Knowledge (XXG)

Paley graph

Source 📝

26: 1506: ≡ 1 (mod 8) that are highly symmetric and self-dual, generalizing a natural embedding of the Paley graph of order 9 as a 3×3 square grid on a torus. However the genus of White's embeddings is higher by approximately a factor of three than Mohar's conjectured bound. 1278: 688: 968: 387: 1483: 1151: 817: 1384: 1394:
is a square, and questions whether such a bound might hold more generally. Specifically, Mohar conjectures that the Paley graphs of square order can be embedded into surfaces with genus
861: 766: 1610: 561: 1772:
Cramer, Kevin; Krebs, Mike; Shabazi, Nicole; Shaheen, Anthony; Voskanian, Edward (2016). "The isoperimetric and Kazhdan constants associated to a Paley graph".
893: 293: 1762:
For obtaining the spectrum from strong regularity, see Theorem 9.1.3, p. 116. For the connection to Gauss sums, see Section 9.8.5 Cyclotomy, pp. 138–140.
2073: 1747: 121: 994:) the same as for random graphs, and large sets of vertices have approximately the same number of edges as they would in random graphs. 1400: 1706: 2083: 1864: 875: 1273:{\displaystyle A=\left\{(a,b)\in \mathbf {F} _{q}\times \mathbf {F} _{q}\ :\ b-a\in (\mathbf {F} _{q}^{\times })^{2}\right\}.} 1654: 1390:
conjectures that the minimum genus of a surface into which a Paley graph can be embedded is near this bound in the case that
990:: the number of times each possible constant-order graph occurs as a subgraph of a Paley graph is (in the limit for large 771: 1054: 1989:
Baker, R. D.; Ebert, G. L.; Hemmeter, J.; Woldar, A. J. (1996). "Maximal cliques in the Paley graph of square order".
1307: 1322:
could be embedded so that all its faces are triangles, we could calculate the genus of the resulting surface via the
1329: 522:: the complement of any Paley graph is isomorphic to it. One isomorphism is via the mapping that takes a vertex 2010:
Broere, I.; Döman, D.; Ridley, J. N. (1988). "The clique numbers and chromatic numbers of certain Paley graphs".
1284: 494:
Thus, in the Paley graph, we form a vertex for each of the integers in the range , and connect each such integer
219: 1306:
The six neighbors of each vertex in the Paley graph of order 13 are connected in a cycle; that is, the graph is
1318:, in which every face is a triangle and every triangle is a face. More generally, if any Paley graph of order 1311: 519: 102: 165:
of quadratic residues, and have interesting properties that make them useful in graph theory more generally.
2078: 81: 2068: 822: 727: 552: 254:(a prime congruent to 1 mod 4) or an even power of an odd non-Pythagorean prime. This choice of 94: 222:
with a property previously known to be held only by random tournaments: in a Paley digraph, every small
46: 1693:. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 18. Berlin: Springer-Verlag. p. 10. 1323: 999: 1895:"Construction of rank two reflexive sheaves with similar properties to the Horrocks–Mumford bundle" 864: 697:
and self-complementary. The strongly regular graphs with parameters of this form (for an arbitrary
64: 2051: 1930: 1295: 683:{\displaystyle srg\left(q,{\tfrac {1}{2}}(q-1),{\tfrac {1}{4}}(q-5),{\tfrac {1}{4}}(q-1)\right).} 173: 1605: 197: 1743: 1702: 1291: 977: 710: 251: 211: 154: 146: 2019: 1998: 1942: 1906: 1873: 1825: 1781: 1735: 1694: 1663: 1619: 1573: 1536: 706: 702: 150: 138: 98: 1956: 1793: 1757: 1716: 1689:
Brouwer, A. E.; Cohen, A. M.; Neumaier, A. (1989). "Conference matrices and Paley graphs".
1675: 1631: 1587: 1952: 1789: 1753: 1712: 1671: 1627: 1583: 1287:
because each pair of distinct vertices is linked by an arc in one and only one direction.
980: 718: 694: 177: 158: 1003: 1528: 1129: 1014: 963:{\displaystyle \displaystyle {\frac {q-{\sqrt {q}}}{4}}\leq i(G)\leq {\frac {q-1}{4}}.} 430: 207: 2002: 2062: 1878: 1859: 1816: 1811: 1645: 1601: 1523: 1033: 193: 169: 162: 39: 382:{\displaystyle E=\left\{\{a,b\}\ :\ a-b\in (\mathbf {F} _{q}^{\times })^{2}\right\}} 2039: 1649: 1018: 1007: 142: 2023: 480:
is just integer arithmetic modulo 13. The numbers with square roots mod 13 are:
2047: 1926: 1557: 1387: 1071: 239: 189: 130: 1785: 1032:
nor its complement contains a complete 4-vertex subgraph. It follows that the
1739: 1698: 1578: 1561: 1053:
Sasukara et al. (1993) use Paley graphs to generalize the construction of the
1807: 1667: 1540: 1730:
Brouwer, Andries E.; Haemers, Willem H. (2012). "9.1.2 The Paley graphs".
709:
of a conference graph, such as a Paley graph, can be used to construct a
180:
from quadratic residues. They were introduced as graphs independently by
1911: 1894: 705:, so the Paley graphs form an infinite family of conference graphs. The 192:
was interested in them for their self-complementarity properties, while
1829: 1623: 223: 218:(independently of Sachs, Erdős, and Rényi) as a way of constructing 25: 1947: 1315: 1290:
The Paley digraph leads to the construction of some antisymmetric
1042:
The Paley graph of order 101 is currently the largest known graph
1860:"On the number of complete subgraphs contained in certain graphs" 1478:{\displaystyle (q^{2}-13q+24)\left({\tfrac {1}{24}}+o(1)\right),} 717:, with zero on the diagaonal, that give a scalar multiple of the 405:, it is included under either ordering of its two elements. For, 1091:, has no square root of −1. Consequently, for each pair ( 713:, and vice versa. These are matrices whose coefficients are 1652:(1971). "A constructive solution to a tournament problem". 1893:
Sasakura, Nobuo; Enta, Yoichi; Kagesawa, Masataka (1993).
1050:
nor its complement contains a complete 6-vertex subgraph.
1024:
The Paley graph of order 17 is the unique largest graph
421:), and  −1 is a square, from which it follows that 1734:. Universitext. New York: Springer. pp. 114–115. 1441: 1334: 827: 776: 732: 646: 616: 586: 1970:
White, A. T. (2001). "Graphs of groups on surfaces".
1403: 1332: 1154: 897: 896: 825: 774: 730: 693:
This in fact follows from the fact that the graph is
564: 296: 1974:. Amsterdam: North-Holland Mathematics Studies 188. 888:of the Paley graph satisfies the following bounds: 867:or by using the theory of strongly regular graphs. 108: 90: 80: 63: 45: 35: 18: 1477: 1378: 1272: 962: 855: 812:{\displaystyle {\tfrac {1}{2}}(-1\pm {\sqrt {q}})} 811: 760: 682: 381: 1858:Evans, R. J.; Pulham, J. R.; Sheehan, J. (1981). 1611:Acta Mathematica Academiae Scientiarum Hungaricae 210:analogs of Paley graphs that yield antisymmetric 145:by connecting pairs of elements that differ by a 1814:; Wilson, R. M. (1989). "Quasi-random graphs". 226:of vertices is dominated by some other vertex. 1502:finds embeddings of the Paley graphs of order 1379:{\displaystyle {\tfrac {1}{24}}(q^{2}-13q+24)} 153:, which yield an infinite family of symmetric 149:. The Paley graphs form an infinite family of 1310:. Therefore, this graph can be embedded as a 1078:= 3 (mod 4). Thus, the finite field of order 490:±4 (square roots ±2 for +4, ±3 for −4). 215: 8: 487:±3 (square roots ±4 for +3, ±6 for −3) 484:±1 (square roots ±1 for +1, ±5 for −1) 320: 308: 1488:where the o(1) term can be any function of 141:constructed from the members of a suitable 1847:. Master's Thesis. University of Tübingen. 976:is prime, the associated Paley graph is a 271:, the element  −1 has a square root. 185: 24: 1946: 1931:"Triangulations and the Hajós conjecture" 1910: 1877: 1577: 1440: 1411: 1402: 1352: 1333: 1331: 1256: 1246: 1241: 1236: 1205: 1200: 1190: 1185: 1153: 938: 907: 898: 895: 826: 824: 799: 775: 773: 731: 729: 645: 615: 585: 563: 368: 358: 353: 348: 295: 250:should either be an arbitrary power of a 258:implies that in the unique finite field 1552: 1550: 1515: 506: ± 3 (mod 13), and 15: 1499: 863:). They can be calculated using the 181: 7: 856:{\displaystyle {\tfrac {1}{2}}(q-1)} 761:{\displaystyle {\tfrac {1}{2}}(q-1)} 724:The eigenvalues of Paley graphs are 721:when multiplied by their transpose. 1935:Electronic Journal of Combinatorics 1845:Engineering Linear Layouts with SAT 1566:Publicationes Mathematicae Debrecen 510: ± 4 (mod 13). 502: ± 1 (mod 13), 455:) is the Paley graph of order  172:. They are closely related to the 1562:"Über selbstkomplementäre Graphen" 1526:(1933). "On orthogonal matrices". 1492:that goes to zero in the limit as 1124:, but not both, is a square. The 14: 1237: 1201: 1186: 1013:The Paley graph of order 13 has 998:The Paley graph of order 9 is a 349: 1865:Journal of Combinatorial Theory 1655:Canadian Mathematical Bulletin 1464: 1458: 1432: 1404: 1373: 1345: 1253: 1232: 1178: 1166: 932: 926: 850: 838: 806: 787: 755: 743: 669: 657: 639: 627: 609: 597: 365: 344: 122:Table of graphs and parameters 1: 2074:Parametric families of graphs 2024:10.1080/16073606.1988.9631945 2003:10.1016/S0378-3758(96)00006-7 1608:(1963). "Asymmetric graphs". 168:Paley graphs are named after 1991:J. Statist. Plann. Inference 1879:10.1016/0095-8956(81)90054-X 1039:(4, 4) = 18. 216:Graham & Spencer (1971) 161:tools to be applied to the 30:The Paley graph of order 13 2100: 1786:10.2140/involve.2016.9.293 1099:) of distinct elements of 768:(with multiplicity 1) and 214:. They were introduced by 200:studied their symmetries. 1899:Proc. Japan Acad., Ser. A 1740:10.1007/978-1-4614-1939-6 1699:10.1007/978-3-642-74341-2 1579:10.5486/PMD.1962.9.3-4.11 120: 23: 2012:Quaestiones Mathematicae 819:(both with multiplicity 186:Erdős & Rényi (1963) 2084:Strongly regular graphs 2052:"Genus of Paley graphs" 1972:Interactions and models 1691:Distance-regular graphs 1283:The Paley digraph is a 1055:Horrocks–Mumford bundle 1006:, and the graph of the 553:strongly regular graphs 1843:Wolz, Jessica (2018). 1668:10.4153/CMB-1971-007-1 1541:10.1002/sapm1933121311 1479: 1380: 1274: 964: 857: 813: 762: 684: 383: 246:= 1 (mod 4). That is, 1480: 1381: 1312:Whitney triangulation 1275: 965: 858: 814: 763: 685: 518:The Paley graphs are 384: 157:. Paley graphs allow 2038:Brouwer, Andries E. 1401: 1330: 1324:Euler characteristic 1152: 1000:locally linear graph 894: 876:isoperimetric number 823: 772: 728: 562: 294: 1912:10.3792/pjaa.69.144 1292:conference matrices 1251: 865:quadratic Gauss sum 555:, with parameters 363: 212:conference matrices 155:conference matrices 1830:10.1007/BF02125347 1624:10.1007/BF01895716 1496:goes to infinity. 1475: 1450: 1376: 1343: 1296:biplane geometries 1270: 1235: 1046:such that neither 1028:such that neither 960: 959: 853: 836: 809: 785: 758: 741: 680: 655: 625: 595: 541:is any nonresidue 520:self-complementary 498:to six neighbors: 379: 347: 174:Paley construction 103:Self-complementary 1812:Graham, Ronald L. 1749:978-1-4614-1938-9 1732:Spectra of graphs 1449: 1342: 1219: 1213: 986:Paley graphs are 954: 918: 912: 835: 804: 784: 740: 711:conference matrix 703:conference graphs 654: 624: 594: 551:Paley graphs are 401:} is included in 331: 325: 252:Pythagorean prime 178:Hadamard matrices 176:for constructing 151:conference graphs 147:quadratic residue 139:undirected graphs 127: 126: 2091: 2055: 2043: 2027: 2006: 1976: 1975: 1967: 1961: 1960: 1950: 1923: 1917: 1916: 1914: 1890: 1884: 1883: 1881: 1855: 1849: 1848: 1840: 1834: 1833: 1808:Chung, Fan R. K. 1804: 1798: 1797: 1769: 1763: 1761: 1727: 1721: 1720: 1686: 1680: 1679: 1642: 1636: 1635: 1618:(3–4): 295–315. 1598: 1592: 1591: 1581: 1554: 1545: 1544: 1535:(1–4): 311–320. 1520: 1484: 1482: 1481: 1476: 1471: 1467: 1451: 1442: 1416: 1415: 1385: 1383: 1382: 1377: 1357: 1356: 1344: 1335: 1279: 1277: 1276: 1271: 1266: 1262: 1261: 1260: 1250: 1245: 1240: 1217: 1211: 1210: 1209: 1204: 1195: 1194: 1189: 1132:with vertex set 993: 975: 969: 967: 966: 961: 955: 950: 939: 919: 914: 913: 908: 899: 887: 873: 862: 860: 859: 854: 837: 828: 818: 816: 815: 810: 805: 800: 786: 777: 767: 765: 764: 759: 742: 733: 716: 707:adjacency matrix 700: 689: 687: 686: 681: 676: 672: 656: 647: 626: 617: 596: 587: 547: 540: 536: 525: 471:= 13, the field 388: 386: 385: 380: 378: 374: 373: 372: 362: 357: 352: 329: 323: 99:Conference graph 95:Strongly regular 28: 16: 2099: 2098: 2094: 2093: 2092: 2090: 2089: 2088: 2059: 2058: 2046: 2037: 2034: 2009: 1988: 1985: 1983:Further reading 1980: 1979: 1969: 1968: 1964: 1925: 1924: 1920: 1892: 1891: 1887: 1857: 1856: 1852: 1842: 1841: 1837: 1806: 1805: 1801: 1771: 1770: 1766: 1750: 1729: 1728: 1724: 1709: 1688: 1687: 1683: 1644: 1643: 1639: 1600: 1599: 1595: 1556: 1555: 1548: 1524:Paley, R.E.A.C. 1522: 1521: 1517: 1512: 1439: 1435: 1407: 1399: 1398: 1348: 1328: 1327: 1304: 1252: 1199: 1184: 1165: 1161: 1150: 1149: 1144: 1107: 1090: 1064: 991: 981:circulant graph 973: 970: 940: 900: 892: 891: 878: 871: 821: 820: 770: 769: 726: 725: 719:identity matrix 714: 698: 578: 574: 560: 559: 542: 538: 527: 523: 516: 479: 465: 364: 307: 303: 292: 291: 286: 266: 232: 159:graph-theoretic 101: 97: 55: 31: 12: 11: 5: 2097: 2095: 2087: 2086: 2081: 2079:Regular graphs 2076: 2071: 2061: 2060: 2057: 2056: 2044: 2040:"Paley graphs" 2033: 2032:External links 2030: 2029: 2028: 2007: 1984: 1981: 1978: 1977: 1962: 1918: 1905:(5): 144–148. 1885: 1872:(3): 364–371. 1850: 1835: 1824:(4): 345–362. 1799: 1780:(2): 293–306. 1764: 1748: 1722: 1707: 1681: 1650:Spencer, J. H. 1637: 1593: 1546: 1529:J. Math. Phys. 1514: 1513: 1511: 1508: 1486: 1485: 1474: 1470: 1466: 1463: 1460: 1457: 1454: 1448: 1445: 1438: 1434: 1431: 1428: 1425: 1422: 1419: 1414: 1410: 1406: 1375: 1372: 1369: 1366: 1363: 1360: 1355: 1351: 1347: 1341: 1338: 1308:locally cyclic 1303: 1300: 1281: 1280: 1269: 1265: 1259: 1255: 1249: 1244: 1239: 1234: 1231: 1228: 1225: 1222: 1216: 1208: 1203: 1198: 1193: 1188: 1183: 1180: 1177: 1174: 1171: 1168: 1164: 1160: 1157: 1140: 1130:directed graph 1103: 1086: 1063: 1062:Paley digraphs 1060: 1059: 1058: 1051: 1040: 1022: 1015:book thickness 1011: 958: 953: 949: 946: 943: 937: 934: 931: 928: 925: 922: 917: 911: 906: 903: 890: 874:is prime, the 852: 849: 846: 843: 840: 834: 831: 808: 803: 798: 795: 792: 789: 783: 780: 757: 754: 751: 748: 745: 739: 736: 695:arc-transitive 691: 690: 679: 675: 671: 668: 665: 662: 659: 653: 650: 644: 641: 638: 635: 632: 629: 623: 620: 614: 611: 608: 605: 602: 599: 593: 590: 584: 581: 577: 573: 570: 567: 515: 512: 492: 491: 488: 485: 475: 464: 461: 447: = ( 443:By definition 431:if and only if 391: 390: 377: 371: 367: 361: 356: 351: 346: 343: 340: 337: 334: 328: 322: 319: 316: 313: 310: 306: 302: 299: 282: 262: 231: 228: 204:Paley digraphs 125: 124: 118: 117: 110: 106: 105: 92: 88: 87: 84: 78: 77: 67: 61: 60: 49: 43: 42: 37: 33: 32: 29: 21: 20: 13: 10: 9: 6: 4: 3: 2: 2096: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2069:Number theory 2067: 2066: 2064: 2053: 2049: 2045: 2041: 2036: 2035: 2031: 2025: 2021: 2017: 2013: 2008: 2004: 2000: 1996: 1992: 1987: 1986: 1982: 1973: 1966: 1963: 1958: 1954: 1949: 1948:10.37236/1982 1944: 1940: 1936: 1932: 1928: 1922: 1919: 1913: 1908: 1904: 1900: 1896: 1889: 1886: 1880: 1875: 1871: 1867: 1866: 1861: 1854: 1851: 1846: 1839: 1836: 1831: 1827: 1823: 1819: 1818: 1817:Combinatorica 1813: 1809: 1803: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1765: 1759: 1755: 1751: 1745: 1741: 1737: 1733: 1726: 1723: 1718: 1714: 1710: 1708:3-540-50619-5 1704: 1700: 1696: 1692: 1685: 1682: 1677: 1673: 1669: 1665: 1661: 1657: 1656: 1651: 1647: 1646:Graham, R. L. 1641: 1638: 1633: 1629: 1625: 1621: 1617: 1613: 1612: 1607: 1603: 1597: 1594: 1589: 1585: 1580: 1575: 1571: 1567: 1563: 1559: 1553: 1551: 1547: 1542: 1538: 1534: 1531: 1530: 1525: 1519: 1516: 1509: 1507: 1505: 1501: 1497: 1495: 1491: 1472: 1468: 1461: 1455: 1452: 1446: 1443: 1436: 1429: 1426: 1423: 1420: 1417: 1412: 1408: 1397: 1396: 1395: 1393: 1389: 1370: 1367: 1364: 1361: 1358: 1353: 1349: 1339: 1336: 1325: 1321: 1317: 1313: 1309: 1301: 1299: 1297: 1293: 1288: 1286: 1267: 1263: 1257: 1247: 1242: 1229: 1226: 1223: 1220: 1214: 1206: 1196: 1191: 1181: 1175: 1172: 1169: 1162: 1158: 1155: 1148: 1147: 1146: 1145:and arc set 1143: 1139: 1135: 1131: 1127: 1126:Paley digraph 1123: 1119: 1115: 1111: 1106: 1102: 1098: 1094: 1089: 1085: 1081: 1077: 1073: 1069: 1061: 1056: 1052: 1049: 1045: 1041: 1038: 1035: 1034:Ramsey number 1031: 1027: 1023: 1020: 1016: 1012: 1009: 1005: 1001: 997: 996: 995: 989: 984: 982: 979: 956: 951: 947: 944: 941: 935: 929: 923: 920: 915: 909: 904: 901: 889: 885: 881: 877: 868: 866: 847: 844: 841: 832: 829: 801: 796: 793: 790: 781: 778: 752: 749: 746: 737: 734: 722: 720: 712: 708: 704: 701:) are called 696: 677: 673: 666: 663: 660: 651: 648: 642: 636: 633: 630: 621: 618: 612: 606: 603: 600: 591: 588: 582: 579: 575: 571: 568: 565: 558: 557: 556: 554: 549: 546: 534: 530: 521: 513: 511: 509: 505: 501: 497: 489: 486: 483: 482: 481: 478: 474: 470: 462: 460: 458: 454: 450: 446: 441: 440:is a square. 439: 436: −  435: 432: 428: 425: −  424: 420: 417: −  416: 412: 409: −  408: 404: 400: 396: 375: 369: 359: 354: 341: 338: 335: 332: 326: 317: 314: 311: 304: 300: 297: 290: 289: 288: 285: 281: 277: 272: 270: 265: 261: 257: 253: 249: 245: 241: 237: 229: 227: 225: 221: 217: 213: 209: 205: 201: 199: 195: 191: 187: 183: 179: 175: 171: 170:Raymond Paley 166: 164: 163:number theory 160: 156: 152: 148: 144: 140: 136: 132: 123: 119: 115: 111: 107: 104: 100: 96: 93: 89: 85: 83: 79: 75: 71: 68: 66: 62: 58: 53: 50: 48: 44: 41: 40:Raymond Paley 38: 34: 27: 22: 17: 2048:Mohar, Bojan 2015: 2011: 1994: 1990: 1971: 1965: 1938: 1934: 1927:Mohar, Bojan 1921: 1902: 1898: 1888: 1869: 1868:. Series B. 1863: 1853: 1844: 1838: 1821: 1815: 1802: 1777: 1773: 1767: 1731: 1725: 1690: 1684: 1659: 1653: 1640: 1615: 1609: 1596: 1569: 1565: 1558:Sachs, Horst 1532: 1527: 1518: 1503: 1500:White (2001) 1498: 1493: 1489: 1487: 1391: 1319: 1305: 1289: 1282: 1141: 1137: 1133: 1125: 1121: 1117: 1113: 1109: 1104: 1100: 1096: 1092: 1087: 1083: 1079: 1075: 1067: 1065: 1047: 1043: 1036: 1029: 1025: 1019:queue number 1008:3-3 duoprism 1004:rook's graph 988:quasi-random 987: 985: 971: 883: 879: 869: 723: 692: 550: 544: 532: 528: 517: 507: 503: 499: 495: 493: 476: 472: 468: 466: 456: 452: 448: 444: 442: 437: 433: 429:is a square 426: 422: 418: 414: 410: 406: 402: 398: 394: 392: 283: 279: 275: 273: 268: 263: 259: 255: 247: 243: 235: 233: 203: 202: 182:Sachs (1962) 167: 143:finite field 135:Paley graphs 134: 128: 113: 73: 69: 56: 51: 1572:: 270–288. 1388:Bojan Mohar 1072:prime power 978:Hamiltonian 393:If a pair { 240:prime power 220:tournaments 131:mathematics 59:prime power 36:Named after 19:Paley graph 2063:Categories 1510:References 1285:tournament 1074:such that 514:Properties 242:such that 230:Definition 91:Properties 54:≡ 1 mod 4, 2018:: 91–93. 1997:: 33–38. 1662:: 45–48. 1606:Rényi, A. 1602:Erdős, P. 1418:− 1359:− 1248:× 1230:∈ 1224:− 1197:× 1182:∈ 1108:, either 945:− 936:≤ 921:≤ 905:− 845:− 797:± 791:− 750:− 664:− 634:− 604:− 413:= −( 360:× 342:∈ 336:− 267:of order 2050:(2005). 1929:(2005). 1560:(1962). 537:, where 287:and let 274:Now let 208:directed 109:Notation 82:Diameter 47:Vertices 1957:2176532 1941:: N15. 1794:3470732 1774:Involve 1758:2882891 1717:1002568 1676:0292715 1632:0156334 1588:0151953 1128:is the 715:±1 463:Example 451:,  1955:  1792:  1756:  1746:  1715:  1705:  1674:  1630:  1586:  1218:  1212:  1017:4 and 330:  324:  224:subset 76:− 1)/4 1316:torus 1314:of a 1302:Genus 1070:be a 972:When 531:(mod 238:be a 198:Rényi 194:Erdős 190:Sachs 65:Edges 1744:ISBN 1703:ISBN 1294:and 1066:Let 1002:, a 543:mod 467:For 234:Let 206:are 196:and 184:and 137:are 2020:doi 1999:doi 1943:doi 1907:doi 1874:doi 1826:doi 1782:doi 1736:doi 1695:doi 1664:doi 1620:doi 1574:doi 1537:doi 1326:as 1116:or 870:If 526:to 129:In 112:QR( 2065:: 2016:11 2014:. 1995:56 1993:. 1953:MR 1951:. 1939:12 1937:. 1933:. 1903:69 1901:. 1897:. 1870:30 1862:. 1820:. 1810:; 1790:MR 1788:. 1776:. 1754:MR 1752:. 1742:. 1713:MR 1711:. 1701:. 1672:MR 1670:. 1660:14 1658:. 1648:; 1628:MR 1626:. 1616:14 1614:. 1604:; 1584:MR 1582:. 1568:. 1564:. 1549:^ 1533:12 1447:24 1430:24 1421:13 1386:. 1371:24 1362:13 1340:24 1298:. 1136:= 1120:− 1112:− 1082:, 1021:3. 983:. 548:. 529:xk 459:. 278:= 188:. 133:, 2054:. 2042:. 2026:. 2022:: 2005:. 2001:: 1959:. 1945:: 1915:. 1909:: 1882:. 1876:: 1832:. 1828:: 1822:9 1796:. 1784:: 1778:9 1760:. 1738:: 1719:. 1697:: 1678:. 1666:: 1634:. 1622:: 1590:. 1576:: 1570:9 1543:. 1539:: 1504:q 1494:q 1490:q 1473:, 1469:) 1465:) 1462:1 1459:( 1456:o 1453:+ 1444:1 1437:( 1433:) 1427:+ 1424:q 1413:2 1409:q 1405:( 1392:q 1374:) 1368:+ 1365:q 1354:2 1350:q 1346:( 1337:1 1320:q 1268:. 1264:} 1258:2 1254:) 1243:q 1238:F 1233:( 1227:a 1221:b 1215:: 1207:q 1202:F 1192:q 1187:F 1179:) 1176:b 1173:, 1170:a 1167:( 1163:{ 1159:= 1156:A 1142:q 1138:F 1134:V 1122:a 1118:b 1114:b 1110:a 1105:q 1101:F 1097:b 1095:, 1093:a 1088:q 1084:F 1080:q 1076:q 1068:q 1057:. 1048:G 1044:G 1037:R 1030:G 1026:G 1010:. 992:q 974:q 957:. 952:4 948:1 942:q 933:) 930:G 927:( 924:i 916:4 910:q 902:q 886:) 884:G 882:( 880:i 872:q 851:) 848:1 842:q 839:( 833:2 830:1 807:) 802:q 794:1 788:( 782:2 779:1 756:) 753:1 747:q 744:( 738:2 735:1 699:q 678:. 674:) 670:) 667:1 661:q 658:( 652:4 649:1 643:, 640:) 637:5 631:q 628:( 622:4 619:1 613:, 610:) 607:1 601:q 598:( 592:2 589:1 583:, 580:q 576:( 572:g 569:r 566:s 545:q 539:k 535:) 533:q 524:x 508:x 504:x 500:x 496:x 477:q 473:F 469:q 457:q 453:E 449:V 445:G 438:a 434:b 427:b 423:a 419:a 415:b 411:b 407:a 403:E 399:b 397:, 395:a 389:. 376:} 370:2 366:) 355:q 350:F 345:( 339:b 333:a 327:: 321:} 318:b 315:, 312:a 309:{ 305:{ 301:= 298:E 284:q 280:F 276:V 269:q 264:q 260:F 256:q 248:q 244:q 236:q 116:) 114:q 86:2 74:q 72:( 70:q 57:q 52:q

Index


Raymond Paley
Vertices
Edges
Diameter
Strongly regular
Conference graph
Self-complementary
Table of graphs and parameters
mathematics
undirected graphs
finite field
quadratic residue
conference graphs
conference matrices
graph-theoretic
number theory
Raymond Paley
Paley construction
Hadamard matrices
Sachs (1962)
Erdős & Rényi (1963)
Sachs
Erdős
Rényi
directed
conference matrices
Graham & Spencer (1971)
tournaments
subset

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.