Knowledge (XXG)

Paper bag problem

Source đź“ť

17: 333: 315: 171: 394: 575: 197: 53: 406:
Robin also found a more complicated formula for the general paper bag, which gives 0.2017, below the bounds given by Kepert (i.e., 0.2055+ ≤ maximum volume ≤ 0.217+).
320:(This latter formula assumes that the corners at the bottom of the bag are linked by a single edge, and that the base of the bag is not a more complex shape such as a 471: 462: 568: 524: 561: 403:, an upper bound for this version of the teabag problem is 0.217+, and he has made a construction that appears to give a volume of 0.2055+. 810: 831: 978: 731: 400: 36:
is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a
872: 942: 638: 669: 519: 490: 817: 584: 354: 529: 867: 973: 418:, a shape formed by attaching two squares in a different way, with the corner of one at the midpoint of the other 608: 902: 838: 421: 744: 628: 613: 788: 618: 598: 310:{\displaystyle V=w^{3}\left(h/\left(\pi w\right)-0.071\left(1-10^{\left(-2h/w\right)}\right)\right)} 166:{\displaystyle V=w^{3}\left(h/\left(\pi w\right)-0.142\left(1-10^{\left(-h/w\right)}\right)\right),} 47:
According to Anthony C. Robin, an approximate formula for the capacity of a sealed expanded bag is:
755: 736: 917: 740: 715: 937: 824: 536: 487: 475: 897: 862: 793: 765: 750: 633: 188:
is the maximum volume. The approximation ignores the crimping round the equator of the bag.
877: 705: 690: 321: 664: 340:
For the special case where the bag is sealed on all edges and is square with unit sides,
514: 947: 922: 912: 907: 892: 887: 770: 603: 967: 700: 539: 952: 882: 654: 191:
A very rough approximation to the capacity of a bag that is open at one edge is:
932: 623: 553: 927: 760: 685: 500: 479: 845: 544: 495: 659: 415: 336:
A numerical simulation of an inflated teabag (with crimping smoothed out)
25: 37: 710: 44:, made out of two pieces of material which can bend but not stretch. 41: 16: 332: 331: 15: 557: 530:
A numerical approach to the teabag problem by Andreas Gammel
357: 348:= 1, the first formula estimates a volume of roughly 200: 56: 855: 802: 781: 724: 678: 647: 591: 520:
Andrew Kepert's work on the teabag problem (mirror)
439: 437: 399:or roughly 0.19. According to Andrew Kepert at the 389:{\displaystyle V={\frac {1}{\pi }}-0.142\cdot 0.9} 388: 309: 165: 180:is the width of the bag (the shorter dimension), 460:Robin, Anthony C (2004). "Paper Bag Problem". 569: 472:Institute of Mathematics and its Applications 8: 515:The original statement of the teabag problem 576: 562: 554: 184:is the height (the longer dimension), and 364: 356: 282: 267: 225: 211: 199: 135: 123: 81: 67: 55: 433: 443: 7: 811:Geometric Exercises in Paper Folding 832:A History of Folding in Mathematics 525:Curved folds for the teabag problem 401:University of Newcastle, Australia 14: 732:Alexandrov's uniqueness theorem 20:A cushion filled with stuffing 1: 670:Regular paperfolding sequence 818:Geometric Folding Algorithms 585:Mathematics of paper folding 995: 868:Margherita Piazzola Beloch 979:Mathematical optimization 639:Yoshizawa–Randlett system 839:Origami Polyhedra Design 422:Mylar balloon (geometry) 629:Napkin folding problem 390: 337: 311: 167: 21: 391: 335: 312: 168: 19: 789:Fold-and-cut theorem 745:Steffen's polyhedron 609:Huzita–Hatori axioms 599:Big-little-big lemma 355: 198: 54: 737:Flexible polyhedron 540:"Paper Bag Surface" 918:Toshikazu Kawasaki 741:Bricard octahedron 716:Yoshimura buckling 614:Kawasaki's theorem 537:Weisstein, Eric W. 488:Weisstein, Eric W. 386: 338: 307: 163: 22: 961: 960: 825:Geometric Origami 696:Paper bag problem 619:Maekawa's theorem 463:Mathematics Today 372: 328:The square teabag 30:paper bag problem 986: 974:Geometric shapes 898:David A. Huffman 863:Roger C. Alperin 766:Source unfolding 634:Pureland origami 578: 571: 564: 555: 550: 549: 504: 499:. Archived from 483: 447: 441: 395: 393: 392: 387: 373: 365: 316: 314: 313: 308: 306: 302: 301: 297: 296: 295: 294: 290: 286: 245: 241: 229: 216: 215: 172: 170: 169: 164: 159: 155: 154: 150: 149: 148: 147: 143: 139: 101: 97: 85: 72: 71: 994: 993: 989: 988: 987: 985: 984: 983: 964: 963: 962: 957: 943:Joseph O'Rourke 878:Robert Connelly 851: 798: 777: 720: 706:Schwarz lantern 691:Modular origami 674: 643: 587: 582: 535: 534: 511: 486: 459: 456: 451: 450: 442: 435: 430: 412: 353: 352: 330: 272: 268: 263: 256: 252: 234: 230: 221: 217: 207: 196: 195: 128: 124: 119: 112: 108: 90: 86: 77: 73: 63: 52: 51: 12: 11: 5: 992: 990: 982: 981: 976: 966: 965: 959: 958: 956: 955: 950: 948:Tomohiro Tachi 945: 940: 935: 930: 925: 923:Robert J. Lang 920: 915: 913:Humiaki Huzita 910: 905: 900: 895: 893:Rona Gurkewitz 890: 888:Martin Demaine 885: 880: 875: 870: 865: 859: 857: 853: 852: 850: 849: 842: 835: 828: 821: 814: 806: 804: 800: 799: 797: 796: 791: 785: 783: 779: 778: 776: 775: 774: 773: 771:Star unfolding 768: 763: 758: 748: 734: 728: 726: 722: 721: 719: 718: 713: 708: 703: 698: 693: 688: 682: 680: 676: 675: 673: 672: 667: 662: 657: 651: 649: 645: 644: 642: 641: 636: 631: 626: 621: 616: 611: 606: 604:Crease pattern 601: 595: 593: 589: 588: 583: 581: 580: 573: 566: 558: 552: 551: 532: 527: 522: 517: 510: 509:External links 507: 506: 505: 503:on 2011-06-29. 484: 455: 452: 449: 448: 432: 431: 429: 426: 425: 424: 419: 411: 408: 397: 396: 385: 382: 379: 376: 371: 368: 363: 360: 329: 326: 318: 317: 305: 300: 293: 289: 285: 281: 278: 275: 271: 266: 262: 259: 255: 251: 248: 244: 240: 237: 233: 228: 224: 220: 214: 210: 206: 203: 174: 173: 162: 158: 153: 146: 142: 138: 134: 131: 127: 122: 118: 115: 111: 107: 104: 100: 96: 93: 89: 84: 80: 76: 70: 66: 62: 59: 34:teabag problem 13: 10: 9: 6: 4: 3: 2: 991: 980: 977: 975: 972: 971: 969: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 860: 858: 854: 848: 847: 843: 841: 840: 836: 834: 833: 829: 827: 826: 822: 820: 819: 815: 813: 812: 808: 807: 805: 801: 795: 794:Lill's method 792: 790: 787: 786: 784: 782:Miscellaneous 780: 772: 769: 767: 764: 762: 759: 757: 754: 753: 752: 749: 746: 742: 738: 735: 733: 730: 729: 727: 723: 717: 714: 712: 709: 707: 704: 702: 701:Rigid origami 699: 697: 694: 692: 689: 687: 684: 683: 681: 679:3d structures 677: 671: 668: 666: 663: 661: 658: 656: 653: 652: 650: 648:Strip folding 646: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 596: 594: 590: 586: 579: 574: 572: 567: 565: 560: 559: 556: 547: 546: 541: 538: 533: 531: 528: 526: 523: 521: 518: 516: 513: 512: 508: 502: 498: 497: 492: 489: 485: 481: 477: 473: 469: 465: 464: 458: 457: 453: 445: 440: 438: 434: 427: 423: 420: 417: 414: 413: 409: 407: 404: 402: 383: 380: 377: 374: 369: 366: 361: 358: 351: 350: 349: 347: 343: 334: 327: 325: 323: 303: 298: 291: 287: 283: 279: 276: 273: 269: 264: 260: 257: 253: 249: 246: 242: 238: 235: 231: 226: 222: 218: 212: 208: 204: 201: 194: 193: 192: 189: 187: 183: 179: 160: 156: 151: 144: 140: 136: 132: 129: 125: 120: 116: 113: 109: 105: 102: 98: 94: 91: 87: 82: 78: 74: 68: 64: 60: 57: 50: 49: 48: 45: 43: 39: 35: 31: 27: 18: 953:Eve Torrence 883:Erik Demaine 844: 837: 830: 823: 816: 809: 803:Publications 695: 665:Möbius strip 655:Dragon curve 592:Flat folding 543: 501:the original 494: 467: 461: 405: 398: 345: 341: 339: 319: 190: 185: 181: 177: 175: 46: 33: 29: 23: 938:KĹŤryĹŤ Miura 933:Jun Maekawa 908:KĂ´di Husimi 624:Map folding 491:"Paper Bag" 474:: 104–107. 968:Categories 928:Anna Lubiw 761:Common net 686:Miura fold 454:References 444:Robin 2004 846:Origamics 725:Polyhedra 545:MathWorld 496:MathWorld 480:1361-2042 381:⋅ 375:− 370:π 274:− 261:− 247:− 236:π 130:− 117:− 103:− 92:π 903:Tom Hull 873:Yan Chen 756:Blooming 660:Flexagon 416:Biscornu 410:See also 26:geometry 38:cushion 856:People 711:Sonobe 478:  176:where 42:pillow 28:, the 428:Notes 378:0.142 250:0.071 106:0.142 476:ISSN 468:June 322:lens 751:Net 384:0.9 324:). 40:or 32:or 24:In 970:: 743:, 542:. 493:. 470:. 466:. 436:^ 344:= 265:10 121:10 747:) 739:( 577:e 570:t 563:v 548:. 482:. 446:. 367:1 362:= 359:V 346:w 342:h 304:) 299:) 292:) 288:w 284:/ 280:h 277:2 270:( 258:1 254:( 243:) 239:w 232:( 227:/ 223:h 219:( 213:3 209:w 205:= 202:V 186:V 182:h 178:w 161:, 157:) 152:) 145:) 141:w 137:/ 133:h 126:( 114:1 110:( 99:) 95:w 88:( 83:/ 79:h 75:( 69:3 65:w 61:= 58:V

Index


geometry
cushion
pillow
lens

University of Newcastle, Australia
Biscornu
Mylar balloon (geometry)


Robin 2004
Mathematics Today
Institute of Mathematics and its Applications
ISSN
1361-2042
Weisstein, Eric W.
"Paper Bag"
MathWorld
the original
The original statement of the teabag problem
Andrew Kepert's work on the teabag problem (mirror)
Curved folds for the teabag problem
A numerical approach to the teabag problem by Andreas Gammel
Weisstein, Eric W.
"Paper Bag Surface"
MathWorld
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑