Knowledge (XXG)

Purple bacteria

Source 📝

916:
from even the slightest trace of oxygen. Then a dish of the bacteria was taken, and a light was focused on one part of the dish, leaving the rest dark. As the bacteria cannot survive without light, all the bacteria moved into the circle of light, becoming very crowded. If the bacteria's byproduct was oxygen, the distances between individuals would become larger and larger as more oxygen was produced. But because of the bacteria's behavior in the focused light, it was concluded that the bacteria's photosynthetic byproduct could not be oxygen.
466: 31: 462:
Moreover, the photosynthetic unit in Purple Bacteria shows great plasticity, being able to adapt to the constantly changing light conditions. In fact these microorganisms are able to rearrange the composition and the concentration of the pigments, and consequently the absorption spectrum, in response to light variation.
800:(0.068–0.94 μg BChle/dm), scattered over an interval of 30 m (98 ft). Communities of phototrophic sulfur bacteria located in the coastal sediments of sandy, saline or muddy beaches live in an environment with a higher light gradient, limiting growth to the highest value between 1.5–5 mm ( 915:
Purple bacteria were the first bacteria discovered to photosynthesize without having an oxygen byproduct. Instead, their byproduct is sulfur. This was demonstrated by first establishing the bacteria's reactions to different concentrations of oxygen. It was found that the bacteria moved quickly away
795:
and the availability of solar radiation suggests that light is the main factor controlling all the activities of phototrophic sulfur bacteria. The density of pelagic communities of phototrophic sulfur bacteria extends beyond a depth range of 10 cm (3.9 in), while the less dense population
617:
as electron donor. In contrast to the purple sulfur bacteria, the purple nonsulfur bacteria are mostly photoheterotrophic and can use a variety of organic compounds as both electron donor and carbon source, such as sugars, amino acids, organic acids, and aromatic compounds like toluene or benzoate.
882:
and can rapidly create stable associations between other purple sulfur bacteria and sulfur- or sulfate-reducing bacteria. These associations are based on a cycle of sulfur but not carbon compounds. Thus, a simultaneous growth of two bacteria partners takes place, which are fed by the oxidation of
784:
Several studies have shown that a strong accumulation of phototrophic sulfur bacteria has been observed between 2 and 20 meters (6 ft 7 in and 65 ft 7 in) deep, in some cases even 30 m (98 ft), of pelagic environments. This is due to the fact that in some environments
461:
forming a polymeric ring-like structure around it. LHI has an absorption maximum at 870 nm and it contains most of the bacteriochlorophyll of the photosynthetic unit. LHII contains less bacteriochlorophylls, has lower absorption maximum (850 nm) and is not present in all purple bacteria.
314:
The similarity between the photosynthetic machinery in these different lines indicates that it had a common origin, either from some common ancestor or passed by lateral transfer. Purple sulfur bacteria and purple nonsulfur bacteria were distinguished on the basis of physiological factors of their
305:. While the former family stores the produced sulfur inside the cell, the latter sends the sulfur outside the cell. According to a 1985 phylogeny, Gammaproteobacteria is divided into three sub-lineages, with both families falling into the first along with non-photosynthetic species such as 2169:
Herbert RA, Ranchou-Peyruse A, Duran R, Guyoneaud R, Schwabe S (August 2005). "Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa".
601:. Finally, even if the purple sulfur bacteria are typically photoautotrophic, some of them are photoheterotrophic and use different carbon sources and electron donors such as organic acids. Purple nonsulfur bacteria typically use  364:. The important distinction that remains from these two different metabolisms is that: any S formed by purple nonsulfur bacteria is not stored intracellularly but is deposited outside the cell (even if there are exception for this as 854:, has been found in several hot springs in western North America at temperatures above 58 °C (136 °F) and may represent the most thermophilic extant Pseudomonadota. Of the purple sulfur bacteria, many members of the 396:. Since pigment synthesis does not take place in presence of oxygen, phototrophic growth only occurs in anoxic and light conditions. However purple bacteria can also grow in dark and oxic environments. In fact they can be 740:
of different nutrients. In fact they are able to photoautotrophically fix carbon, or to consume it photoheterotrophically; in both cases in anoxic conditions. However the most important role is played by consuming
457:. These are integral membrane protein complexes consisting of monomers of α- and β-apoproteins, each one binding molecules of bacteriochlorophyll and carotenoids non-covalently. LHI is directly associated with the 678:
and light, some examples are shallow lagoons polluted by sewage or deep waters of lakes, in which they could even bloom. Blooms can both involve a single or a mixture of species. They can also be found in
745:: a highly toxic substance for plants, animals and other bacteria. In fact, the oxidation of hydrogen sulfide by purple bacteria produces non-toxic forms of sulfur, such as elemental sulfur and sulfate. 331:
experiments by Hansen and Van Gemerden (1972) that demonstrate the growing of many purple nonsulfur bacteria species at low levels of sulfide (0.5 mM) and in so doing, oxidize sulfide to S,
2464: 1679:
Cogdell RJ, Gall A, Köhler J (August 2006). "The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes".
433:
to obtain the light energy for photosynthesis. Electron transfer and photosynthetic reactions occur at the cell membrane in the photosynthetic unit which is composed by the
327:
to sulfur globules stored intracellulary while purple nonsulfur bacteria species did neither. This kind of classification was not absoluted. It was refuted with classic
1136:
Madigan MT, Jung DO, Daldal F, Fevzi T, Thurnauer MC, Beatty JT (2009). "An Overview of Purple Bacteria: Systematics, Physiology, and Habitats". In Hunter CN (ed.).
441:
where the charge separation reaction occurs. These structures are located in the intracytoplasmic membrane, areas of the cytoplasmic membrane invaginated to form
1817:
Basak N, Das D (2007-01-01). "The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art".
1169:
Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, et al. (1985-06-01). "The Phylogeny of Purple Bacteria: The Gamma Subdivision".
670:, even if they are capable of photoautotrophy, and are equipped for living in dark environments. Purple sulfur bacteria can be found in different 94:
widely spread in nature, but especially in aquatic environments, where there are anoxic conditions that favor the synthesis of their pigments.
2066:
Madigan MT (1995). "Microbiology of Nitrogen Fixation by Anoxygenic Photosynthetic Bacteria". In Blankenship RE, Madigan MT, Bauer CE (eds.).
2325: 2235: 2083: 2050: 1934: 1734: 1487: 1153: 1111: 2253:"Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea" 646:
Purple bacteria inhabit illuminated anoxic aquatic and terrestrial environments. Even if sometimes the two major groups of purple bacteria,
1950: 950:
in plant and animal cells today that act as organelles. Comparisons of their protein structure suggests that there is a common ancestor.
372:
it is easy to differentiate purple sulfur bacteria from purple non-sulfur bacteria because the microscopically globules of S are formed.
621:
Purple bacteria lack external electron carriers to spontaneously reduce NAD(P) to NAD(P)H, so they must use their reduced quinones to
2448: 785:
the light transmission for various populations of phototrophic sulfur bacteria varies with a density from 0.015 to 10% Furthermore,
1636:
McEwan AG (March 1994). "Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria".
1341:
Tsygankov AA, Khusnutdinova AN (2015-01-01). "Hydrogen in metabolism of purple bacteria and prospects of practical application".
1951:"The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes" 1448: 442: 1014:
Cohen-Bazire G, Sistrom WR, Stanier RY (February 1957). "Kinetic studies of pigment synthesis by non-sulfur purple bacteria".
2725: 496: 438: 2624:"Biological and Bioelectrochemical Systems for Hydrogen Production and Carbon Fixation Using Purple Phototrophic Bacteria" 1094:
Takaichi S, Daldal F, Thurnauer MC, Beatty JT (2009). "Distribution and Biosynthesis of Carotenoids". In Hunter CN (ed.).
920: 1917:
Brune DC (1995). "Sulfur Compounds as Photosynthetic Electron Donors". In Blankenship RE, Madigan MT, Bauer CE (eds.).
1470:
Niederman RA (2006). "Structure, Function and Formation of Bacterial Intracytoplasmic Membranes". In Shively JM (ed.).
693:. However, they hardly form blooms with sufficiently high concentration to be visible without enrichment techniques. 450: 434: 211: 87: 925: 792: 686: 663: 651: 566: 91: 78:, which give them colours ranging between purple, red, brown, and orange. They may be divided into two groups – 2222:. Advances in Photosynthesis and Respiration. Vol. 27. Dordrecht: Springer Netherlands. pp. 375–396. 492: 484: 2070:. Advances in Photosynthesis and Respiration. Vol. 2. Dordrecht: Springer Netherlands. pp. 915–928. 1921:. Advances in Photosynthesis and Respiration. Vol. 2. Dordrecht: Springer Netherlands. pp. 847–870. 1098:. Advances in Photosynthesis and Respiration. Vol. 28. Dordrecht: Springer Netherlands. pp. 97–117. 850: 716: 293:
Purple sulfur bacteria are named for the ability to produce elemental sulfur. They are included in the class
110:
in 1987 calling it "purple bacteria and their relatives". Purple bacteria are distributed between 3 classes:
2720: 2312:. Advances in Photosynthesis and Respiration. Vol. 2. Dordrecht: Springer Netherlands. pp. 49–85. 2218:
Overmann J (2008). "Ecology of Phototrophic Sulfur Bacteria". In Hell R, Dahl C, Knaff D, Leustek T (eds.).
1140:. Advances in Photosynthesis and Respiration. Vol. 28. Dordrecht: Springer Netherlands. pp. 1–15. 959: 1474:. Microbiology Monographs. Vol. 2. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 193–227. 655: 647: 570: 554: 365: 307: 302: 79: 49: 449:, or single-paired or stacked lamellar sheets which have increased surface to maximize light absorption. 1722: 1055:
classis nov., a Name for the Phylogenetic Taxon That Includes the "Purple Bacteria and Their Relatives""
875: 848:
at a pH value between 4.3 and 6.2 and at a temperature above 56 °C (133 °F). Another example,
833: 710: 630: 401: 235: 191: 179: 1556:"Adaptation of the Photosynthetic Unit of Purple Bacteria to Changes of Light Illumination Intensities" 1386:"Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria" 1212:
van Niel CB (1932-01-01). "On the morphology and physiology of the purple and green sulphur bacteria".
791:
have been found in chemocline environments over 20 m (66 ft) depths. The correlation between
2668: 2550: 2491: 2264: 2179: 2129: 1981: 1873: 1771: 1512: 1272: 1221: 1178: 947: 737: 700:
in extreme environments, in fact they are quite successful in harsh habitats. In the 1960s the first
662:
and are not adapted to an efficient metabolism and growth in the dark. A different speech applies to
381: 471: 523: 426: 405: 294: 161: 149: 133:. All these classes also contain numerous non-photosynthetic numbers, such as the nitrogen-fixing 122: 112: 64: 979:
Bryant DA, Frigaard NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated".
83: 2594: 2515: 2458: 2153: 1842: 1704: 1661: 1536: 1366: 1296: 1245: 384:
that allow them to adapt to different and even extreme environmental conditions. They are mainly
258: 153: 118: 35: 1862:"Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism" 2696: 2576: 2507: 2482:
from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria".
2444: 2409: 2364: 2321: 2290: 2231: 2195: 2145: 2079: 2046: 2015: 1997: 1930: 1899: 1834: 1799: 1740: 1730: 1696: 1653: 1618: 1528: 1503:
Francke C, Amesz J (November 1995). "The size of the photosynthetic unit in purple bacteria".
1483: 1452: 1417: 1358: 1323: 1288: 1237: 1194: 1149: 1107: 1076: 1031: 996: 218: 174: 2686: 2676: 2635: 2566: 2558: 2499: 2436: 2399: 2354: 2313: 2280: 2272: 2223: 2187: 2137: 2071: 2038: 2005: 1989: 1922: 1889: 1881: 1826: 1789: 1779: 1688: 1645: 1608: 1600: 1567: 1520: 1475: 1444: 1407: 1397: 1350: 1280: 1263:
Hansen TA, van Gemerden H (1972-03-01). "Sulfide utilization by purple nonsulfur bacteria".
1229: 1186: 1141: 1099: 1066: 1023: 988: 742: 667: 393: 249: 206: 200: 186: 168: 141: 904: 768: 659: 458: 454: 245: 824:
densities of 900 mg bacteriochlorophyll/dm can be attained in these latter systems.
545:
complex. The resulting charge separation between the cytoplasm and periplasm generates a
17: 2672: 2554: 2495: 2268: 2183: 2133: 1985: 1877: 1775: 1516: 1435:
Ritz T, Damjanović A, Schulten K (March 2002). "The quantum physics of photosynthesis".
1276: 1225: 1182: 2404: 2383: 2359: 2342: 2285: 2252: 1613: 1588: 1412: 1385: 884: 725: 697: 680: 516: 389: 385: 278: 265: 223: 127: 103: 60: 52: 2010: 1969: 1894: 1861: 1190: 465: 2714: 2691: 2656: 2599: 2571: 2534: 2276: 2191: 1885: 1794: 1759: 891:
have pointed out that cell aggregates consisting of sulfate-reducing proteobacterium
888: 863: 855: 787: 298: 2519: 2157: 1846: 1708: 1540: 1370: 1249: 2343:"Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands" 1665: 1300: 943: 721: 626: 614: 590: 550: 546: 503:
pigments P870 or P960 located in the RC. Excited electrons are cycled from P870 to
409: 230: 2562: 30: 2227: 2042: 1760:"Architecture and mechanism of the light-harvesting apparatus of purple bacteria" 1572: 1555: 767:, an alpha proteobacter, is capable of reducing nitrate to molecular nitrogen by 2035:
Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects
2033:
Imhoff JF (2017). "Anoxygenic Phototrophic Bacteria from Extreme Environments".
1993: 1145: 1103: 931: 859: 845: 705: 610: 582: 500: 270: 2661:
Proceedings of the National Academy of Sciences of the United States of America
1764:
Proceedings of the National Academy of Sciences of the United States of America
2440: 1830: 1692: 1354: 1071: 1050: 992: 900: 701: 622: 430: 283: 107: 75: 56: 2640: 2623: 2511: 2413: 2368: 2075: 2001: 1926: 1838: 1362: 1241: 1198: 1080: 748:
In addition, almost all non-sulfur purple bacteria are able to fix nitrogen (
2681: 2317: 1784: 1744: 1402: 879: 837: 797: 671: 538: 537:, eventually being oxidized and releasing the protons to be pumped into the 397: 328: 135: 130: 2580: 2294: 2199: 1700: 1622: 1532: 1456: 1421: 1327: 1035: 1027: 1000: 319:: was considered that purple sulfur bacteria tolerate millimolar levels of 2700: 2149: 1903: 1803: 1657: 1292: 2308:
Van Gemerden H, Mas J (1995). "Ecology of Phototrophic Sulfur Bacteria".
2019: 602: 586: 504: 942:
Researchers have theorized that some purple bacteria are related to the
2503: 2141: 1649: 1604: 1524: 1284: 1233: 821: 690: 675: 606: 598: 574: 446: 369: 324: 320: 316: 2478:
Warthmann R, Cypionka H, Pfennig N (1992-04-01). "Photoproduction of H
1449:
10.1002/1439-7641(20020315)3:3<243::AID-CPHC243>3.0.CO;2-Y
1589:"Modeling the electron transport chain of purple non-sulfur bacteria" 1479: 930:
article, it has been suggested that purple bacteria can be used as a
578: 2533:
Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R (February 2000).
1970:"Phototrophic purple and green bacteria in a sewage treatment plant" 1314:
Keppen OI, Krasil'nikova EN, Lebedeva NV, Ivanovskiĭ RN (2013). "".
689:
can be found in both illuminated and dark environments with lack of
569:
because they do not use water as electron donor to produce oxygen.
2657:"A common evolutionary origin for mitochondria and hydrogenosomes" 488: 464: 29: 1059:
International Journal of Systematic and Evolutionary Microbiology
609:
at lower concentrations compared to PSB and some species can use
412:
basing on the concentration of oxygen and availability of light.
1587:
Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED (2008-01-15).
683:
where the lower layer decomposes and sulfate-reduction occurs.
499:(RC) harvest photons in the form of resonance energy, exciting 2341:
Van Gemerden H, Tughan CS, De Wit R, Herbert RA (1989-02-01).
2251:
Manske AK, Glaeser J, Kuypers MM, Overmann J (December 2005).
654:, coexist in the same habitat, they occupy different niches. 840:, some members have been found in hot springs. For example 2595:"Purple bacteria 'batteries' turn sewage into clean energy" 2539:
in the chemocline of meromictic Lake Cadagno (Switzerland)"
2535:"In situ analysis of sulfate-reducing bacteria related to 2384:"Anoxygenic microbial mats of hot springs: thermophilic 2037:. Springer International Publishing. pp. 427–480. 2622:
Ioanna A. Vasiliadou; et al. (13 November 2018).
1554:
Brotosudarmo TH, Limantara L, Prihastyanti MN (2015).
696:
Purple bacteria have evolved effective strategies for
2382:Castenholz RW, Bauld J, Jørgenson BB (1990-12-01). 1758:Hu X, Damjanović A, Ritz T, Schulten K (May 1998). 106:. This phylum was established as Proteobacteria by 1968:Siefert E, Irgens RL, Pfennig N (1 January 1978). 589:as electron donors. In addition, some species use 2655:Bui ET, Bradley PJ, Johnson PJ (September 1996). 2463:: CS1 maint: DOI inactive as of September 2024 ( 2213: 2211: 2209: 1384:Hädicke O, Grammel H, Klamt S (September 2011). 2435:. New York: Springer-Verlag. pp. 471–473. 1819:World Journal of Microbiology and Biotechnology 1472:Complex Intracellular Structures in Prokaryotes 836:) typically form blooms in non-thermal aquatic 533:attracts two cytoplasmic protons and becomes QH 1131: 1129: 1127: 1125: 1123: 1016:Journal of Cellular and Comparative Physiology 820: in) of the sediments. At the same time, 728:hot springs, was isolated for the first time. 380:Purple bacteria are able to perform different 2104:Satoh T, Hoshino Y, Kitamura H (July 1976). " 1049:Stackebrandt E, Murray RG, Trüper HG (1988). 878:, purple sulfur bacteria are also capable of 862:and marine environments. About 10 species of 625:reduce NAD(P). This process is driven by the 8: 102:All purple bacteria belong in the phylum of 2433:Bergey's Manual® of Systematic Bacteriology 2220:Sulfur Metabolism in Phototrophic Organisms 2116:, a denitrifying strain as a subspecies of 453:are involved in the energy transfer to the 59:, capable of producing their own food via 2690: 2680: 2639: 2570: 2403: 2358: 2284: 2009: 1893: 1793: 1783: 1612: 1571: 1411: 1401: 1070: 844:can only be found in some hot springs in 529:, and back to P870. The reduced quinone Q 1860:Ehrenreich A, Widdel F (December 1994). 148:Purple non-sulfur bacteria are found in 971: 887:and light substrates. Experiments with 605:as an electron donor, but can also use 2543:Applied and Environmental Microbiology 2456: 2257:Applied and Environmental Microbiology 1974:Applied and Environmental Microbiology 1866:Applied and Environmental Microbiology 1727:Molecular mechanisms of photosynthesis 724:purple bacterium that can be found in 7: 736:Purple bacteria are involved in the 593:as electron donor and one strain of 1171:Systematic and Applied Microbiology 2405:10.1111/j.1574-6968.1990.tb04079.x 2360:10.1111/j.1574-6968.1989.tb03661.x 2310:Anoxygenic Photosynthetic Bacteria 2068:Anoxygenic Photosynthetic Bacteria 1919:Anoxygenic Photosynthetic Bacteria 25: 2277:10.1128/aem.71.12.8049-8060.2005 2192:10.1111/j.1462-2920.2005.00815.x 1886:10.1128/AEM.60.12.4517-4526.1994 1138:The Purple Phototrophic Bacteria 1096:The Purple Phototrophic Bacteria 469:The purple non-sulfur bacterium 1681:Quarterly Reviews of Biophysics 714:were discovered. In the 1980s 439:photosynthetic reaction centre 46:purple photosynthetic bacteria 27:Group of phototrophic bacteria 1: 2563:10.1128/AEM.66.2.820-824.2000 1729:. Oxford: Blackwell Science. 1191:10.1016/S0723-2020(85)80007-2 832:Purple sulfur bacteria (like 780:Quantity and quality of light 561:Electron donors for anabolism 315:tolerance and utilization of 2628:Frontiers in Energy Research 2228:10.1007/978-1-4020-6863-8_19 2118:Rhodopseudomonas sphaeroides 2110:Rhodopseudomonas sphaeroides 2043:10.1007/978-3-319-46261-5_13 1573:10.1016/j.proche.2015.03.056 921:Frontiers in Energy Research 139:and the human gut bacterium 1994:10.1128/AEM.35.1.38-44.1978 1146:10.1007/978-1-4020-8815-5_1 1104:10.1007/978-1-4020-8815-5_6 858:family are often found in 483:Purple bacteria use cyclic 388:, but are also known to be 63:. They are pigmented with 2742: 2537:Desulfocapsa thiozymogenes 2172:Environmental Microbiology 899:have been observed in the 893:Desulfocapsa thiozymogenes 687:Purple non sulfur bacteria 493:Light-harvesting complexes 451:Light-harvesting complexes 435:light-harvesting complexes 212:Rhodopseudomonas palustris 88:purple non-sulfur bacteria 2441:10.1007/0-387-29298-5_114 2392:FEMS Microbiology Letters 2347:FEMS Microbiology Ecology 1831:10.1007/s11274-006-9190-9 1693:10.1017/S0033583506004434 1593:Molecular Systems Biology 1355:10.1134/S0026261715010154 1072:10.1099/00207713-38-3-321 993:10.1016/j.tim.2006.09.001 793:anoxygenic photosynthesis 664:purple nonsulfur bacteria 652:purple nonsulfur bacteria 34:Purple bacteria grown in 18:Purple nonsulfur bacteria 2641:10.3389/fenrg.2018.00107 2484:Archives of Microbiology 2122:Archives of Microbiology 2076:10.1007/0-306-47954-0_42 1927:10.1007/0-306-47954-0_39 1265:Archiv für Mikrobiologie 1214:Archiv für Mikrobiologie 851:Thermochromatium tepidum 828:Temperature and salinity 717:Thermochromatium tepidum 126:each characterized by a 74:, together with various 2682:10.1073/pnas.93.18.9651 2443:(inactive 2024-09-12). 2318:10.1007/0-306-47954-0_4 1785:10.1073/pnas.95.11.5935 1638:Antonie van Leeuwenhoek 1505:Photosynthesis Research 1403:10.1186/1752-0509-5-150 960:Purple Earth hypothesis 870:Syntrophy and symbioses 2431:Imhoff 2001, 1865VP". 1028:10.1002/jcp.1030490104 981:Trends in Microbiology 656:Purple sulfur bacteria 648:purple sulfur bacteria 571:Purple sulfur bacteria 487:driven by a series of 475: 366:Ectothiorhodospiraceae 303:Ectothiorhodospiraceae 297:, in the two families 92:anoxygenic phototrophs 90:. Purple bacteria are 80:purple sulfur bacteria 38: 2726:Phototrophic bacteria 876:green sulfur bacteria 842:Chlorobaculum tepidum 834:green sulfur bacteria 738:biogeochemical cycles 732:Biogeochemical cycles 631:reverse electron flow 468: 437:LHI and LHII and the 192:Rhodopila globiformis 180:Rhodospirillum rubrum 33: 565:Purple bacteria are 541:by the cytochrome bc 425:Purple bacteria use 308:Nitrosococcus oceani 156:. The families are: 2673:1996PNAS...93.9651B 2603:. November 13, 2018 2555:2000ApEnM..66..820T 2496:1992ArMic.157..343W 2427:Imhoff JF (2005). " 2269:2005ApEnM..71.8049M 2184:2005EnvMi...7.1260H 2134:1976ArMic.108..265S 1986:1978ApEnM..35...38S 1878:1994ApEnM..60.4517E 1776:1998PNAS...95.5935H 1517:1995PhoRe..46..347F 1390:BMC Systems Biology 1277:1972ArMic..86...49H 1226:1932ArMic...3....1V 1183:1985SyApM...6...25W 895:and small cells of 627:proton motive force 547:proton motive force 427:bacteriochlorophyll 421:Photosynthetic unit 406:aerobic respiration 295:Gammaproteobacteria 164:(17 purple genera) 162:Alphaproteobacteria 150:Alphaproteobacteria 123:Gammaproteobacteria 113:Alphaproteobacteria 65:bacteriochlorophyll 2504:10.1007/BF00248679 2142:10.1007/BF00454851 1650:10.1007/BF00871637 1605:10.1038/msb4100191 1560:Procedia Chemistry 1525:10.1007/BF00020450 1285:10.1007/BF00412399 1234:10.1007/BF00454965 948:symbiotic bacteria 711:Ectothiorhodospira 666:that are strongly 485:electron transport 476: 394:photoheterotrophic 382:metabolic pathways 368:). So if grown on 261:(3 purple genera) 259:Betaproteobacteria 154:Betaproteobacteria 119:Betaproteobacteria 39: 36:Winogradsky column 2667:(18): 9651–9656. 2327:978-0-7923-3681-5 2263:(12): 8049–8060. 2237:978-1-4020-6862-1 2085:978-0-306-47954-0 2052:978-3-319-46259-2 1936:978-0-306-47954-0 1872:(12): 4517–4526. 1770:(11): 5935–5941. 1736:978-0-632-04321-7 1489:978-3-540-32524-6 1155:978-1-4020-8815-5 1113:978-1-4020-8814-8 775:Ecological niches 668:photoheterotrophs 515:, then passed to 287:(2 purple genera) 252:(3 purple genera) 219:Hyphomicrobiaceae 175:Rhodospirillaceae 16:(Redirected from 2733: 2705: 2704: 2694: 2684: 2652: 2646: 2645: 2643: 2619: 2613: 2612: 2610: 2608: 2591: 2585: 2584: 2574: 2530: 2524: 2523: 2475: 2469: 2468: 2462: 2454: 2424: 2418: 2417: 2407: 2379: 2373: 2372: 2362: 2338: 2332: 2331: 2305: 2299: 2298: 2288: 2248: 2242: 2241: 2215: 2204: 2203: 2178:(8): 1260–1268. 2166: 2106: 2105: 2099: 2090: 2089: 2063: 2057: 2056: 2030: 2024: 2023: 2013: 1965: 1959: 1958: 1947: 1941: 1940: 1914: 1908: 1907: 1897: 1857: 1851: 1850: 1814: 1808: 1807: 1797: 1787: 1755: 1749: 1748: 1719: 1713: 1712: 1676: 1670: 1669: 1644:(1–3): 151–164. 1633: 1627: 1626: 1616: 1584: 1578: 1577: 1575: 1551: 1545: 1544: 1511:(1–2): 347–352. 1500: 1494: 1493: 1480:10.1007/7171_025 1467: 1461: 1460: 1432: 1426: 1425: 1415: 1405: 1381: 1375: 1374: 1338: 1332: 1331: 1311: 1305: 1304: 1260: 1254: 1253: 1209: 1203: 1202: 1166: 1160: 1159: 1133: 1118: 1117: 1091: 1085: 1084: 1074: 1046: 1040: 1039: 1011: 1005: 1004: 976: 929: 866:are halophilic. 819: 818: 814: 809: 808: 804: 762: 743:hydrogen sulfide 390:chemoautotrophic 363: 362: 361: 351: 350: 349: 341: 340: 274:(1 purple genus) 250:Rhodobacteraceae 239:(1 purple genus) 207:Nitrobacteraceae 201:Hyphomicrobiales 187:Acetobacteraceae 169:Rhodospirillales 142:Escherichia coli 21: 2741: 2740: 2736: 2735: 2734: 2732: 2731: 2730: 2711: 2710: 2709: 2708: 2654: 2653: 2649: 2621: 2620: 2616: 2606: 2604: 2593: 2592: 2588: 2532: 2531: 2527: 2481: 2477: 2476: 2472: 2455: 2451: 2426: 2425: 2421: 2381: 2380: 2376: 2340: 2339: 2335: 2328: 2307: 2306: 2302: 2250: 2249: 2245: 2238: 2217: 2216: 2207: 2168: 2167: 2163: 2103: 2102: 2093: 2086: 2065: 2064: 2060: 2053: 2032: 2031: 2027: 1967: 1966: 1962: 1949: 1948: 1944: 1937: 1916: 1915: 1911: 1859: 1858: 1854: 1816: 1815: 1811: 1757: 1756: 1752: 1737: 1721: 1720: 1716: 1678: 1677: 1673: 1635: 1634: 1630: 1586: 1585: 1581: 1553: 1552: 1548: 1502: 1501: 1497: 1490: 1469: 1468: 1464: 1434: 1433: 1429: 1383: 1382: 1378: 1340: 1339: 1335: 1313: 1312: 1308: 1262: 1261: 1257: 1211: 1210: 1206: 1168: 1167: 1163: 1156: 1135: 1134: 1121: 1114: 1093: 1092: 1088: 1048: 1047: 1043: 1013: 1012: 1008: 987:(11): 488–496. 978: 977: 973: 968: 956: 940: 923: 913: 905:meromictic lake 872: 830: 816: 812: 811: 806: 802: 801: 782: 777: 769:denitrification 765:Rba Sphaeroides 761: 757: 753: 749: 734: 660:photoautotrophs 644: 639: 563: 544: 536: 532: 527: 520: 514: 510: 497:reaction centre 481: 459:reaction centre 455:reaction centre 423: 418: 386:photoautotrophs 378: 360: 357: 356: 355: 353: 348: 345: 344: 343: 339: 336: 335: 334: 332: 246:Rhodobacterales 100: 86:, in part) and 42:Purple bacteria 28: 23: 22: 15: 12: 11: 5: 2739: 2737: 2729: 2728: 2723: 2721:Pseudomonadota 2713: 2712: 2707: 2706: 2647: 2614: 2586: 2549:(2): 820–824. 2525: 2490:(4): 343–348. 2479: 2470: 2449: 2419: 2398:(4): 325–336. 2374: 2333: 2326: 2300: 2243: 2236: 2205: 2161: 2128:(3): 265–269. 2091: 2084: 2058: 2051: 2025: 1960: 1942: 1935: 1909: 1852: 1809: 1750: 1735: 1723:Blankenship RE 1714: 1687:(3): 227–324. 1671: 1628: 1579: 1546: 1495: 1488: 1462: 1443:(3): 243–248. 1427: 1376: 1333: 1322:(5): 534–541. 1318:(in Russian). 1316:Mikrobiologiia 1306: 1255: 1204: 1161: 1154: 1119: 1112: 1086: 1065:(3): 321–325. 1053:Proteobacteria 1041: 1006: 970: 969: 967: 964: 963: 962: 955: 952: 939: 936: 912: 909: 885:organic carbon 871: 868: 829: 826: 796:(found in the 781: 778: 776: 773: 759: 755: 751: 733: 730: 726:North American 698:photosynthesis 681:microbial mats 643: 640: 638: 635: 629:and is called 623:endergonically 562: 559: 542: 534: 530: 525: 518: 512: 508: 495:surrounding a 480: 477: 472:Rhodospirillum 422: 419: 417: 416:Photosynthesis 414: 377: 374: 358: 346: 337: 291: 290: 289: 288: 279:Comamonadaceae 275: 266:Rhodocyclaceae 255: 254: 253: 242: 241: 240: 227: 224:Rhodomicrobium 215: 197: 196: 195: 183: 128:photosynthetic 104:Pseudomonadota 99: 96: 61:photosynthesis 53:proteobacteria 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2738: 2727: 2724: 2722: 2719: 2718: 2716: 2702: 2698: 2693: 2688: 2683: 2678: 2674: 2670: 2666: 2662: 2658: 2651: 2648: 2642: 2637: 2633: 2629: 2625: 2618: 2615: 2602: 2601: 2600:Science Daily 2596: 2590: 2587: 2582: 2578: 2573: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2538: 2529: 2526: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2485: 2474: 2471: 2466: 2460: 2452: 2450:0-387-24145-0 2446: 2442: 2438: 2434: 2430: 2423: 2420: 2415: 2411: 2406: 2401: 2397: 2393: 2389: 2387: 2378: 2375: 2370: 2366: 2361: 2356: 2353:(2): 87–101. 2352: 2348: 2344: 2337: 2334: 2329: 2323: 2319: 2315: 2311: 2304: 2301: 2296: 2292: 2287: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2247: 2244: 2239: 2233: 2229: 2225: 2221: 2214: 2212: 2210: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2165: 2162: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2114:denitrificans 2111: 2108: 2107: 2098: 2097: 2092: 2087: 2081: 2077: 2073: 2069: 2062: 2059: 2054: 2048: 2044: 2040: 2036: 2029: 2026: 2021: 2017: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1964: 1961: 1956: 1952: 1946: 1943: 1938: 1932: 1928: 1924: 1920: 1913: 1910: 1905: 1901: 1896: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1853: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1813: 1810: 1805: 1801: 1796: 1791: 1786: 1781: 1777: 1773: 1769: 1765: 1761: 1754: 1751: 1746: 1742: 1738: 1732: 1728: 1724: 1718: 1715: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1629: 1624: 1620: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1580: 1574: 1569: 1565: 1561: 1557: 1550: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1499: 1496: 1491: 1485: 1481: 1477: 1473: 1466: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1428: 1423: 1419: 1414: 1409: 1404: 1399: 1395: 1391: 1387: 1380: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1321: 1317: 1310: 1307: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1208: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1162: 1157: 1151: 1147: 1143: 1139: 1132: 1130: 1128: 1126: 1124: 1120: 1115: 1109: 1105: 1101: 1097: 1090: 1087: 1082: 1078: 1073: 1068: 1064: 1060: 1056: 1054: 1045: 1042: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1007: 1002: 998: 994: 990: 986: 982: 975: 972: 965: 961: 958: 957: 953: 951: 949: 945: 937: 935: 933: 927: 922: 917: 910: 908: 906: 903:of an alpine 902: 898: 897:Chromatiaceae 894: 890: 889:Chromatiaceae 886: 881: 877: 869: 867: 865: 864:Chromatiaceae 861: 857: 856:Chromatiaceae 853: 852: 847: 843: 839: 835: 827: 825: 823: 799: 794: 790: 789: 788:Chromatiaceae 779: 774: 772: 770: 766: 746: 744: 739: 731: 729: 727: 723: 719: 718: 713: 712: 708:of the genus 707: 703: 699: 694: 692: 688: 684: 682: 677: 673: 669: 665: 661: 658:are strongly 657: 653: 649: 641: 636: 634: 632: 628: 624: 619: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 560: 558: 556: 552: 548: 540: 528: 521: 517:cytochrome bc 506: 502: 498: 494: 490: 486: 478: 474: 473: 467: 463: 460: 456: 452: 448: 444: 440: 436: 432: 428: 420: 415: 413: 411: 407: 403: 400:, capable of 399: 395: 391: 387: 383: 375: 373: 371: 367: 330: 326: 323:and oxidized 322: 318: 312: 310: 309: 304: 300: 299:Chromatiaceae 296: 286: 285: 280: 276: 273: 272: 267: 263: 262: 260: 256: 251: 247: 243: 238: 237: 232: 228: 226: 225: 220: 216: 214: 213: 208: 204: 203: 202: 198: 194: 193: 188: 184: 182: 181: 176: 172: 171: 170: 166: 165: 163: 159: 158: 157: 155: 151: 146: 144: 143: 138: 137: 132: 129: 125: 124: 120: 115: 114: 109: 105: 97: 95: 93: 89: 85: 81: 77: 73: 69: 66: 62: 58: 54: 51: 50:Gram-negative 47: 43: 37: 32: 19: 2664: 2660: 2650: 2631: 2627: 2617: 2607:November 14, 2605:. Retrieved 2598: 2589: 2546: 2542: 2536: 2528: 2487: 2483: 2473: 2432: 2429:Rhodoblastus 2428: 2422: 2395: 2391: 2385: 2377: 2350: 2346: 2336: 2309: 2303: 2260: 2256: 2246: 2219: 2175: 2171: 2164: 2125: 2121: 2117: 2113: 2109: 2101: 2100: 2096: 2095: 2067: 2061: 2034: 2028: 1980:(1): 38–44. 1977: 1973: 1963: 1954: 1945: 1918: 1912: 1869: 1865: 1855: 1825:(1): 31–42. 1822: 1818: 1812: 1767: 1763: 1753: 1726: 1717: 1684: 1680: 1674: 1641: 1637: 1631: 1596: 1592: 1582: 1563: 1559: 1549: 1508: 1504: 1498: 1471: 1465: 1440: 1437:ChemPhysChem 1436: 1430: 1393: 1389: 1379: 1346: 1343:Microbiology 1342: 1336: 1319: 1315: 1309: 1271:(1): 49–56. 1268: 1264: 1258: 1220:(1): 1–112. 1217: 1213: 1207: 1177:(1): 25–33. 1174: 1170: 1164: 1137: 1095: 1089: 1062: 1058: 1052: 1044: 1022:(1): 25–68. 1019: 1015: 1009: 984: 980: 974: 944:mitochondria 941: 918: 914: 896: 892: 873: 849: 841: 831: 786: 783: 764: 754:+ 8 H → 2 NH 747: 735: 722:thermophilic 715: 709: 695: 685: 674:with enough 645: 642:Distribution 620: 615:ferrous iron 594: 591:ferrous iron 564: 551:ATP synthase 524:cytochrome c 482: 470: 424: 410:fermentation 379: 313: 306: 292: 282: 269: 234: 231:Rhodobiaceae 222: 210: 190: 178: 147: 140: 134: 117: 111: 101: 84:Chromatiales 71: 67: 57:phototrophic 45: 41: 40: 1566:: 414–421. 1349:(1): 1–22. 932:biorefinery 924: [ 860:fresh water 846:New Zealand 706:acidophiles 611:thiosulfate 583:thiosulfate 573:(PSB), use 553:to produce 501:chlorophyll 491:reactions. 431:carotenoids 271:Rhodocyclus 76:carotenoids 2715:Categories 2386:Chlorobium 2112:forma sp. 1396:(1): 150. 966:References 919:In a 2018 901:chemocline 838:ecosystems 702:halophiles 672:ecosystems 567:anoxygenic 398:mixotrophs 376:Metabolism 284:Rhodoferax 108:Carl Woese 2512:1432-072X 2459:cite book 2414:0378-1097 2369:0168-6496 2002:0099-2240 1839:0959-3993 1363:1608-3237 1242:1432-072X 1199:0723-2020 1081:1466-5026 938:Evolution 880:symbiosis 798:Black Sea 595:Thiocapsa 539:periplasm 479:Mechanism 402:anaerobic 329:chemostat 248:, family 236:Rhodobium 136:Rhizobium 131:phenotype 55:that are 2581:10653757 2520:25411079 2295:16332785 2200:16011763 2158:20375188 1955:ProQuest 1847:84224465 1745:49273347 1725:(2002). 1709:46208080 1701:17038210 1623:18197174 1541:23254767 1533:24301602 1457:12503169 1422:21943387 1371:14240332 1328:25509391 1250:19597530 1036:13416343 1001:16997562 954:See also 603:hydrogen 597:can use 587:hydrogen 557:energy. 549:used by 505:quinones 98:Taxonomy 2701:8790385 2669:Bibcode 2551:Bibcode 2492:Bibcode 2286:1317439 2265:Bibcode 2180:Bibcode 2150:1085137 2130:Bibcode 1982:Bibcode 1904:7811087 1874:Bibcode 1804:9600895 1772:Bibcode 1666:2409162 1658:7747929 1614:2238716 1599:: 156. 1513:Bibcode 1413:3203349 1301:7410927 1293:4628180 1273:Bibcode 1222:Bibcode 1179:Bibcode 911:History 822:biomass 815:⁄ 805:⁄ 763:), and 691:sulfide 676:sulfate 637:Ecology 607:sulfide 599:nitrite 575:sulfide 447:tubules 443:vesicle 370:sulfide 325:sulfide 321:sulfide 317:sulfide 281:, e.g. 277:Family 268:, e.g. 264:Family 233:, e.g. 229:Family 221:, e.g. 217:Family 209:, e.g. 205:Family 189:, e.g. 185:Family 177:, e.g. 173:Family 2699:  2689:  2579:  2569:  2518:  2510:  2447:  2412:  2367:  2324:  2293:  2283:  2234:  2198:  2156:  2148:  2082:  2049:  2020:623470 2018:  2011:242774 2008:  2000:  1933:  1902:  1895:202013 1892:  1845:  1837:  1802:  1792:  1743:  1733:  1707:  1699:  1664:  1656:  1621:  1611:  1539:  1531:  1486:  1455:  1420:  1410:  1369:  1361:  1326:  1299:  1291:  1248:  1240:  1197:  1152:  1110:  1079:  1034:  999:  579:sulfur 445:sacs, 257:Class 244:Order 199:Order 167:Order 160:Class 2692:38483 2572:91902 2516:S2CID 2154:S2CID 1843:S2CID 1795:34498 1705:S2CID 1662:S2CID 1537:S2CID 1367:S2CID 1297:S2CID 1246:S2CID 928:] 874:Like 511:and Q 489:redox 352:, or 2697:PMID 2609:2018 2577:PMID 2508:ISSN 2465:link 2445:ISBN 2410:ISSN 2365:ISSN 2322:ISBN 2291:PMID 2232:ISBN 2196:PMID 2146:PMID 2080:ISBN 2047:ISBN 2016:PMID 1998:ISSN 1931:ISBN 1900:PMID 1835:ISSN 1800:PMID 1741:OCLC 1731:ISBN 1697:PMID 1654:PMID 1619:PMID 1529:PMID 1484:ISBN 1453:PMID 1418:PMID 1359:ISSN 1324:PMID 1289:PMID 1238:ISSN 1195:ISSN 1150:ISBN 1108:ISBN 1077:ISSN 1032:PMID 997:PMID 720:, a 704:and 650:and 429:and 404:and 392:and 301:and 152:and 48:are 2687:PMC 2677:doi 2636:doi 2567:PMC 2559:doi 2500:doi 2488:157 2437:doi 2400:doi 2388:sp" 2355:doi 2314:doi 2281:PMC 2273:doi 2224:doi 2188:doi 2138:doi 2126:108 2120:". 2072:doi 2039:doi 2006:PMC 1990:doi 1923:doi 1890:PMC 1882:doi 1827:doi 1790:PMC 1780:doi 1689:doi 1646:doi 1609:PMC 1601:doi 1568:doi 1521:doi 1476:doi 1445:doi 1408:PMC 1398:doi 1351:doi 1281:doi 1230:doi 1187:doi 1142:doi 1100:doi 1067:doi 1024:doi 989:doi 758:+ H 613:or 585:or 555:ATP 408:or 70:or 44:or 2717:: 2695:. 2685:. 2675:. 2665:93 2663:. 2659:. 2634:. 2630:. 2626:. 2597:. 2575:. 2565:. 2557:. 2547:66 2545:. 2541:. 2514:. 2506:. 2498:. 2486:. 2461:}} 2457:{{ 2408:. 2396:74 2394:. 2390:. 2363:. 2349:. 2345:. 2320:. 2289:. 2279:. 2271:. 2261:71 2259:. 2255:. 2230:. 2208:^ 2194:. 2186:. 2174:. 2160:. 2152:. 2144:. 2136:. 2124:. 2078:. 2045:. 2014:. 2004:. 1996:. 1988:. 1978:35 1976:. 1972:. 1953:. 1929:. 1898:. 1888:. 1880:. 1870:60 1868:. 1864:. 1841:. 1833:. 1823:23 1821:. 1798:. 1788:. 1778:. 1768:95 1766:. 1762:. 1739:. 1703:. 1695:. 1685:39 1683:. 1660:. 1652:. 1642:66 1640:. 1617:. 1607:. 1595:. 1591:. 1564:14 1562:. 1558:. 1535:. 1527:. 1519:. 1509:46 1507:. 1482:. 1451:. 1439:. 1416:. 1406:. 1392:. 1388:. 1365:. 1357:. 1347:84 1345:. 1320:82 1295:. 1287:. 1279:. 1269:86 1267:. 1244:. 1236:. 1228:. 1216:. 1193:. 1185:. 1173:. 1148:. 1122:^ 1106:. 1075:. 1063:38 1061:. 1057:. 1030:. 1020:49 1018:. 995:. 985:14 983:. 946:, 934:. 926:de 907:. 817:16 807:16 771:. 633:. 581:, 577:, 522:, 354:SO 311:. 145:. 121:, 116:, 2703:. 2679:: 2671:: 2644:. 2638:: 2632:6 2611:. 2583:. 2561:: 2553:: 2522:. 2502:: 2494:: 2480:2 2467:) 2453:. 2439:: 2416:. 2402:: 2371:. 2357:: 2351:5 2330:. 2316:: 2297:. 2275:: 2267:: 2240:. 2226:: 2202:. 2190:: 2182:: 2176:7 2140:: 2132:: 2094:' 2088:. 2074:: 2055:. 2041:: 2022:. 1992:: 1984:: 1957:. 1939:. 1925:: 1906:. 1884:: 1876:: 1849:. 1829:: 1806:. 1782:: 1774:: 1747:. 1711:. 1691:: 1668:. 1648:: 1625:. 1603:: 1597:4 1576:. 1570:: 1543:. 1523:: 1515:: 1492:. 1478:: 1459:. 1447:: 1441:3 1424:. 1400:: 1394:5 1373:. 1353:: 1330:. 1303:. 1283:: 1275:: 1252:. 1232:: 1224:: 1218:3 1201:. 1189:: 1181:: 1175:6 1158:. 1144:: 1116:. 1102:: 1083:. 1069:: 1051:" 1038:. 1026:: 1003:. 991:: 813:3 810:– 803:1 760:2 756:3 752:2 750:N 543:1 535:2 531:B 526:2 519:1 513:B 509:A 507:Q 359:4 347:6 342:O 338:4 333:S 82:( 72:b 68:a 20:)

Index

Purple nonsulfur bacteria

Winogradsky column
Gram-negative
proteobacteria
phototrophic
photosynthesis
bacteriochlorophyll
carotenoids
purple sulfur bacteria
Chromatiales
purple non-sulfur bacteria
anoxygenic phototrophs
Pseudomonadota
Carl Woese
Alphaproteobacteria
Betaproteobacteria
Gammaproteobacteria
photosynthetic
phenotype
Rhizobium
Escherichia coli
Alphaproteobacteria
Betaproteobacteria
Alphaproteobacteria
Rhodospirillales
Rhodospirillaceae
Rhodospirillum rubrum
Acetobacteraceae
Rhodopila globiformis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.