Knowledge (XXG)

Passive ventilation

Source 📝

428:
air from the exterior enters the building through them, thereby creating upflow displacement ventilation. However, if there are no lower apertures present, then both in- and out-flow will occur through the high level opening. This is called mixing ventilation. This latter strategy still results in fresh air reaching to low level, since although the incoming cold air will mix with the interior air, it will always be more dense than the bulk interior air and hence fall to the floor. Buoyancy-driven ventilation increases with greater temperature difference, and increased height between the higher and lower apertures in the case of displacement ventilation. When both high and low level openings are present, the neutral plane in a building occurs at the location between the high and low openings at which the internal pressure will be the same as the external pressure (in the absence of wind). Above the neutral plane, the internal air pressure will be positive and air will flow out of any intermediate level apertures created. Below the neutral plane the internal air pressure will be negative and external air will be drawn into the space through any intermediate level apertures. Buoyancy-driven ventilation has several significant benefits: {See Linden, P Annu Rev Fluid Mech, 1999}
841:(ASTM) Standard E741: Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution, describes which tracer gases can be used for this kind of testing and provides information about the chemical properties, health impacts, and ease of detection. Once the tracer gas has been added, mixing fans can be used to distribute the tracer gas as uniformly as possible throughout the space. To do a decay test, the concentration of the tracer gas is first measured when the concentration of the tracer gas is constant. Windows and doors are then opened and the concentration of the tracer gas in the space is measured at regular time intervals to determine the decay rate of the tracer gas. The airflow can be deduced by looking at the change in concentration of the tracer gas over time. For further details on this test method, refer to ASTM Standard E741. 1294:. These requirements are for "all spaces intended for human occupancy except those within single-family houses, multifamily structures of three stories or fewer above grade, vehicles, and aircraft." In the revision to the standard in 2010, Section 6.4 was modified to specify that most buildings designed to have systems to naturally condition spaces must also "include a mechanical ventilation system designed to meet the Ventilation Rate or IAQ procedures . The mechanical system is to be used when windows are closed due to extreme outdoor temperatures noise and security concerns". The standard states that two exceptions in which naturally conditioned buildings do not require mechanical systems are when: 1322:
conditions acceptable to a majority of the occupants within the space.” The standard was revised in 2004 after field study results from the ASHRAE research project, RP-884: developing an adaptive model of thermal comfort and preference, indicated that there are differences between naturally and mechanically conditioned spaces with regards to occupant thermal response, change in clothing, availability of control, and shifts in occupant expectations. The addition to the standard, 5.3: Optional Method For Determining Acceptable Thermal Conditions in Naturally Ventilated Spaces, uses an adaptive
20: 463:
not rely solely on wind direction. In this respect, it may provide improved air quality in some types of polluted environments such as cities. For example, air can be drawn through the backside or courtyards of buildings avoiding the direct pollution and noise of the street facade. Wind can augment the buoyancy effect, but can also reduce its effect depending on its speed, direction and the design of air inlets and outlets. Therefore, prevailing winds must be taken into account when designing for stack effect ventilation.
42: 31: 77:. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building. Buoyancy-driven ventilation occurs as a result of the directional buoyancy force that results from temperature differences between the interior and exterior. 1231:
In climates where the mean absolute difference between inside and outside temperatures exceeds ~10K the energy conservation argument for choosing natural over mechanical ventilation might therefore be questioned. It should however be noted that heating energy might be cheaper and more environmentally
1255:
The device was found to provide sufficient ventilation air flow for a single family home and heat recovery with an efficiency around 40%. The device was however found to be too large and heavy to be practical, and the heat recovery efficiency too low to be competitive with mechanical systems of the
462:
Natural ventilation in buildings can rely mostly on wind pressure differences in windy conditions, but buoyancy effects can a) augment this type of ventilation and b) ensure air flow rates during still days. Buoyancy-driven ventilation can be implemented in ways that air inflow in the building does
1321:
Standard 55-2010: Thermal Environmental Conditions for Human Occupancy. Throughout its revisions, its scope has been consistent with its currently articulated purpose, “to specify the combinations of indoor thermal environmental factors and personal factors that will produce thermal environmental
427:
In order for a building to be ventilated adequately via buoyancy driven ventilation, the inside and outside temperatures must be different. When the interior is warmer than the exterior, indoor air rises and escapes the building at higher apertures. If there are lower apertures then colder, denser
423:
Buoyancy driven ventilation arise due to differences in density of interior and exterior air, which in large part arises from differences in temperature. When there is a temperature difference between two adjoining volumes of air the warmer air will have lower density and be more buoyant thus will
400:
The knowledge of the urban climatology i.e. the wind around the buildings is crucial when evaluating the air quality and thermal comfort inside buildings as air and heat exchange depends on the wind pressure on facades. As observed in the equation (1), the air exchange depends linearly on the wind
1326:
approach for naturally conditioned buildings by specifying acceptable operative temperature ranges for naturally conditioned spaces. As a result, the design of natural ventilation systems became more feasible, which was acknowledged by ASHRAE as a way to further sustainable, energy efficient, and
292:
rates through it and the associated heat losses or heat gains. Wind speed increases with height and is lower towards the ground due to frictional drag. In practical terms wind pressure will vary considerably creating complex air flows and turbulence by its interaction with elements of the natural
1273:
While some commercially available solutions have been available for years, the claimed performance by manufacturers has yet to be verified by independent scientific studies. This might explain the apparent lack of market impact of these commercially available products claiming to deliver natural
1305:
Also, an authority having jurisdiction may allow for the design of conditioning system that does not have a mechanical system but relies only on natural systems. In reference for how controls of conditioning systems should be designed, the standard states that they must take into consideration
1251:
Research aiming at the development of natural ventilation systems featuring heat recovery have been made as early as 1993 where Shultz et al. proposed and tested a chimney type design relying on stack effect while recovering heat using a large counterflow recuperator constructed from corrugated
1246:
Physically or thermally connecting supply and exhaust air streams. (Stack ventilation typically relies on supply and exhaust being placed low and high respectively, while wind driven natural ventilation normally relies on openings being placed on opposing sides of a building for efficient cross
1313:
Residential Buildings. These requirements are for "single-family houses and multifamily structures of three stories or fewer above grade, including manufactured and modular houses," but is not applicable "to transient housing such as hotels, motels, nursing homes, dormitories, or jails."
370:
Each room should have two separate supply and exhaust openings. Locate exhaust high above inlet to maximize stack effect. Orient windows across the room and offset from each other to maximize mixing within the room while minimizing the obstructions to airflow within the
80:
Since the internal heat gains which create temperature differences between the interior and exterior are created by natural processes, including the heat from people, and wind effects are variable, naturally ventilated buildings are sometimes called "breathing buildings".
1269:
Liquid coupled run around loops have also been tested to achieve indirect thermal connection between exhaust and supply air. While these tests have been somewhat successful, liquid coupling introduces mechanical pumps that consume energy to circulate the working fluid.
424:
rise above the cold air creating an upward air stream. Forced upflow buoyancy driven ventilation in a building takes place in a traditional fireplace. Passive stack ventilators are common in most bathrooms and other type of spaces without direct access to the outdoors.
392:
Wind driven ventilation can be classified as cross ventilation and single-sided ventilation. Wind driven ventilation depends on wind behavior, on the interactions with the building envelope and on openings or other air exchange devices such as inlets or
849:. Typical modern mechanical ventilation systems use as little as 2000 J/m for fan operation, and in cold weather they can recover much more energy than this in the form of heat transferred from waste exhaust air to fresh supply air using 579: 3211: 1277:
A radically new approach to natural ventilation with heat recovery is currently being developed at Aarhus University, where heat exchange tubes are integrated into structural concrete slabs between building floors.
1135: 925: 1743:"ANSI/ASHRAE Standard 62.2-2010: Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings". Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010. 1623:
Hviid, C. A. & Svendsen, S., 2008. Passive ventilation systems with heat recovery and night cooling. Kyoto, Advanced building ventilation and environmental technology for addressing climate change issues.
844:
While natural ventilation eliminates electrical energy consumed by fans, overall energy consumption of natural ventilation systems is often higher than that of modern mechanical ventilation systems featuring
1252:
galvanized iron. Both supply and exhaust happened through an unconditioned attic space, with exhaust air being extracted at ceiling height and air being supplied at floor level through a vertical duct.
1298:
Natural ventilation openings that comply with the requirements of Section 6.4 are permanently open or have controls that prevent the openings from being closed during period of expected occupancy, or
1259:
Later attempts have primarily focused on wind as the main driving force due to its higher pressure potential. This however introduces an issue of there being large fluctuations in driving pressure.
1262:
With the use of wind towers placed on the roof of ventilated spaces, supply and exhaust can be placed close to each other on opposing sides of the small towers. These systems often feature finned
1227: 833:
in an interior space. In order for ventilation to be effective, there must be exchange between outdoor air and room air. A common method for measuring ventilation effectiveness is to use a
293:
environment (trees, hills) and urban context (buildings, structures). Vernacular and traditional buildings in different climatic regions rely heavily upon natural ventilation for maintaining
167: 458:
The quality of air it introduces in buildings may be polluted for example due to proximity to an urban or industrial area (although this can also be a factor in wind-driven ventilation)
1782:"ANSI/ASHRAE Standard 55-2010: Thermal Environmental Conditions for Human Occupancy". Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010. 3161: 1605:
Calautit, J. K., O'Connor, D. & Hughes, B. R., 2015. A natural ventilation wind tower with heat pipe heat recovery for cold climates. Renewable Energy, I(87), pp. 1088-1104.
3191: 3327: 1708:"ANSI/ASHRAE Standard 62.1-2010: Ventilation for Acceptable Indoor Air Quality". Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010. 1562:"ASTM Standard E741-11: Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution". West Conshohocken, PA: ASTM International. 2006. 1641:
Autodesk, 2012. Passive Heat Recovering Ventilation System. Available at: sustainabilityworkshop.autodesk.com/project-gallery/passive-heat-recovering-ventilationsystem
1054:
The temperature differential needed between indoor and outdoor air for mechanical ventilation with heat recovery to outperform natural ventilation in terms of overall
1026: 950: 237: 1048: 1001: 979: 272: 202: 3206: 2699: 1948: 838: 477: 3201: 3133: 113:
is the pressure exerted when the wind comes into contact with an object such as a hill or a building and it is described by the following equation:
471:
The natural ventilation flow rate for buoyancy-driven natural ventilation with vents at two different heights can be estimated with this equation:
1899: 1885: 357: 3006: 1063: 861: 3166: 3128: 2989: 1545: 3031: 2744: 2280: 2009: 837:. The first step is to close all windows, doors, and openings in the space. Then a tracer gas is added to the air. The reference, 2100: 3181: 2995: 2375: 1939: 1150: 3337: 3332: 3143: 3087: 3082: 2659: 2187: 173: 3352: 2704: 2255: 2176: 2135: 402: 3047: 2849: 2360: 2295: 2213: 2125: 1989: 1895: 1596:
Schultz, J. M., 1993. Naturlig ventilation med varmegenvinding, Lyngby: Laboratoriet for Varmeisolering, DTH. (Danish)
353: 119: 1614:
Gan, G. & Riffat, S., 1999. A study of heat-pipe heat recovery for natural ventilation. AIVC, 477(12), pp. 57-62.
1050:
is the heat recovery efficiency - (typically around 0.8 with heat recovery and 0 if no heat recovery device is used).
19: 3196: 3077: 2784: 2549: 2393: 1337: 767: 649: 64: 1145:
Under typical comfort ventilation conditions with a heat recovery efficiency of 80% and a SFP of 2000 J/m we get:
3249: 3108: 3072: 2874: 2504: 2459: 2387: 2239: 2182: 1908: 1387: 846: 455:
Design restrictions (height, location of apertures) and may incur extra costs (ventilator stacks, taller spaces)
3347: 3296: 3118: 2814: 2414: 2193: 2084: 2069: 1907:"Natural Ventilation for Infection Control in Health-Care Settings," a report (including design guidelines) by 1886:
https://web.archive.org/web/20111107120122/http://sydney.edu.au/architecture/research/research_archdessci.shtml
45:
A roof turbine ventilator, colloquially known as a 'Whirly Bird' is an application of wind driven ventilation.
3342: 3291: 3216: 3138: 3067: 3011: 2943: 2839: 2754: 2664: 2629: 2105: 3281: 3243: 3123: 2834: 2265: 1879: 1402: 1382: 1372: 3301: 2979: 2938: 2654: 2325: 2145: 1787: 1748: 1713: 1567: 1407: 1239:
To develop natural ventilation systems with heat recovery two inherent challenges must first be solved:
1498:"Lessons from Sustainable and Vernacular Passive Cooling Strategies Used in Traditional Iranian Houses" 309:
and other related literature and include a variety of recommendations on many specific areas such as:
3322: 3103: 3093: 3037: 2974: 2869: 2449: 2398: 1964: 1827: 1456: 1055: 830: 364:
Maximize wind-induced ventilation by siting the ridge of a building perpendicular to the summer winds
2969: 2959: 2933: 2719: 2381: 2260: 2160: 2130: 2024: 1984: 1912: 1342: 289: 3232: 3176: 3113: 2890: 2769: 2764: 2554: 2365: 2350: 1932: 1843: 1367: 1309:
Another reference is ASHRAE Standard 62.2-2010: Ventilation and Acceptable Indoor Air Quality in
1291: 1533:. Atlanta, GA: American Society of Heating, Refrigerating and Air Conditioning Engineers. 2009. 1306:
measures to "properly coordinate operation of the natural and mechanical ventilation systems."
2804: 2759: 2514: 2509: 2439: 2335: 2171: 1974: 1008: 387: 69: 1917: 935: 221: 3271: 3026: 3021: 2604: 2310: 2208: 2203: 2198: 2115: 1835: 1632:
Hviid, C. A. & Svendsen, S., 2012. Wind- and stack-assisted mechanical, Lyngby: DTU Byg.
1464: 1427: 1417: 1233: 110: 1033: 986: 957: 3266: 3238: 2880: 2794: 2789: 2734: 2724: 2714: 2644: 2584: 2499: 2484: 2305: 2300: 2275: 2270: 2140: 2064: 1800: 1761: 1726: 1580: 1412: 1397: 1323: 294: 256: 186: 1831: 1460: 41: 3016: 2913: 2689: 2669: 2634: 2569: 2489: 2330: 2320: 2229: 2079: 2049: 2004: 1999: 1902: 1862:
University-based research centers that currently conduct natural ventilation research:
1516: 1392: 432:
Does not rely on wind: can take place on still, hot summer days when it is most needed.
405:) tools and zonal modelings are usually used to design naturally ventilated buildings. 345: 246: 52:
is the process of supplying air to and removing air from an indoor space without using
1839: 3316: 3098: 2949: 2844: 2809: 2579: 2574: 2529: 2524: 2370: 2345: 2340: 2315: 2285: 2155: 2054: 2034: 2014: 1925: 1847: 1497: 1357: 829:
One way to measure the performance of a naturally ventilated space is to measure the
679: 586: 306: 211: 34: 1816:"Thermal Comfort in Naturally Ventilated Buildings: Revisions to ASHRAE Standard 55" 3276: 2954: 2854: 2829: 2824: 2819: 2749: 2684: 2564: 2534: 2474: 2469: 2444: 2355: 2234: 2150: 2074: 2059: 2044: 1468: 574:{\displaystyle Q_{S}=C_{d}\;A\;{\sqrt {2\;g\;H_{d}\;{\frac {T_{I}-T_{O}}{T_{I}}}}}} 418: 102: 94: 409:
are able to aid wind driven ventilation by directing air in and out of buildings.
625:= cross-sectional area of opening, ft² (assumes equal area for inlet and outlet) 3286: 2928: 2885: 2859: 2799: 2779: 2774: 2649: 2609: 2594: 2539: 2464: 2434: 2429: 2245: 2110: 2029: 1866:
The Center for the Built Environment (CBE), University of California, Berkeley.
1362: 850: 406: 394: 98: 30: 1884:
Faculty of Architecture, Design and Planning, University of Sydney, Australia.
743:= cross-sectional area of opening, m (assumes equal area for inlet and outlet) 3042: 2964: 2895: 2864: 2739: 2709: 2639: 2589: 2559: 2544: 2519: 2424: 2224: 2120: 2039: 1979: 1347: 834: 1675: 401:
speed in the urban place where the architectural project will be built. CFD (
3001: 2679: 2674: 2624: 2599: 2454: 2250: 1815: 1263: 24: 1317:
For standards relating to ventilation rates, in the United States refer to
1286:
For standards relating to ventilation rates, in the United States refer to
56:. It refers to the flow of external air to an indoor space as a result of 2984: 2918: 2419: 2219: 2019: 1994: 1969: 1352: 1310: 704: 665:= Height from midpoint of lower opening to midpoint of upper opening, ft 277: 207: 90: 57: 783:= Height from midpoint of lower opening to midpoint of upper opening, m 2494: 2166: 1880:
http://architecture.mit.edu/building-technology/program/research-topics
1266:
although this limits the theoretical maximum heat recovery efficiency.
1130:{\displaystyle \Delta T={\frac {SFP}{C_{p}\cdot \rho \cdot (1-\eta )}}} 1028:
is the temperature difference between inside and outside air in K or °C
333: 242: 93:
of air is the pressure in a free-flowing air stream and is depicted by
1232:
friendly than electricity. This is especially the case in areas where
920:{\displaystyle \theta =C_{p}\cdot \rho \cdot \Delta T\cdot (1-\eta ).} 3171: 2923: 2729: 2479: 1422: 1318: 1287: 801: 322: 1447:
Linden, P. F. (1999). "The Fluid Mechanics of Natural Ventilation".
1878:
Department of Architecture, Massachusetts Institute of Technology.
3186: 2619: 1546:"Review of air flow measurement techniques. LBNL Paper LBNL-49747" 367:
Widths of naturally ventilated zone should be narrow (max 13.7 m )
29: 18: 449:
Lower magnitude compared to wind ventilation on the windiest days
2694: 2614: 1913:
http://whqlibdoc.who.int/publications/2009/9789241547857_eng.pdf
1377: 1243:
Providing efficient heat recovery at very low driving pressures.
329: 106: 53: 1921: 1867: 1872:
Lawrence Berkeley National Laboratory, Berkeley, California.
288:
The impact of wind on a building affects the ventilation and
756:= Discharge coefficient for opening (typical value is 0,62) 638:= Discharge coefficient for opening (typical value is 0.65) 800:= Average indoor temperature between the inlet and outlet, 678:= Average indoor temperature between the inlet and outlet, 1651: 1301:
The zone is not served by heating or cooling equipment.
101:. Differences in static pressure arise from global and 1873: 352:
The following design guidelines are selected from the
130: 1777: 1775: 1773: 1771: 1222:{\displaystyle \Delta T=2000/(1000*1.2*(1-0.8))=8.33} 1153: 1066: 1036: 1011: 989: 960: 938: 864: 480: 377:
Consider the use of clerestories or vented skylights.
259: 224: 189: 122: 1903:
http://www.wbdg.org/resources/naturalventilation.php
1557: 1555: 3259: 3225: 3152: 3056: 2904: 2407: 2093: 1955: 374:
Window openings should be operable by the occupants
1221: 1129: 1042: 1020: 995: 973: 944: 919: 573: 452:Relies on temperature differences (inside/outside) 266: 231: 196: 161: 105:thermal phenomena and create the air flow we call 1274:ventilation and high heat recovery efficiencies. 1142:SFP is specific fan power in Pa, J/m, or W/(m/s) 981:is specific heat capacity of air (~1000 J/(kg*K)) 615:= Buoyancy-driven ventilation airflow rate, ft/s 339:Construction methods and detailing (infiltration) 1911:for naturally ventilated health-care facilities. 733:= Buoyancy-driven ventilation airflow rate, m/s 162:{\displaystyle q={\tfrac {1}{2}}\,\rho \,v^{2},} 1290:Standard 62.1-2010: Ventilation for Acceptable 438:Greater control in choosing areas of air intake 1738: 1736: 1703: 1701: 1699: 1697: 1695: 1933: 856:Ventilation heat loss can be calculated as: 37:are designed to maximise natural ventilation. 16:Ventilation without use of mechanical systems 8: 1814:de Dear, Richard J.; Gail S. Brager (2002). 445:Limitations of buoyancy-driven ventilation: 713: 595: 325:typologies, operation, location, and shapes 3328:Heating, ventilation, and air conditioning 2700:High efficiency glandless circulating pump 1949:Heating, ventilation, and air conditioning 1940: 1926: 1918: 1519:. National Institute of Building Sciences. 839:American Society for Testing and Materials 529: 518: 514: 508: 504: 263: 228: 193: 60:differences arising from natural forces. 1378:Heating, Ventilation and Air-Conditioning 1166: 1152: 1094: 1076: 1065: 1035: 1010: 988: 965: 959: 937: 875: 863: 561: 550: 537: 530: 523: 509: 498: 485: 479: 258: 223: 188: 150: 145: 141: 129: 121: 3134:Mold growth, assessment, and remediation 40: 1900:National Institute of Building Sciences 1439: 358:National Institute of Building Sciences 1796: 1785: 1757: 1746: 1722: 1711: 1576: 1565: 467:Estimating buoyancy-driven ventilation 3007:Programmable communicating thermostat 7: 3129:Mechanical, electrical, and plumbing 1592: 1590: 297:conditions in the enclosed spaces. 23:The ventilation system of a regular 2990:Minimum efficiency reporting value 1154: 1067: 1012: 890: 652:, around 32.2 ft/s² on Earth 435:Stable air flow (compared to wind) 342:External elements (walls, screens) 14: 3032:Standard temperature and pressure 2745:Packaged terminal air conditioner 2281:Passive daytime radiative cooling 2010:Heat pump and refrigeration cycle 1548:. Lawrence Berkeley National Lab. 770:, around 9.81 m/s² on Earth 313:Building location and orientation 305:Design guidelines are offered in 2101:Absorption-compression heat pump 1891:Natural Ventilation Guidelines: 1449:Annual Review of Fluid Mechanics 1058:can therefore be calculated as: 2996:Normal temperature and pressure 2376:Vapor-compression refrigeration 1003:is air density (~1.2 kg/m) 63:There are two types of natural 1469:10.1146/annurev.fluid.31.1.201 1216: 1210: 1201: 1198: 1186: 1171: 1121: 1109: 911: 899: 1: 3144:Testing, adjusting, balancing 3088:Building information modeling 3083:Building services engineering 2660:Ground-coupled heat exchanger 2188:Demand controlled ventilation 2136:Building insulation materials 1840:10.1016/S0378-7788(02)00005-1 1544:McWilliams, Jennifer (2002). 952:is ventilation heat loss in W 2705:High-pressure cut-off switch 2256:Ice storage air conditioning 2177:Dedicated outdoor air system 1868:http://www.cbe.berkeley.edu/ 403:Computational Fluid Dynamics 319:Indoor partitions and layout 316:Building form and dimensions 3048:Thermostatic radiator valve 2850:Thermostatic radiator valve 2361:Underfloor air distribution 2296:Radiant heating and cooling 2214:Energy recovery ventilation 2126:Automobile air conditioning 1990:Domestic energy consumption 1896:Whole Building Design Guide 807: 791: 774: 760: 747: 737: 724: 716: 685: 669: 656: 642: 629: 619: 606: 598: 413:Buoyancy-driven ventilation 354:Whole Building Design Guide 180: 75:buoyancy-driven ventilation 3369: 3197:Institute of Refrigeration 3078:Architectural technologist 2550:Electrostatic precipitator 1338:Ventilation (architecture) 1327:occupant-friendly design. 815: 799: 787: 782: 768:gravitational acceleration 765: 755: 742: 732: 694:= Outdoor temperature, °R 693: 677: 664: 650:gravitational acceleration 647: 637: 624: 614: 416: 385: 3250:Volatile organic compound 3109:Environmental engineering 3073:Architectural engineering 2875:Ultra-low particulate air 2460:Automatic balancing valve 2388:Variable refrigerant flow 2240:Heat recovery ventilation 2183:Deep water source cooling 1909:World Health Organization 1388:Architectural engineering 816:= Outdoor temperature, K 3297:Template:Home automation 3119:Kitchen exhaust cleaning 2815:Solar-assisted heat pump 2415:Air conditioner inverter 2194:Displacement ventilation 2085:Vapour pressure of water 2070:Thermal destratification 1486:. John Wiley & Sons. 1021:{\displaystyle \Delta T} 67:occurring in buildings: 3292:World Refrigeration Day 3139:Refrigerant reclamation 3068:Architectural acoustics 3012:Programmable thermostat 2944:Clean air delivery rate 2840:Thermal expansion valve 2755:Pressurisation ductwork 2665:Ground source heat pump 2106:Absorption refrigerator 945:{\displaystyle \theta } 382:Wind driven ventilation 232:{\displaystyle \rho \;} 70:wind driven ventilation 3282:Glossary of HVAC terms 3244:Sick building syndrome 3124:Mechanical engineering 2835:Smoke exhaust ductwork 2266:Mixed-mode ventilation 1795:Cite journal requires 1756:Cite journal requires 1721:Cite journal requires 1575:Cite journal requires 1403:Mixed Mode Ventilation 1383:Mechanical engineering 1373:Sick building syndrome 1223: 1131: 1044: 1022: 997: 975: 946: 921: 575: 328:Other aperture types ( 268: 233: 198: 163: 46: 38: 27: 3302:Template:Solar energy 2980:Intelligent buildings 2939:Carbon dioxide sensor 2326:Room air distribution 2146:Central solar heating 1517:"Natural Ventilation" 1482:Clancy, L.J. (1975). 1408:Room air distribution 1224: 1132: 1045: 1043:{\displaystyle \eta } 1023: 998: 996:{\displaystyle \rho } 976: 974:{\displaystyle C_{p}} 947: 922: 825:Assessing performance 576: 269: 234: 199: 164: 44: 33: 22: 3338:Building engineering 3333:Sustainable building 3104:Duct leakage testing 3094:Deep energy retrofit 3038:Thermographic camera 2975:Infrared thermometer 2450:Air source heat pump 2399:Water heat recycling 1965:Air changes per hour 1820:Energy and Buildings 1348:Air-side economizers 1151: 1064: 1034: 1009: 987: 958: 936: 862: 831:air changes per hour 478: 307:building regulations 257: 222: 187: 120: 3353:Passive ventilation 2970:HVAC control system 2960:Home energy monitor 2934:Building automation 2720:Inverter compressor 2382:Variable air volume 2291:Passive ventilation 2261:Kitchen ventilation 2161:Constant air volume 2131:Autonomous building 1874:http://www.lbl.gov/ 1832:2002EneBu..34..549D 1461:1999AnRFM..31..201L 1343:Infiltration (HVAC) 356:, a program of the 267:{\displaystyle v\;} 197:{\displaystyle q\;} 50:Passive ventilation 3233:Indoor air quality 3177:ASTM International 3114:Hydronic balancing 2891:Wood-burning stove 2770:Radiator reflector 2555:Evaporative cooler 2366:Underfloor heating 2351:Thermal insulation 1368:Indoor air quality 1292:Indoor Air Quality 1219: 1127: 1040: 1018: 993: 971: 942: 917: 571: 441:Sustainable method 264: 229: 194: 159: 139: 54:mechanical systems 47: 39: 28: 3310: 3309: 3226:Health and safety 2805:Scroll compressor 2760:Process duct work 2515:Convection heater 2510:Condensing boiler 2440:Air-mixing plenum 2336:Solar combisystem 2172:Cross ventilation 1975:Building envelope 1125: 1056:energy efficiency 820: 819: 698: 697: 569: 567: 388:Cross ventilation 284: 283: 138: 3360: 3272:Building science 3027:Smart thermostat 3022:Room temperature 2605:Fireplace insert 2311:Radon mitigation 2209:Electric heating 2204:District heating 2199:District cooling 2116:Air conditioning 1942: 1935: 1928: 1919: 1852: 1851: 1811: 1805: 1804: 1798: 1793: 1791: 1783: 1779: 1766: 1765: 1759: 1754: 1752: 1744: 1740: 1731: 1730: 1724: 1719: 1717: 1709: 1705: 1690: 1689: 1687: 1686: 1672: 1666: 1665: 1663: 1662: 1648: 1642: 1639: 1633: 1630: 1624: 1621: 1615: 1612: 1606: 1603: 1597: 1594: 1585: 1584: 1578: 1573: 1571: 1563: 1559: 1550: 1549: 1541: 1535: 1534: 1527: 1521: 1520: 1512: 1506: 1505: 1494: 1488: 1487: 1479: 1473: 1472: 1444: 1428:Glossary of HVAC 1418:Air conditioning 1353:Convection doors 1234:district heating 1228: 1226: 1225: 1220: 1170: 1136: 1134: 1133: 1128: 1126: 1124: 1099: 1098: 1088: 1077: 1049: 1047: 1046: 1041: 1027: 1025: 1024: 1019: 1002: 1000: 999: 994: 980: 978: 977: 972: 970: 969: 951: 949: 948: 943: 926: 924: 923: 918: 880: 879: 714: 596: 580: 578: 577: 572: 570: 568: 566: 565: 556: 555: 554: 542: 541: 531: 528: 527: 510: 503: 502: 490: 489: 273: 271: 270: 265: 238: 236: 235: 230: 203: 201: 200: 195: 181: 168: 166: 165: 160: 155: 154: 140: 131: 111:Dynamic pressure 3368: 3367: 3363: 3362: 3361: 3359: 3358: 3357: 3348:Passive cooling 3313: 3312: 3311: 3306: 3267:ASHRAE Handbook 3255: 3239:Passive smoking 3221: 3154: 3148: 3060: 3058: 3052: 2906: 2900: 2881:Whole-house fan 2795:Run-around coil 2790:Reversing valve 2735:Mechanical room 2725:Kerosene heater 2715:Infrared heater 2645:Gasoline heater 2585:Fan filter unit 2500:Condensate pump 2485:Centrifugal fan 2403: 2306:Radiant heating 2301:Radiant cooling 2276:Passive cooling 2271:Microgeneration 2141:Central heating 2089: 2065:Thermal comfort 1957: 1951: 1946: 1860: 1855: 1813: 1812: 1808: 1794: 1784: 1781: 1780: 1769: 1755: 1745: 1742: 1741: 1734: 1720: 1710: 1707: 1706: 1693: 1684: 1682: 1680:www.stackhr.com 1674: 1673: 1669: 1660: 1658: 1650: 1649: 1645: 1640: 1636: 1631: 1627: 1622: 1618: 1613: 1609: 1604: 1600: 1595: 1588: 1574: 1564: 1561: 1560: 1553: 1543: 1542: 1538: 1531:ASHRAE Handbook 1529: 1528: 1524: 1514: 1513: 1509: 1496: 1495: 1491: 1481: 1480: 1476: 1446: 1445: 1441: 1437: 1432: 1413:Thermal comfort 1398:Passive cooling 1333: 1324:thermal comfort 1284: 1149: 1148: 1090: 1089: 1078: 1062: 1061: 1032: 1031: 1007: 1006: 985: 984: 961: 956: 955: 934: 933: 871: 860: 859: 827: 812: 796: 779: 752: 729: 690: 674: 661: 634: 611: 557: 546: 533: 532: 519: 494: 481: 476: 475: 469: 421: 415: 390: 384: 303: 295:thermal comfort 255: 254: 220: 219: 185: 184: 146: 118: 117: 87: 17: 12: 11: 5: 3366: 3364: 3356: 3355: 3350: 3345: 3343:Fluid dynamics 3340: 3335: 3330: 3325: 3315: 3314: 3308: 3307: 3305: 3304: 3299: 3294: 3289: 3284: 3279: 3274: 3269: 3263: 3261: 3257: 3256: 3254: 3253: 3247: 3241: 3236: 3229: 3227: 3223: 3222: 3220: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3158: 3156: 3150: 3149: 3147: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3096: 3091: 3085: 3080: 3075: 3070: 3064: 3062: 3054: 3053: 3051: 3050: 3045: 3040: 3035: 3029: 3024: 3019: 3017:Psychrometrics 3014: 3009: 3004: 2999: 2993: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2941: 2936: 2931: 2926: 2921: 2916: 2914:Air flow meter 2910: 2908: 2902: 2901: 2899: 2898: 2893: 2888: 2883: 2878: 2872: 2867: 2862: 2857: 2852: 2847: 2842: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2802: 2797: 2792: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2690:Heating system 2687: 2682: 2677: 2672: 2670:Heat exchanger 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2635:Gas compressor 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2577: 2572: 2570:Expansion tank 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2490:Ceramic heater 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2411: 2409: 2405: 2404: 2402: 2401: 2396: 2391: 2385: 2379: 2373: 2368: 2363: 2358: 2353: 2348: 2343: 2338: 2333: 2331:Solar air heat 2328: 2323: 2321:Renewable heat 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2248: 2243: 2237: 2232: 2230:Forced-air gas 2227: 2222: 2217: 2211: 2206: 2201: 2196: 2191: 2185: 2180: 2174: 2169: 2164: 2158: 2153: 2148: 2143: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2097: 2095: 2091: 2090: 2088: 2087: 2082: 2080:Thermodynamics 2077: 2072: 2067: 2062: 2057: 2052: 2050:Psychrometrics 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2005:Gas compressor 2002: 2000:Fluid dynamics 1997: 1992: 1987: 1982: 1977: 1972: 1967: 1961: 1959: 1953: 1952: 1947: 1945: 1944: 1937: 1930: 1922: 1916: 1915: 1905: 1889: 1888: 1882: 1876: 1870: 1859: 1858:External links 1856: 1854: 1853: 1826:(6): 549–561. 1806: 1797:|journal= 1767: 1758:|journal= 1732: 1723:|journal= 1691: 1676:"How it works" 1667: 1643: 1634: 1625: 1616: 1607: 1598: 1586: 1577:|journal= 1551: 1536: 1522: 1515:Walker, Andy. 1507: 1489: 1474: 1438: 1436: 1433: 1431: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1393:Green building 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1334: 1332: 1329: 1303: 1302: 1299: 1283: 1280: 1249: 1248: 1244: 1236:is available. 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1179: 1176: 1173: 1169: 1165: 1162: 1159: 1156: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1097: 1093: 1087: 1084: 1081: 1075: 1072: 1069: 1052: 1051: 1039: 1029: 1017: 1014: 1004: 992: 982: 968: 964: 953: 941: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 878: 874: 870: 867: 826: 823: 822: 821: 818: 817: 814: 810: 805: 804: 798: 794: 789: 788: 785: 784: 781: 777: 772: 771: 764: 758: 757: 754: 750: 745: 744: 741: 735: 734: 731: 727: 722: 721: 718: 710: 709: 700: 699: 696: 695: 692: 688: 683: 682: 676: 672: 667: 666: 663: 659: 654: 653: 646: 640: 639: 636: 632: 627: 626: 623: 617: 616: 613: 609: 604: 603: 600: 592: 591: 582: 581: 564: 560: 553: 549: 545: 540: 536: 526: 522: 517: 513: 507: 501: 497: 493: 488: 484: 468: 465: 460: 459: 456: 453: 450: 443: 442: 439: 436: 433: 414: 411: 386:Main article: 383: 380: 379: 378: 375: 372: 368: 365: 350: 349: 346:Urban planning 343: 340: 337: 326: 320: 317: 314: 302: 299: 286: 285: 282: 281: 274: 262: 251: 250: 247:density of air 245:in kg/m (e.g. 239: 227: 216: 215: 204: 192: 170: 169: 158: 153: 149: 144: 137: 134: 128: 125: 86: 83: 35:Dogtrot houses 15: 13: 10: 9: 6: 4: 3: 2: 3365: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3320: 3318: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3264: 3262: 3258: 3251: 3248: 3245: 3242: 3240: 3237: 3234: 3231: 3230: 3228: 3224: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3159: 3157: 3155:organizations 3151: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3099:Duct cleaning 3097: 3095: 3092: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3065: 3063: 3055: 3049: 3046: 3044: 3041: 3039: 3036: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2997: 2994: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2950:Control valve 2948: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2911: 2909: 2903: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2876: 2873: 2871: 2870:Turning vanes 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2845:Thermal wheel 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2810:Solar chimney 2808: 2806: 2803: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2580:Fan coil unit 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2525:Cooling tower 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2412: 2410: 2406: 2400: 2397: 2395: 2392: 2389: 2386: 2383: 2380: 2377: 2374: 2372: 2371:Vapor barrier 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2346:Solar heating 2344: 2342: 2341:Solar cooling 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2316:Refrigeration 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2286:Passive house 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2189: 2186: 2184: 2181: 2178: 2175: 2173: 2170: 2168: 2165: 2162: 2159: 2157: 2156:Chilled water 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2098: 2096: 2092: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2055:Sensible heat 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2035:Noise control 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2015:Heat transfer 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1962: 1960: 1954: 1950: 1943: 1938: 1936: 1931: 1929: 1924: 1923: 1920: 1914: 1910: 1906: 1904: 1901: 1897: 1894: 1893: 1892: 1887: 1883: 1881: 1877: 1875: 1871: 1869: 1865: 1864: 1863: 1857: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1789: 1778: 1776: 1774: 1772: 1768: 1763: 1750: 1739: 1737: 1733: 1728: 1715: 1704: 1702: 1700: 1698: 1696: 1692: 1681: 1677: 1671: 1668: 1657: 1656:ventive.co.uk 1653: 1647: 1644: 1638: 1635: 1629: 1626: 1620: 1617: 1611: 1608: 1602: 1599: 1593: 1591: 1587: 1582: 1569: 1558: 1556: 1552: 1547: 1540: 1537: 1532: 1526: 1523: 1518: 1511: 1508: 1503: 1499: 1493: 1490: 1485: 1478: 1475: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1440: 1434: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1358:Solar chimney 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1335: 1330: 1328: 1325: 1320: 1315: 1312: 1307: 1300: 1297: 1296: 1295: 1293: 1289: 1281: 1279: 1275: 1271: 1267: 1265: 1260: 1257: 1253: 1247:ventilation.) 1245: 1242: 1241: 1240: 1237: 1235: 1229: 1213: 1207: 1204: 1195: 1192: 1189: 1183: 1180: 1177: 1174: 1167: 1163: 1160: 1157: 1146: 1143: 1140: 1137: 1118: 1115: 1112: 1106: 1103: 1100: 1095: 1091: 1085: 1082: 1079: 1073: 1070: 1059: 1057: 1037: 1030: 1015: 1005: 990: 983: 966: 962: 954: 939: 932: 931: 930: 927: 914: 908: 905: 902: 896: 893: 887: 884: 881: 876: 872: 868: 865: 857: 854: 852: 848: 847:heat recovery 842: 840: 836: 832: 824: 813: 806: 803: 797: 790: 786: 780: 773: 769: 763: 759: 753: 746: 740: 736: 730: 723: 719: 715: 712: 711: 708: 706: 702: 701: 691: 684: 681: 675: 668: 662: 655: 651: 645: 641: 635: 628: 622: 618: 612: 605: 601: 597: 594: 593: 590: 588: 587:English units 584: 583: 562: 558: 551: 547: 543: 538: 534: 524: 520: 515: 511: 505: 499: 495: 491: 486: 482: 474: 473: 472: 466: 464: 457: 454: 451: 448: 447: 446: 440: 437: 434: 431: 430: 429: 425: 420: 412: 410: 408: 404: 398: 396: 389: 381: 376: 373: 369: 366: 363: 362: 361: 359: 355: 347: 344: 341: 338: 335: 331: 327: 324: 321: 318: 315: 312: 311: 310: 308: 300: 298: 296: 291: 279: 275: 260: 253: 252: 248: 244: 240: 225: 218: 217: 213: 209: 205: 190: 183: 182: 179: 178: 177: 175: 172:where (using 156: 151: 147: 142: 135: 132: 126: 123: 116: 115: 114: 112: 108: 104: 100: 96: 92: 84: 82: 78: 76: 72: 71: 66: 61: 59: 55: 51: 43: 36: 32: 26: 21: 3277:Fireproofing 3061:and services 3057:Professions, 2955:Gas detector 2855:Trickle vent 2830:Smoke damper 2825:Smoke canopy 2820:Space heater 2750:Plenum space 2685:Heating film 2565:Exhaust hood 2535:Dehumidifier 2475:Blast damper 2470:Barrier pipe 2445:Air purifier 2356:Thermosiphon 2290: 2235:Free cooling 2151:Chilled beam 2075:Thermal mass 2060:Stack effect 2045:Particulates 2025:Infiltration 1956:Fundamental 1890: 1861: 1823: 1819: 1809: 1788:cite journal 1749:cite journal 1714:cite journal 1683:. Retrieved 1679: 1670: 1659:. Retrieved 1655: 1646: 1637: 1628: 1619: 1610: 1601: 1568:cite journal 1539: 1530: 1525: 1510: 1502:ResearchGate 1501: 1492: 1484:Aerodynamics 1483: 1477: 1452: 1448: 1442: 1316: 1308: 1304: 1285: 1276: 1272: 1268: 1261: 1258: 1254: 1250: 1238: 1230: 1147: 1144: 1141: 1138: 1060: 1053: 928: 858: 855: 851:recuperators 843: 828: 808: 792: 775: 761: 748: 738: 725: 703: 686: 670: 657: 643: 630: 620: 607: 585: 470: 461: 444: 426: 422: 419:Stack effect 407:Windcatchers 399: 395:windcatchers 391: 351: 304: 290:infiltration 287: 171: 103:microclimate 99:weather maps 88: 79: 74: 68: 62: 49: 48: 3323:Ventilation 3287:Warm Spaces 2929:Blower door 2907:and control 2905:Measurement 2886:Windcatcher 2860:Trombe wall 2800:Sail switch 2780:Refrigerant 2775:Recuperator 2650:Grease duct 2610:Freeze stat 2595:Fire damper 2465:Back boiler 2435:Air ionizer 2430:Air handler 2394:Ventilation 2246:Hybrid heat 2111:Air barrier 2030:Latent heat 1455:: 201–238. 1363:Windcatcher 89:The static 65:ventilation 3317:Categories 3043:Thermostat 2965:Humidistat 2896:Zone valve 2865:TurboSwing 2740:Oil heater 2710:Humidifier 2640:Gas heater 2590:Fan heater 2560:Evaporator 2545:Economizer 2520:Compressor 2425:Air filter 2408:Components 2225:Forced-air 2121:Antifreeze 2094:Technology 2040:Outgassing 1980:Convection 1685:2018-07-28 1661:2018-07-28 1435:References 1264:heat pipes 835:tracer gas 417:See also: 348:conditions 206:= dynamic 3153:Industry 3002:OpenTherm 2680:Heat pump 2675:Heat pipe 2625:Fume hood 2600:Fireplace 2505:Condenser 2455:Attic fan 2251:Hydronics 1848:110575467 1652:"Ventive" 1282:Standards 1193:− 1184:∗ 1178:∗ 1155:Δ 1119:η 1116:− 1107:⋅ 1104:ρ 1101:⋅ 1068:Δ 1038:η 1013:Δ 991:ρ 940:θ 909:η 906:− 897:⋅ 891:Δ 888:⋅ 885:ρ 882:⋅ 866:θ 544:− 226:ρ 143:ρ 25:earthship 3260:See also 2985:LonWorks 2919:Aquastat 2785:Register 2765:Radiator 2420:Air door 2220:Firestop 2020:Humidity 1995:Enthalpy 1985:Dilution 1970:Bake-out 1958:concepts 1331:See also 1311:low-rise 705:SI units 334:chimneys 280:in m/s. 278:velocity 276:= fluid 241:= fluid 208:pressure 176:units): 91:pressure 58:pressure 3059:trades, 2630:Furnace 2495:Chiller 2167:Coolant 1828:Bibcode 1457:Bibcode 1139:Where: 929:Where: 720:  717:where: 602:  599:where: 243:density 212:pascals 95:isobars 85:Process 3212:SMACNA 3172:ASHRAE 2992:(MERV) 2946:(CADR) 2924:BACnet 2877:(ULPA) 2730:Louver 2655:Grille 2530:Damper 2480:Boiler 2378:(VCRS) 2179:(DOAS) 1846:  1423:ASHRAE 1319:ASHRAE 1288:ASHRAE 1256:time. 323:Window 301:Design 3252:(VOC) 3246:(SBS) 3235:(IAQ) 3192:CIBSE 3187:BSRIA 3090:(BIM) 3034:(STP) 2998:(NTP) 2620:Freon 2390:(VRF) 2384:(VAV) 2242:(HRV) 2216:(ERV) 2190:(DCV) 2163:(CAV) 1844:S2CID 371:room. 330:doors 3207:LEED 3167:AMCA 3162:AHRI 2695:HEPA 2615:Flue 2540:Duct 1801:help 1762:help 1727:help 1581:help 1208:8.33 1175:1000 1164:2000 107:wind 73:and 3217:UMC 3202:IIR 3182:BRE 2575:Fan 1836:doi 1465:doi 1196:0.8 1181:1.2 397:. 249:), 210:in 97:in 3319:: 1898:, 1842:. 1834:. 1824:34 1822:. 1818:. 1792:: 1790:}} 1786:{{ 1770:^ 1753:: 1751:}} 1747:{{ 1735:^ 1718:: 1716:}} 1712:{{ 1694:^ 1678:. 1654:. 1589:^ 1572:: 1570:}} 1566:{{ 1554:^ 1500:. 1463:. 1453:31 1451:. 853:. 766:= 680:°R 648:= 360:: 332:, 214:, 174:SI 109:. 1941:e 1934:t 1927:v 1850:. 1838:: 1830:: 1803:) 1799:( 1764:) 1760:( 1729:) 1725:( 1688:. 1664:. 1583:) 1579:( 1504:. 1471:. 1467:: 1459:: 1217:] 1214:K 1211:[ 1205:= 1202:) 1199:) 1190:1 1187:( 1172:( 1168:/ 1161:= 1158:T 1122:) 1113:1 1110:( 1096:p 1092:C 1086:P 1083:F 1080:S 1074:= 1071:T 1016:T 967:p 963:C 915:. 912:) 903:1 900:( 894:T 877:p 873:C 869:= 811:O 809:T 802:K 795:I 793:T 778:d 776:H 762:g 751:d 749:C 739:A 728:S 726:Q 707:: 689:O 687:T 673:I 671:T 660:d 658:H 644:g 633:d 631:C 621:A 610:S 608:Q 589:: 563:I 559:T 552:O 548:T 539:I 535:T 525:d 521:H 516:g 512:2 506:A 500:d 496:C 492:= 487:S 483:Q 336:) 261:v 191:q 157:, 152:2 148:v 136:2 133:1 127:= 124:q

Index


earthship

Dogtrot houses

mechanical systems
pressure
ventilation
wind driven ventilation
pressure
isobars
weather maps
microclimate
wind
Dynamic pressure
SI
pressure
pascals
density
density of air
velocity
infiltration
thermal comfort
building regulations
Window
doors
chimneys
Urban planning
Whole Building Design Guide
National Institute of Building Sciences

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.