Knowledge (XXG)

Pressurized heavy-water reactor

Source đź“ť

1956: 1946: 1926: 438: 561:, a radioactive isotope of hydrogen, is also produced as a fission product in minute quantities in other reactors, tritium can more easily escape to the environment if it is also present in the cooling water, which is the case in those PHWRs which use heavy water both as moderator and as coolant. Some CANDU reactors separate out the tritium from their heavy water inventory at regular intervals and sell it at a profit, however. 228: 36: 1936: 335:
or above. No amount of U can be made "critical" since it will tend to parasitically absorb more neutrons than it releases by the fission process. U, on the other hand, can support a self-sustained chain reaction, but due to the low natural abundance of U, natural uranium cannot achieve criticality by
532:
Pressurised heavy-water reactors do have some drawbacks. Heavy water generally costs hundreds of dollars per kilogram, though this is a trade-off against reduced fuel costs. The reduced energy content of natural uranium as compared to enriched uranium necessitates more frequent replacement of fuel;
359:
to physically separate the neutron energy moderation process from the uranium fuel itself, as U has a high probability of absorbing neutrons with intermediate kinetic energy levels, a reaction known as "resonance" absorption. This is a fundamental reason for designing reactors with separate solid
370:
atoms in the water molecules are very close in mass to a single neutron, and so their collisions result in a very efficient transfer of momentum, similar conceptually to the collision of two billiard balls. However, as well as being a good moderator, ordinary water is also quite effective at
347:, is to slow down the emitted neutrons (without absorbing them) to the point where enough of them may cause further nuclear fission in the small amount of U which is available. (U which is the bulk of natural uranium is also fissionable with fast neutrons.) This requires the use of a 480:), which means that it can be operated without expensive uranium enrichment facilities. The mechanical arrangement of the PHWR, which places most of the moderator at lower temperatures, is particularly efficient because the resulting thermal neutrons have lower energies ( 499:
the lower the neutron temperature is, and thus lower temperatures in the moderator make successful interaction between neutrons and fissile material more likely. These features mean that a PHWR can use natural uranium and other fuels, and does so more efficiently than
371:
absorbing neutrons. And so using ordinary water as a moderator will easily absorb so many neutrons that too few are left to sustain a chain reaction with the small isolated U nuclei in the fuel, thus precluding criticality in natural uranium. Because of this, a
599:
nuclear proliferation, this opinion has changed drastically in light of the ability of several countries to build atomic bombs out of plutonium, which can easily be produced in heavy water reactors. Heavy-water reactors may thus pose a
664:
wrongfully dismissed graphite as a suitable moderator due to overlooking impurities and thus made unsuccessful attempts using heavy water (which they correctly identified as an excellent moderator). The
200:. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors. 304:
to stimulate another nuclear fission event (in another fissionable nucleus). With careful design of the reactor's geometry, and careful control of the substances present so as to influence the
425:, or deuterium-oxide. Although it reacts dynamically with the neutrons in a fashion similar to light water (albeit with less energy transfer on average, given that heavy hydrogen, or 1959: 476:
The use of heavy water as the moderator is the key to the PHWR (pressurized heavy water reactor) system, enabling the use of natural uranium as the fuel (in the form of ceramic UO
1090: 484:
after successive passes through a moderator roughly equals the temperature of the moderator) than in traditional designs, where the moderator normally is much hotter. The
520:
and there is ongoing research into the ability of CANDU type reactors to operate exclusively on such fuels in a commercial setting. (More on that in the article on the
417:
absorb neutrons as readily as water. In this case potentially all of the neutrons being released can be moderated and used in reactions with the U, in which case there
1754: 249: 53: 172:. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a 533:
this is normally accomplished by use of an on-power refuelling system. The increased rate of fuel movement through the reactor also results in higher volumes of
656:. Although this process takes place with natural uranium using other moderators such as ultra-pure graphite or beryllium, heavy water is by far the best. The 394:
One complication of this approach is the need for uranium enrichment facilities, which are generally expensive to build and operate. They also present a
1149: 1041: 798: 410:. This is not a trivial exercise by any means, but feasible enough that enrichment facilities present a significant nuclear proliferation risk. 827: 1083: 100: 876: 72: 1980: 1395: 1312: 1388: 860:
An International Spent Nuclear Fuel Storage Facility - Exploring a Russian Site as a Prototype: Proceedings of an International Workshop
79: 1594: 355:, slowing them down to the point that they reach thermal equilibrium with surrounding material. It has been found beneficial to the 1076: 587:
While prior to India's development of nuclear weapons (see below), the ability to use natural uranium (and thus forego the need for
275: 119: 1929: 1904: 1769: 86: 1847: 1681: 1519: 1161: 360:
fuel segments, surrounded by the moderator, rather than any geometry that would give a homogeneous mix of fuel and moderator.
1837: 1686: 1144: 253: 57: 68: 1611: 1444: 1046: 429:, is about twice the mass of hydrogen), it already has the extra neutron that light water would normally tend to absorb. 1691: 1400: 1154: 1949: 1911: 1749: 1576: 1514: 1339: 1243: 1129: 238: 1797: 1476: 711:
nuclei in the heavy water absorb neutrons, a very inefficient reaction. Tritium is essential for the production of
1449: 738:, its first nuclear weapon test, by extraction from the spent fuel of a heavy-water research reactor known as the 541:
than enriched uranium fuel, however, it generates less heat, allowing more compact storage. While deuterium has a
257: 242: 46: 1774: 1383: 1166: 778: 173: 1939: 1864: 1764: 1676: 773: 735: 1643: 93: 1894: 1869: 1483: 1260: 674: 538: 209: 157: 892:
Lestani, H.A.; González, H.J.; Florido, P.C. (2014). "Negative power coefficient on PHWRS with CARA fuel".
379:, generally between 3% and 5% U by weight (the by-product from this process enrichment process is known as 1759: 1051: 712: 666: 309: 289: 1789: 1744: 1206: 1134: 605: 485: 452: 395: 537:
than in LWRs employing enriched uranium. Since unenriched uranium fuel accumulates a lower density of
1739: 1724: 978: 947: 835: 716: 697: 364: 1899: 1874: 1659: 1253: 1121: 609: 513: 505: 501: 481: 460: 399: 372: 692:. As a result, if the fuel of a heavy-water reactor is changed frequently, significant amounts of 1779: 1616: 1543: 1354: 1004: 937: 703:
In addition, the use of heavy water as a moderator results in the production of small amounts of
678: 617: 588: 534: 509: 197: 196:. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or 193: 858: 1111: 996: 872: 657: 625: 546: 464: 383:, and so consisting mainly of U, chemically pure). The degree of enrichment needed to achieve 348: 161: 986: 909: 901: 864: 685: 677:
without the need for heavy water or - at least according to initial design specifications -
572: 437: 380: 376: 169: 1599: 1439: 1378: 1857: 1817: 1344: 1271: 1100: 1022: 613: 554: 356: 305: 301: 293: 213: 189: 165: 141: 1349: 982: 951: 730:
The proliferation risk of heavy-water reactors was demonstrated when India produced the
1832: 1812: 1807: 1802: 1552: 1459: 1428: 1410: 751: 689: 407: 352: 669:
likewise used graphite as a moderator and ultimately developed the graphite moderated
1974: 1288: 757: 739: 693: 653: 649: 403: 340: 313: 1008: 991: 966: 905: 391:
moderator depends on the exact geometry and other design parameters of the reactor.
1563: 1068: 720: 645: 612:
due to the low neutron absorption properties of heavy water, discovered in 1937 by
967:"Tritium supply and use: a key issue for the development of nuclear fusion energy" 723:. This process is currently expected to provide (at least partially) tritium for 1621: 1211: 633: 621: 422: 328: 324: 227: 217: 177: 145: 35: 965:
Pearson, Richard J.; Antoniazzi, Armando B.; Nuttall, William J. (2018-11-01).
661: 637: 1000: 331:. U can only be fissioned by neutrons that are relatively energetic, about 1 1332: 1322: 767: 763: 731: 708: 660:
ultimately used graphite moderated reactors to produce plutonium, while the
456: 426: 149: 1827: 673:
as a reactor capable of producing both large amounts of electric power and
553:
and thus part of the heavy water moderator will inevitably be converted to
504:(LWRs). CANDU type PHWRs are claimed to be able to handle fuels including 421:
enough U in natural uranium to sustain criticality. One such moderator is
1852: 1701: 1696: 1636: 1305: 1233: 1216: 1201: 1176: 641: 592: 576: 517: 343:
using only natural or low enriched uranium, for which there is no "bare"
942: 696:
can be chemically extracted from the irradiated natural uranium fuel by
463:
will increase the likelihood of fission, thus explaining the need for a
375:
will require that the U isotope be concentrated in its uranium fuel, as
1842: 1822: 1221: 1196: 914: 704: 629: 558: 413:
An alternative solution to the problem is to use a moderator that does
320: 180:
is very expensive to isolate from ordinary water (often referred to as
1631: 1626: 1606: 1586: 1571: 1454: 1191: 1171: 1139: 17: 1181: 934:
Department of Physics and Astronomy, University of British Columbia
868: 467:
and the desirability of keeping its temperature as low as feasible.
1668: 1524: 1327: 1317: 565: 521: 436: 402:
used to enrich the U can also be used to produce much more "pure"
1529: 1418: 1228: 1186: 1047:
Nuclear Power Program – Stage1 – Pressurised Heavy Water Reactor
724: 670: 575:
of reactivity, the Argentina designed CARA fuel bundles used in
1072: 932:
Waltham, Chris (June 2002). "An Early History of Heavy Water".
459:
relationship is apparent, it is clear that in most cases lower
1502: 1366: 332: 221: 29: 568:
derived fuel bundles, the reactor design has a slightly
188:), its low absorption of neutrons greatly increases the 1023:"India's Nuclear Weapons Program: Smiling Buddha: 1974" 1063: 579:, are capable of the preferred negative coefficient. 327:
and a much smaller amount (about 0.72% by weight) of
1042:
Economics of Nuclear Power from Heavy Water Reactors
1887: 1788: 1718: 1667: 1658: 1585: 1551: 1542: 1501: 1494: 1474: 1427: 1409: 1365: 1270: 1252: 1120: 406:material (90% or more U), suitable for producing a 60:. Unsourced material may be challenged and removed. 319:Natural uranium consists of a mixture of various 715:, which in turn enable the easier production of 351:, which absorbs virtually all of the neutrons' 1755:Small sealed transportable autonomous (SSTAR) 1084: 652:, and the second one transmuting the Np into 8: 256:. Unsourced material may be challenged and 1935: 1732: 1664: 1548: 1498: 1491: 1267: 1091: 1077: 1069: 990: 941: 913: 276:Learn how and when to remove this message 120:Learn how and when to remove this message 363:Water makes an excellent moderator; the 1052:IAEA - Technical Reports Series No. 407 790: 648:, the first one transmuting the U into 300:one of the neutrons released from each 1682:Liquid-fluoride thorium reactor (LFTR) 192:of the reactor, avoiding the need for 1687:Molten-Salt Reactor Experiment (MSRE) 7: 927: 925: 254:adding citations to reliable sources 58:adding citations to reliable sources 1692:Integral Molten Salt Reactor (IMSR) 636:. The U then rapidly undergoes two 545:neutron capture cross section than 857:National Research Council (2005). 316:" can be achieved and maintained. 25: 69:"Pressurized heavy-water reactor" 1955: 1954: 1945: 1944: 1934: 1925: 1924: 1775:Fast Breeder Test Reactor (FBTR) 620:. Occasionally, when an atom of 226: 168:as fuel, but sometimes also use 34: 992:10.1016/j.fusengdes.2018.04.090 906:10.1016/j.nucengdes.2013.12.056 770:, PHWR types developed in India 754:, the first heavy water reactor 134:pressurized heavy-water reactor 45:needs additional citations for 1765:Energy Multiplier Module (EM2) 894:Nuclear Engineering and Design 760:: The predominant type of PHWR 662:German wartime nuclear project 1: 971:Fusion Engineering and Design 628:, its nucleus will capture a 1565:Uranium Naturel Graphite Gaz 433:Advantages and disadvantages 204:Purpose of using heavy water 1981:Nuclear power reactor types 1912:Aircraft Reactor Experiment 1997: 1750:Liquid-metal-cooled (LMFR) 207: 1920: 1875:Stable Salt Reactor (SSR) 1770:Reduced-moderation (RMWR) 1735: 1577:Advanced gas-cooled (AGR) 1107: 779:Pressurized water reactor 488:for fission is higher in 288:The key to maintaining a 174:pressurized water reactor 170:very low enriched uranium 1940:List of nuclear reactors 1780:Dual fluid reactor (DFR) 1396:Steam-generating (SGHWR) 1064:Official website of AECL 774:List of nuclear reactors 736:Operation Smiling Buddha 595:technology) was seen as 164:. PHWRs frequently use 1930:Nuclear fusion reactors 1895:Organic nuclear reactor 1101:nuclear fission reactor 799:"Pocket Guide Reactors" 713:boosted fission weapons 694:weapons-grade plutonium 675:weapons grade plutonium 339:The trick to achieving 296:is to use, on average, 210:Nuclear reactor physics 198:alternative fuel cycles 826:Marion BrĂĽnglinghaus. 667:Soviet nuclear program 468: 290:nuclear chain reaction 27:Nuclear reactor design 717:thermonuclear weapons 606:nuclear proliferation 583:Nuclear proliferation 486:neutron cross section 440: 396:nuclear proliferation 365:ordinary hydrogen or 302:nuclear fission event 1760:Traveling-wave (TWR) 1244:Supercritical (SCWR) 698:nuclear reprocessing 688:suitable for use in 610:light-water reactors 514:light water reactors 512:from "conventional" 502:light water reactors 308:, a self-sustaining 250:improve this section 54:improve this article 1130:Aqueous homogeneous 983:2018FusED.136.1140P 952:2002physics...6076W 640:— both emitting an 564:While with typical 549:, this value isn't 506:reprocessed uranium 482:neutron temperature 461:neutron temperature 373:light-water reactor 1950:Nuclear technology 679:uranium enrichment 608:versus comparable 589:uranium enrichment 510:spent nuclear fuel 469: 1968: 1967: 1960:Nuclear accidents 1883: 1882: 1714: 1713: 1710: 1709: 1654: 1653: 1538: 1537: 1470: 1469: 878:978-0-309-09688-1 828:"Natural uranium" 806:World-Nuclear.org 658:Manhattan Project 632:, changing it to 626:neutron radiation 465:neutron moderator 349:neutron moderator 286: 285: 278: 162:neutron moderator 130: 129: 122: 104: 16:(Redirected from 1988: 1958: 1957: 1948: 1947: 1938: 1937: 1928: 1927: 1870:Helium gas (GFR) 1733: 1728: 1665: 1549: 1499: 1492: 1487: 1486: 1268: 1264: 1263: 1093: 1086: 1079: 1070: 1034: 1033: 1031: 1029: 1019: 1013: 1012: 994: 962: 956: 955: 945: 929: 920: 919: 917: 889: 883: 882: 854: 848: 847: 845: 843: 834:. Archived from 823: 817: 816: 814: 813: 803: 795: 686:fissile material 573:Void coefficient 539:fission products 524:reactor itself) 498: 496: 495: 450: 448: 447: 381:depleted uranium 377:enriched uranium 281: 274: 270: 267: 261: 230: 222: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 1996: 1995: 1991: 1990: 1989: 1987: 1986: 1985: 1971: 1970: 1969: 1964: 1916: 1879: 1784: 1729: 1722: 1721: 1706: 1650: 1581: 1556: 1534: 1506: 1488: 1481: 1480: 1479: 1466: 1432: 1423: 1405: 1370: 1361: 1275: 1258: 1257: 1256: 1248: 1162:Natural fission 1116: 1115: 1103: 1097: 1060: 1038: 1037: 1027: 1025: 1021: 1020: 1016: 964: 963: 959: 943:physics/0206076 931: 930: 923: 891: 890: 886: 879: 856: 855: 851: 841: 839: 838:on 12 June 2018 832:euronuclear.org 825: 824: 820: 811: 809: 801: 797: 796: 792: 787: 748: 690:nuclear weapons 614:Hans von Halban 585: 555:tritiated water 530: 494: 492: 491: 490: 489: 479: 474: 446: 444: 443: 442: 441: 435: 357:neutron economy 294:nuclear reactor 282: 271: 265: 262: 247: 231: 220: 214:Nuclear fission 206: 190:neutron economy 184:in contrast to 166:natural uranium 155: 142:nuclear reactor 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 1994: 1992: 1984: 1983: 1973: 1972: 1966: 1965: 1963: 1962: 1952: 1942: 1932: 1921: 1918: 1917: 1915: 1914: 1909: 1908: 1907: 1902: 1891: 1889: 1885: 1884: 1881: 1880: 1878: 1877: 1872: 1867: 1862: 1861: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1794: 1792: 1786: 1785: 1783: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1745:Integral (IFR) 1742: 1736: 1730: 1719: 1716: 1715: 1712: 1711: 1708: 1707: 1705: 1704: 1699: 1694: 1689: 1684: 1679: 1673: 1671: 1662: 1656: 1655: 1652: 1651: 1649: 1648: 1647: 1646: 1641: 1640: 1639: 1634: 1629: 1624: 1609: 1604: 1603: 1602: 1591: 1589: 1583: 1582: 1580: 1579: 1574: 1569: 1560: 1558: 1554: 1546: 1540: 1539: 1536: 1535: 1533: 1532: 1527: 1522: 1517: 1511: 1509: 1504: 1496: 1489: 1475: 1472: 1471: 1468: 1467: 1465: 1464: 1463: 1462: 1457: 1452: 1447: 1436: 1434: 1430: 1425: 1424: 1422: 1421: 1415: 1413: 1407: 1406: 1404: 1403: 1398: 1393: 1392: 1391: 1386: 1375: 1373: 1368: 1363: 1362: 1360: 1359: 1358: 1357: 1352: 1347: 1342: 1337: 1336: 1335: 1330: 1325: 1315: 1310: 1309: 1308: 1303: 1300: 1297: 1294: 1280: 1278: 1273: 1265: 1250: 1249: 1247: 1246: 1241: 1240: 1239: 1236: 1231: 1226: 1225: 1224: 1219: 1209: 1204: 1199: 1194: 1189: 1184: 1179: 1174: 1164: 1159: 1158: 1157: 1152: 1147: 1142: 1132: 1126: 1124: 1118: 1117: 1109: 1108: 1105: 1104: 1098: 1096: 1095: 1088: 1081: 1073: 1067: 1066: 1059: 1058:External links 1056: 1055: 1054: 1049: 1044: 1036: 1035: 1014: 957: 921: 884: 877: 869:10.17226/11320 849: 818: 789: 788: 786: 783: 782: 781: 776: 771: 761: 755: 752:Chicago Pile-3 747: 744: 624:is exposed to 584: 581: 529: 526: 493: 477: 473: 470: 445: 434: 431: 408:nuclear weapon 353:kinetic energy 310:chain reaction 284: 283: 234: 232: 225: 205: 202: 153: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1993: 1982: 1979: 1978: 1976: 1961: 1953: 1951: 1943: 1941: 1933: 1931: 1923: 1922: 1919: 1913: 1910: 1906: 1903: 1901: 1898: 1897: 1896: 1893: 1892: 1890: 1886: 1876: 1873: 1871: 1868: 1866: 1863: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1800: 1799: 1796: 1795: 1793: 1791: 1790:Generation IV 1787: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1740:Breeder (FBR) 1738: 1737: 1734: 1731: 1726: 1717: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1674: 1672: 1670: 1666: 1663: 1661: 1657: 1645: 1642: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1619: 1618: 1615: 1614: 1613: 1610: 1608: 1605: 1601: 1598: 1597: 1596: 1593: 1592: 1590: 1588: 1584: 1578: 1575: 1573: 1570: 1568: 1566: 1562: 1561: 1559: 1557: 1550: 1547: 1545: 1541: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1512: 1510: 1508: 1500: 1497: 1493: 1490: 1485: 1478: 1473: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1442: 1441: 1438: 1437: 1435: 1433: 1426: 1420: 1417: 1416: 1414: 1412: 1408: 1402: 1399: 1397: 1394: 1390: 1387: 1385: 1382: 1381: 1380: 1377: 1376: 1374: 1372: 1364: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1334: 1331: 1329: 1326: 1324: 1321: 1320: 1319: 1316: 1314: 1311: 1307: 1304: 1301: 1298: 1295: 1292: 1291: 1290: 1287: 1286: 1285: 1282: 1281: 1279: 1277: 1269: 1266: 1262: 1255: 1251: 1245: 1242: 1237: 1235: 1232: 1230: 1227: 1223: 1220: 1218: 1215: 1214: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1169: 1168: 1165: 1163: 1160: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1137: 1136: 1133: 1131: 1128: 1127: 1125: 1123: 1119: 1114: 1113: 1106: 1102: 1094: 1089: 1087: 1082: 1080: 1075: 1074: 1071: 1065: 1062: 1061: 1057: 1053: 1050: 1048: 1045: 1043: 1040: 1039: 1024: 1018: 1015: 1010: 1006: 1002: 998: 993: 988: 984: 980: 977:: 1140–1148. 976: 972: 968: 961: 958: 953: 949: 944: 939: 935: 928: 926: 922: 916: 911: 907: 903: 899: 895: 888: 885: 880: 874: 870: 866: 862: 861: 853: 850: 837: 833: 829: 822: 819: 807: 800: 794: 791: 784: 780: 777: 775: 772: 769: 765: 762: 759: 758:CANDU reactor 756: 753: 750: 749: 745: 743: 741: 740:CIRUS reactor 737: 733: 728: 726: 722: 721:neutron bombs 718: 714: 710: 706: 701: 699: 695: 691: 687: 682: 680: 676: 672: 668: 663: 659: 655: 651: 647: 643: 639: 635: 631: 627: 623: 619: 615: 611: 607: 603: 598: 594: 590: 582: 580: 578: 574: 571: 567: 562: 560: 556: 552: 548: 544: 540: 536: 528:Disadvantages 527: 525: 523: 519: 515: 511: 507: 503: 487: 483: 471: 466: 462: 458: 454: 453:cross section 439: 432: 430: 428: 424: 420: 416: 411: 409: 405: 404:weapons-grade 401: 398:concern; the 397: 392: 390: 386: 382: 378: 374: 369: 368: 361: 358: 354: 350: 346: 345:critical mass 342: 337: 334: 330: 326: 322: 317: 315: 311: 307: 303: 299: 295: 291: 280: 277: 269: 259: 255: 251: 245: 244: 240: 235:This section 233: 229: 224: 223: 219: 215: 211: 203: 201: 199: 195: 194:enriched fuel 191: 187: 183: 179: 176:(PWR). While 175: 171: 167: 163: 159: 151: 147: 143: 139: 135: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 1798:Sodium (SFR) 1725:fast-neutron 1564: 1283: 1110: 1026:. Retrieved 1017: 974: 970: 960: 933: 897: 893: 887: 859: 852: 842:11 September 840:. Retrieved 836:the original 831: 821: 810:. Retrieved 805: 793: 729: 719:, including 702: 683: 646:antineutrino 601: 596: 586: 569: 563: 550: 542: 531: 475: 418: 414: 412: 400:same systems 393: 388: 384: 366: 362: 344: 338: 323:, primarily 318: 297: 287: 272: 263: 248:Please help 236: 185: 181: 137: 133: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1833:SuperphĂ©nix 1660:Molten-salt 1612:VHTR (HTGR) 1389:HW BLWR 250 1355:R4 Marviken 1284:Pressurized 1254:Heavy water 1238:many others 1167:Pressurized 1122:Light water 915:11336/32479 900:: 185–197. 618:Otto Frisch 591:which is a 516:as well as 423:heavy water 389:light-water 385:criticality 341:criticality 314:criticality 218:Heavy water 186:heavy water 182:light water 178:heavy water 146:heavy water 1617:PBR (PBMR) 812:2021-12-24 785:References 535:spent fuel 472:Advantages 455:- while a 306:reactivity 208:See also: 156:O) as its 144:that uses 80:newspapers 1669:Fluorides 1333:IPHWR-700 1328:IPHWR-540 1323:IPHWR-220 1112:Moderator 1099:Types of 1001:0920-3796 768:IPHWR-220 764:IPHWR-700 732:plutonium 709:deuterium 707:when the 597:hindering 457:nonlinear 427:deuterium 292:within a 237:does not 150:deuterium 1975:Category 1702:TMSR-LF1 1697:TMSR-500 1677:Fuji MSR 1637:THTR-300 1477:Graphite 1340:PHWR KWU 1306:ACR-1000 1234:IPWR-900 1217:ACPR1000 1212:HPR-1000 1202:CPR-1000 1177:APR-1400 1009:53560490 746:See also 684:Pu is a 642:electron 638:β decays 604:risk of 593:dual use 577:Atucha I 570:positive 557:. While 518:MOX fuel 508:or even 451:fission 336:itself. 321:isotopes 266:May 2015 110:May 2015 1843:FBR-600 1823:CFR-600 1818:BN-1200 1484:coolant 1411:Organic 1296:CANDU 9 1293:CANDU 6 1261:coolant 1222:ACP1000 1197:CAP1400 1135:Boiling 1028:23 June 979:Bibcode 948:Bibcode 705:tritium 644:and an 630:neutron 602:greater 559:tritium 547:protium 387:with a 367:protium 298:exactly 258:removed 243:sources 158:coolant 152:oxide D 140:) is a 94:scholar 1888:Others 1828:PhĂ©nix 1813:BN-800 1808:BN-600 1803:BN-350 1632:HTR-PM 1627:HTR-10 1607:UHTREX 1572:Magnox 1567:(UNGG) 1460:Lucens 1455:KS 150 1192:ATMEA1 1172:AP1000 1155:Kerena 1007:  999:  936:: 28. 875:  808:. 2015 216:, and 96:  89:  82:  75:  67:  1905:Piqua 1900:Arbus 1858:PRISM 1600:MHR-T 1595:GTMHR 1525:EGP-6 1520:AMB-X 1495:Water 1440:HWGCR 1379:HWLWR 1318:IPHWR 1289:CANDU 1150:ESBWR 1005:S2CID 938:arXiv 802:(PDF) 566:CANDU 543:lower 522:CANDU 101:JSTOR 87:books 1865:Lead 1848:CEFR 1838:PFBR 1720:None 1530:RBMK 1515:AM-1 1445:EL-4 1419:WR-1 1401:AHWR 1345:MZFR 1313:CVTR 1302:AFCR 1229:VVER 1187:APWR 1182:APR+ 1145:ABWR 1030:2017 997:ISSN 873:ISBN 844:2015 766:and 734:for 725:ITER 671:RBMK 616:and 551:zero 312:or " 241:any 239:cite 160:and 138:PHWR 73:news 18:PHWR 1853:PFR 1644:PMR 1622:AVR 1544:Gas 1482:by 1450:KKN 1384:ATR 1299:EC6 1259:by 1207:EPR 1140:BWR 987:doi 975:136 910:hdl 902:doi 898:270 865:doi 415:not 333:MeV 252:by 56:by 1977:: 1587:He 1553:CO 1429:CO 1350:R3 1003:. 995:. 985:. 973:. 969:. 946:. 924:^ 908:. 896:. 871:. 863:. 830:. 804:. 742:. 727:. 700:. 681:. 654:Pu 650:Np 419:is 212:, 132:A 1727:) 1723:( 1555:2 1507:O 1505:2 1503:H 1431:2 1371:O 1369:2 1367:H 1276:O 1274:2 1272:D 1092:e 1085:t 1078:v 1032:. 1011:. 989:: 981:: 954:. 950:: 940:: 918:. 912:: 904:: 881:. 867:: 846:. 815:. 634:U 622:U 497:U 478:2 449:U 329:U 325:U 279:) 273:( 268:) 264:( 260:. 246:. 154:2 148:( 136:( 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

PHWR

verification
improve this article
adding citations to reliable sources
"Pressurized heavy-water reactor"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
nuclear reactor
heavy water
deuterium
coolant
neutron moderator
natural uranium
very low enriched uranium
pressurized water reactor
heavy water
neutron economy
enriched fuel
alternative fuel cycles
Nuclear reactor physics
Nuclear fission
Heavy water

cite
sources

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑