 259–262. 3155:(5). Elsevier BV: 198–201. 2986:(4). Elsevier BV: 259–262. 2943:(6). Elsevier BV: 514–520. 2699:(2). Elsevier BV: 154–161. 2653:Pulse Tube Oxygen Liquefier 2485: 2479: 1714:Atacama Cosmology Telescope 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 3826: 2871:Matsubara, Yoichi (1994). 2062:coefficient of performance 1726:James Webb Space Telescope 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 3456:SHI Cryogenics Group Home 2873:"Pulse Tube Refrigerator" 2761:10.1007/s10909-011-0373-x 2617:About ACT (official site) 2120:and the compressor power 2013:. In the heat exchanger X 1321:An Inquiry Concerning the 3114:Superfluid Vortex Cooler 2520:mK is easier to access. 1756:), a tube (often called 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 2597:Radebough, Ray (1999). 2584:10.1023/A:1007876004471 1645:pulse tube refrigerator 3085:Matsubara, Y. (1998). 2510:dilution refrigerators 2393: 2341: 2266: 2188: 2168: 2114: 2078: 2032: 1923: 1855: 1779: 1771:. Room temperature is 1760:), a heat exchanger (X 1740:Principle of operation 1722:space-based telescopes 1703:dilution refrigerators 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 2414:low-temperature group 2387: 2342: 2267: 2189: 2169: 2115: 2079: 2030: 1926:The part in between X 1891: 1856: 1790:a compressor, with a 1747: 1653:pulse tube cryocooler 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 3810:Thermodynamic cycles 3749:Regenerative cooling 3627:combustion / thermal 3526:Without phase change 3517:combustion / thermal 3507:Thermodynamic cycles 2680:on 18 November 2017. 2546:Regenerative cooling 2297: 2207: 2187:{\displaystyle \xi } 2178: 2128: 2088: 2077:{\displaystyle \xi } 2068: 1829: 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 3412:2022RScI...93d3711K 3347:2022RScI...93d3711K 3247:1999Cryo...39..865X 3161:2009Cryo...49..198G 3056:1999Cryo...39..865X 2949:1990Cryo...30..514S 2889:2011TRACE..11...89M 2752:2011JLTP..164..179D 2705:1993Cryo...33..154D 1661:Stirling cryocooler 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 3800:Cooling technology 2394: 2337: 2262: 2184: 2164: 2110: 2074: 2033: 1924: 1874:a heat exchanger X 1851: 1821:a heat exchanger X 1780: 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 3787: 3786: 3764:Vapor-compression 3690:Staged combustion 3619: 3618: 3584:With phase change 3420:10.1063/5.0084888 3355:10.1063/5.0084888 3126:10.1063/1.1774894 2921:978-1-4613-9867-7 2857:978-1-4757-0491-4 2824:978-1-4757-0524-9 2670:978-0-306-46443-0 2361: 2360: 2335: 2332: 2322: 2307: 2286: 2285: 2260: 2256: 2243: 2232: 2217: 2153: 2147: 2107: 2101: 1848: 1842: 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 3817: 3759:Vapor absorption 3522: 3500: 3493: 3486: 3477: 3438: 3437: 3435: 3434: 3405: 3381: 3375: 3374: 3340: 3316: 3310: 3309: 3273: 3267: 3266: 3230: 3224: 3223: 3187: 3181: 3180: 3144: 3138: 3137: 3109: 3103: 3102: 3082: 3076: 3075: 3039: 3033: 3032: 3018: 3012: 3011: 2975: 2969: 2968: 2932: 2926: 2925: 2899: 2893: 2892: 2868: 2862: 2861: 2835: 2829: 2828: 2802: 2796: 2795: 2789: 2780: 2774: 2773: 2763: 2731: 2725: 2724: 2688: 2682: 2681: 2679: 2673:. Archived from 2658: 2647: 2641: 2636: 2630: 2625: 2619: 2614: 2608: 2607: 2605: 2594: 2588: 2587: 2567: 2519: 2515: 2496: 2492: 2476: 2464: 2460: 2456: 2451: 2439: 2427: 2423: 2419: 2411: 2407: 2400: 2391: 2355: 2346: 2344: 2343: 2338: 2336: 2334: 2333: 2330: 2324: 2323: 2320: 2314: 2309: 2308: 2305: 2291: 2280: 2271: 2269: 2268: 2263: 2261: 2259: 2258: 2257: 2254: 2245: 2244: 2241: 2234: 2233: 2230: 2224: 2219: 2218: 2215: 2201: 2196:Carnot's theorem 2193: 2191: 2190: 2185: 2173: 2171: 2170: 2165: 2160: 2155: 2154: 2151: 2149: 2148: 2140: 2119: 2117: 2116: 2111: 2109: 2108: 2105: 2103: 2102: 2094: 2083: 2081: 2080: 2075: 2056: 2052: 2048: 1860: 1858: 1857: 1852: 1850: 1849: 1846: 1844: 1843: 1835: 1718:Qubic experiment 1696:infrared sensors 1683:fabrication and 1665:GM-refrigerators 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 152: 33: 19: 3825: 3824: 3820: 3819: 3818: 3816: 3815: 3814: 3790: 3789: 3788: 3783: 3720: 3694: 3626: 3615: 3605:Organic Rankine 3579: 3533: 3530:hot air engines 3527: 3516: 3509: 3504: 3447: 3442: 3441: 3432: 3430: 3383: 3382: 3378: 3318: 3317: 3313: 3275: 3274: 3270: 3232: 3231: 3227: 3189: 3188: 3184: 3146: 3145: 3141: 3111: 3110: 3106: 3099: 3084: 3083: 3079: 3041: 3040: 3036: 3020: 3019: 3015: 2977: 2976: 2972: 2934: 2933: 2929: 2922: 2901: 2900: 2896: 2870: 2869: 2865: 2858: 2837: 2836: 2832: 2825: 2804: 2803: 2799: 2787: 2782: 2781: 2777: 2733: 2732: 2728: 2690: 2689: 2685: 2677: 2671: 2656: 2649: 2648: 2644: 2637: 2633: 2626: 2622: 2615: 2611: 2603: 2596: 2595: 2591: 2569: 2568: 2564: 2559: 2537: 2517: 2513: 2503: 2494: 2490: 2474: 2471: 2462: 2458: 2454: 2449: 2437: 2434: 2425: 2421: 2417: 2409: 2405: 2398: 2389: 2382: 2373:Stirling engine 2369: 2353: 2325: 2315: 2300: 2295: 2294: 2278: 2249: 2236: 2235: 2225: 2210: 2205: 2204: 2176: 2175: 2137: 2126: 2125: 2091: 2086: 2085: 2066: 2065: 2054: 2050: 2046: 2042: 2023: 2016: 2012: 2005: 1998: 1994: 1987: 1983: 1979: 1969: 1962: 1952: 1945: 1933: 1929: 1921: 1914: 1906: 1899: 1877: 1867: 1832: 1827: 1826: 1824: 1810: 1800: 1777: 1770: 1763: 1755: 1751: 1742: 1688:radio-frequency 1685:superconducting 1677: 1657:thermoacoustics 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1109: 1108: 1107: 1054: 1053: 1052: 999: 998: 997: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 833: 832: 812: 811: 786: 785: 765: 764: 737: 736: 701: 700: 680: 679: 654: 653: 633: 632: 602: 601: 596:Compressibility 566: 565: 545: 544: 519: 518: 498: 497: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 3823: 3821: 3813: 3812: 3807: 3802: 3792: 3791: 3785: 3784: 3782: 3781: 3776: 3771: 3766: 3761: 3756: 3751: 3746: 3741: 3736: 3730: 3728: 3722: 3721: 3719: 3718: 3713: 3708: 3702: 3700: 3696: 3695: 3693: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3631: 3629: 3621: 3620: 3617: 3616: 3614: 3613: 3608: 3598: 3593: 3587: 3585: 3581: 3580: 3578: 3577: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3536: 3534: 3525: 3519: 3511: 3510: 3505: 3503: 3502: 3495: 3488: 3480: 3474: 3473: 3468: 3463: 3458: 3453: 3446: 3445:External links 3443: 3440: 3439: 3376: 3311: 3268: 3225: 3182: 3139: 3104: 3097: 3077: 3034: 3013: 2970: 2927: 2920: 2894: 2863: 2856: 2830: 2823: 2797: 2775: 2726: 2683: 2669: 2642: 2631: 2620: 2609: 2589: 2561: 2560: 2558: 2555: 2554: 2553: 2548: 2543: 2536: 2533: 2501: 2470: 2467: 2433: 2430: 2381: 2378: 2368: 2365: 2359: 2358: 2349: 2347: 2328: 2318: 2312: 2303: 2284: 2283: 2274: 2272: 2252: 2248: 2239: 2228: 2222: 2213: 2183: 2163: 2159: 2146: 2143: 2136: 2133: 2124:. In formula: 2100: 2097: 2073: 2064:(COP; denoted 2060:The so-called 2041: 2038: 2021: 2014: 2010: 2003: 1996: 1992: 1985: 1981: 1977: 1967: 1960: 1950: 1943: 1931: 1927: 1919: 1912: 1904: 1897: 1886: 1885: 1882: 1879: 1875: 1872: 1869: 1865: 1841: 1838: 1822: 1819: 1812: 1808: 1805:heat exchanger 1801: 1798: 1775: 1768: 1761: 1758:the pulse tube 1753: 1749: 1741: 1738: 1676: 1673: 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 13: 10: 9: 6: 4: 3: 2: 3822: 3811: 3808: 3806: 3803: 3801: 3798: 3797: 3795: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3754:Transcritical 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3734:Hampson–Linde 3732: 3731: 3729: 3727: 3726:Refrigeration 3723: 3717: 3714: 3712: 3709: 3707: 3704: 3703: 3701: 3697: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3655:Gas-generator 3653: 3651: 3648: 3646: 3643: 3641: 3640:Brayton/Joule 3638: 3636: 3633: 3632: 3630: 3628: 3622: 3612: 3609: 3606: 3602: 3599: 3597: 3594: 3592: 3589: 3588: 3586: 3582: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3545:Brayton/Joule 3543: 3541: 3538: 3537: 3535: 3531: 3523: 3520: 3518: 3512: 3508: 3501: 3496: 3494: 3489: 3487: 3482: 3481: 3478: 3472: 3469: 3467: 3464: 3462: 3461:Cryomech Home 3459: 3457: 3454: 3452: 3449: 3448: 3444: 3429: 3425: 3421: 3417: 3413: 3409: 3404: 3399: 3396:(4): 043711. 3395: 3391: 3387: 3380: 3377: 3372: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3339: 3334: 3331:(4): 043711. 3330: 3326: 3322: 3315: 3312: 3307: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3272: 3269: 3264: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3229: 3226: 3221: 3217: 3213: 3209: 3205: 3201: 3197: 3193: 3186: 3183: 3178: 3174: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3140: 3135: 3131: 3127: 3123: 3119: 3115: 3108: 3105: 3100: 3098:0-7503-0597-5 3094: 3090: 3089: 3081: 3078: 3073: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3038: 3035: 3030: 3026: 3025: 3017: 3014: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2971: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2931: 2928: 2923: 2917: 2913: 2909: 2905: 2898: 2895: 2890: 2886: 2882: 2878: 2874: 2867: 2864: 2859: 2853: 2849: 2845: 2841: 2834: 2831: 2826: 2820: 2816: 2812: 2808: 2801: 2798: 2793: 2786: 2779: 2776: 2771: 2767: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2730: 2727: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2687: 2684: 2676: 2672: 2666: 2662: 2655: 2654: 2646: 2643: 2640: 2635: 2632: 2629: 2624: 2621: 2618: 2613: 2610: 2602: 2601: 2593: 2590: 2585: 2581: 2577: 2573: 2566: 2563: 2556: 2552: 2549: 2547: 2544: 2542: 2539: 2538: 2534: 2532: 2530: 2526: 2521: 2511: 2507: 2500: 2488: 2487: 2482: 2481: 2468: 2466: 2446: 2442: 2431: 2429: 2415: 2402: 2386: 2379: 2377: 2374: 2366: 2364: 2357: 2350: 2348: 2326: 2316: 2310: 2301: 2293: 2292: 2289: 2282: 2275: 2273: 2250: 2246: 2237: 2226: 2220: 2211: 2203: 2202: 2199: 2197: 2181: 2161: 2157: 2144: 2141: 2134: 2131: 2123: 2098: 2095: 2071: 2063: 2058: 2039: 2037: 2029: 2025: 2020: 2009: 2002: 1989: 1976: 1973: 1966: 1957: 1954: 1949: 1942: 1936: 1918: 1910: 1903: 1895: 1890: 1883: 1880: 1873: 1870: 1864: 1839: 1836: 1820: 1817: 1813: 1806: 1802: 1797: 1793: 1789: 1788: 1787: 1785: 1774: 1767: 1759: 1746: 1739: 1737: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1708: 1704: 1699: 1697: 1693: 1689: 1686: 1682: 1681:semiconductor 1674: 1672: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 375: 369: 366: 364: 361: 360: 358: 357: 354: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 20: 3743: 3611:Regenerative 3540:Bell Coleman 3431:. Retrieved 3393: 3389: 3379: 3328: 3324: 3314: 3281: 3277: 3271: 3238: 3234: 3228: 3195: 3191: 3185: 3152: 3148: 3142: 3117: 3113: 3107: 3087: 3080: 3047: 3043: 3037: 3028: 3023: 3016: 2983: 2979: 2973: 2940: 2936: 2930: 2903: 2897: 2880: 2876: 2866: 2839: 2833: 2806: 2800: 2791: 2778: 2743: 2739: 2729: 2696: 2692: 2686: 2675:the original 2660: 2652: 2645: 2634: 2623: 2612: 2599: 2592: 2578:(1): 35–39. 2575: 2571: 2565: 2525:microphonics 2522: 2498: 2484: 2478: 2472: 2447: 2443: 2435: 2413: 2412:K), but the 2403: 2395: 2370: 2362: 2351: 2287: 2276: 2194:is given by 2121: 2059: 2043: 2034: 2018: 2007: 2000: 1990: 1974: 1971: 1964: 1958: 1955: 1947: 1940: 1937: 1925: 1916: 1908: 1901: 1893: 1862: 1795: 1781: 1772: 1765: 1757: 1724:such as the 1707:astronomical 1700: 1678: 1669:moving parts 1652: 1648: 1644: 1642: 1438:CarathĂ©odory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 78: / 3779:Ionocaloric 3774:Vuilleumier 3596:Hygroscopic 2040:Performance 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 3805:Cryogenics 3794:Categories 3744:Pulse tube 3716:Mixed/dual 3433:2024-04-03 3403:2204.01195 3338:2204.01195 3278:Cryogenics 3235:Cryogenics 3192:Cryogenics 3149:Cryogenics 3044:Cryogenics 2980:Cryogenics 2937:Cryogenics 2693:Cryogenics 2557:References 2541:Cryocooler 1892:Figure 2: 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 3739:Kleemenko 3625:Internal 3363:0034-6748 3306:244005391 3298:0011-2275 3263:0011-2275 3220:122086143 3212:0011-2275 3177:0011-2275 3134:0094-243X 3072:0011-2275 3008:122086143 3000:0011-2275 2965:0011-2275 2770:0022-2291 2721:0011-2275 2469:Prospects 2302:ξ 2247:− 2212:ξ 2182:ξ 2145:˙ 2132:ξ 2099:˙ 2072:ξ 1911:: (near X 1896:: (near X 1840:˙ 1710:detectors 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 3706:Combined 3665:Humphrey 3650:Expander 3635:Atkinson 3570:Stoddard 3560:Stirling 3555:Ericsson 3515:External 3428:35489903 3371:35489903 2535:See also 1692:military 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 3769:Siemens 3685:Scuderi 3601:Rankine 3408:Bibcode 3343:Bibcode 3243:Bibcode 3157:Bibcode 3052:Bibcode 2945:Bibcode 2885:Bibcode 2748:Bibcode 2701:Bibcode 2493:K and 4 2483:) and ( 2380:History 1716:or the 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 3675:Miller 3670:Lenoir 3645:Diesel 3591:Kalina 3575:Manson 3550:Carnot 3426:  3369:  3361:  3304:  3296:  3261:  3218:  3210:  3175:  3132:  3095:  3070:  3006:  2998:  2963:  2918:  2854:  2821:  2768:  2719:  2667:  2518:  2514:  2506:SQUIDs 2495:  2491:  2475:  2463:  2459:  2455:  2450:  2438:  2426:  2422:  2418:  2410:  2406:  2399:  2390:  2055:  2051:  2047:  1816:porous 1792:piston 1784:helium 1730:oxygen 1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 3699:Mixed 3398:arXiv 3333:arXiv 3302:S2CID 3216:S2CID 3027:[ 3004:S2CID 2788:(PDF) 2678:(PDF) 2657:(PDF) 2604:(PDF) 2432:Types 1972:below 1930:and X 1909:Right 1651:) or 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 3711:HEHC 3680:Otto 3424:PMID 3367:PMID 3359:ISSN 3294:ISSN 3259:ISSN 3208:ISSN 3173:ISSN 3130:ISSN 3093:ISBN 3068:ISSN 2996:ISSN 2961:ISSN 2916:ISBN 2852:ISBN 2819:ISBN 2766:ISSN 2717:ISSN 2665:ISBN 1894:Left 1734:Mars 1675:Uses 1663:and 1643:The 1538:Tait 368:Heat 363:Work 93:Laws 3416:doi 3351:doi 3286:doi 3282:121 3251:doi 3200:doi 3165:doi 3122:doi 3060:doi 2988:doi 2953:doi 2908:doi 2844:doi 2811:doi 2756:doi 2744:164 2709:doi 2580:doi 2397:105 2306:PTR 1732:on 1649:PTR 1381:Art 327:in 3796:: 3422:. 3414:. 3406:. 3394:93 3392:. 3388:. 3365:. 3357:. 3349:. 3341:. 3329:93 3327:. 3323:. 3300:. 3292:. 3284:. 3280:. 3257:. 3249:. 3239:39 3237:. 3214:. 3206:. 3196:34 3194:. 3171:. 3163:. 3153:49 3151:. 3128:. 3066:. 3058:. 3048:39 3046:. 3002:. 2994:. 2984:34 2982:. 2959:. 2951:. 2941:30 2939:. 2914:. 2881:11 2879:. 2875:. 2850:. 2817:. 2790:. 2764:. 2754:. 2742:. 2738:. 2715:. 2707:. 2697:33 2695:. 2576:14 2574:. 2198:: 2024:. 1988:. 1803:a 1736:. 1698:. 3607:) 3603:( 3532:) 3528:( 3499:e 3492:t 3485:v 3436:. 3418:: 3410:: 3400:: 3373:. 3353:: 3345:: 3335:: 3308:. 3288:: 3265:. 3253:: 3245:: 3222:. 3202:: 3179:. 3167:: 3159:: 3136:. 3124:: 3101:. 3074:. 3062:: 3054:: 3010:. 2990:: 2967:. 2955:: 2947:: 2924:. 2910:: 2891:. 2887:: 2860:. 2846:: 2827:. 2813:: 2772:. 2758:: 2750:: 2723:. 2711:: 2703:: 2586:. 2582:: 2502:c 2499:T 2486:2 2480:1 2356:) 2354:2 2352:( 2331:H 2327:T 2321:L 2317:T 2311:= 2281:) 2279:1 2277:( 2255:L 2251:T 2242:H 2238:T 2231:L 2227:T 2221:= 2216:C 2162:P 2158:/ 2152:L 2142:Q 2135:= 2122:P 2106:L 2096:Q 2022:H 2019:T 2015:3 2011:H 2008:T 2004:H 2001:T 1997:3 1993:3 1986:2 1982:2 1978:L 1975:T 1968:L 1965:T 1961:2 1951:L 1948:T 1944:H 1941:T 1932:3 1928:1 1920:H 1917:T 1913:3 1905:L 1902:T 1898:2 1876:3 1866:L 1863:T 1847:L 1837:Q 1823:2 1809:1 1807:X 1799:H 1796:T 1778:. 1776:H 1773:T 1769:L 1766:T 1762:3 1754:2 1750:1 1647:( 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑