Knowledge (XXG)

Parallel tempering

Source đź“ť

82:, is a computer simulation method typically used to find the lowest energy state of a system of many interacting particles. It addresses the problem that at high temperatures, one may have a stable state different from low temperature, whereas simulations at low temperatures may become "stuck" in a metastable state. It does this by using the fact that the high temperature simulation may visit states typical of both stable and metastable low temperature states. 548: 22: 225: 557:
condition has to be satisfied by ensuring that the reverse update has to be equally likely, all else being equal. This can be ensured by appropriately choosing regular Monte Carlo updates or parallel tempering updates with probabilities that are independent of the configurations of the two systems or
179:
obtained by collecting the values of the energies over a set of Monte Carlo steps N will create two distributions that will somewhat overlap. The overlap can be defined by the area of the histograms that falls over the same interval of energy values, normalized by the total number of samples. For
568:
Other considerations to be made: increasing the number of different temperatures can have a detrimental effect, as one can think of the 'lateral' movement of a given system across temperatures as a diffusion process. Set up is important as there must be a practical histogram overlap to achieve a
132:
copies of the system, randomly initialized, at different temperatures. Then, based on the Metropolis criterion one exchanges configurations at different temperatures. The idea of this method is to make configurations at high temperatures available to the simulations at low temperatures and vice
133:
versa. This results in a very robust ensemble which is able to sample both low and high energy configurations. In this way, thermodynamical properties such as the specific heat, which is in general not well computed in the canonical ensemble, can be computed with great precision.
543:{\displaystyle p=\min \left(1,{\frac {\exp \left(-{\frac {E_{j}}{kT_{i}}}-{\frac {E_{i}}{kT_{j}}}\right)}{\exp \left(-{\frac {E_{i}}{kT_{i}}}-{\frac {E_{j}}{kT_{j}}}\right)}}\right)=\min \left(1,e^{(E_{i}-E_{j})\left({\frac {1}{kT_{i}}}-{\frac {1}{kT_{j}}}\right)}\right),} 219:. At a given Monte Carlo step we can update the global system by swapping the configuration of the two systems, or alternatively trading the two temperatures. The update is accepted according to the Metropolis–Hastings criterion with probability 164:. At high temperatures updates that change the energy of the system are comparatively more probable. When the system is highly correlated, updates are rejected and the simulation is said to suffer from critical slowing down. 564:
By a careful choice of temperatures and number of systems one can achieve an improvement in the mixing properties of a set of Monte Carlo simulations that exceeds the extra computational cost of running parallel simulations.
576:
that does not need restart, since a system at high temperature can feed new local optimizers to a system at low temperature, allowing tunneling between metastable states and improving convergence to a global optimum.
657: 40: 946: 58: 966: 961: 587: 951: 748:
Hukushima, Koji & Nemoto, Koji (1996). "Exchange Monte Carlo method and application to spin glass simulations".
638: 98: 146: 205:
should have no memory of its past, we can create a new update for the system composed of the two systems at
801:
Marco Falcioni & Michael W. Deem (1999). "A Biased Monte Carlo Scheme for Zeolite Structure Solution".
142: 673:, Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, p. 156. 125:
version of parallel tempering; this is usually known as replica-exchange molecular dynamics or REMD.
106: 880: 871:
Y. Sugita & Y. Okamoto (1999). "Replica-exchange molecular dynamics method for protein folding".
854: 820: 767: 706: 114: 956: 573: 187:
Another way to interpret this overlap is to say that system configurations sampled at temperature
923: 836: 810: 783: 757: 730: 696: 605: 150: 122: 118: 94: 684: 620: 101:(MCMC) sampling methods more generally. The replica exchange method was originally devised by 722: 625: 906:
Radford M. Neal (1996). "Sampling from multimodal distributions using tempered transitions".
915: 888: 828: 775: 714: 554: 102: 884: 824: 771: 710: 110: 892: 940: 734: 718: 927: 840: 787: 202: 158: 90: 79: 726: 176: 815: 779: 762: 701: 919: 610: 75: 832: 615: 600: 154: 595: 167:
If we were to run two simulations at temperatures separated by a Δ
855:"Parallel tempering: Theory, applications, and new perspectives" 15: 121:, and others. Y. Sugita and Y. Okamoto also formulated a 561:
This update can be generalized to more than two systems.
157:
of the system and accepts/rejects updates based on the
36: 85:
More specifically, parallel tempering (also known as
572:
The parallel tempering method can be used as a super
228: 93:
method aimed at improving the dynamic properties of
31:
may be too technical for most readers to understand
542: 425: 235: 685:"Simulated Tempering: A New Monte Carlo Scheme" 658:Replica Monte Carlo simulation of spin glasses 8: 194:are likely to appear during a simulation at 660:Physical Review Letters 57 : 2607–2609 553:and otherwise the update is rejected. The 853:David J. Earl and Michael W. Deem (2005) 814: 761: 700: 569:reasonable probability of lateral moves. 516: 503: 491: 478: 464: 451: 443: 400: 386: 380: 368: 354: 348: 318: 304: 298: 286: 272: 266: 249: 227: 59:Learn how and when to remove this message 43:, without removing the technical details. 97:simulations of physical systems, and of 649: 683:Marinari, E; Parisi, G (1992-07-15). 41:make it understandable to non-experts 7: 184:= 0 the overlap should approach 1. 14: 175:is small enough, then the energy 109:, and later developed further by 105:and J. S. Wang, then extended by 671:Computing Science and Statistics 20: 656:Swendsen RH and Wang JS (1986) 470: 444: 87:replica exchange MCMC sampling 1: 893:10.1016/S0009-2614(99)01123-9 149:update consists of a single 983: 719:10.1209/0295-5075/19/6/002 689:Europhysics Letters (EPL) 558:of the Monte Carlo step. 171:, we would find that if Δ 947:Markov chain Monte Carlo 908:Statistics and Computing 873:Chemical Physics Letters 639:Bennett acceptance ratio 99:Markov chain Monte Carlo 967:Stochastic optimization 859:Phys. Chem. Chem. Phys. 669:C. J. Geyer, (1991) in 544: 143:Monte Carlo simulation 128:Essentially, one runs 962:Statistical mechanics 545: 780:10.1143/JPSJ.65.1604 226: 885:1999CPL...314..141S 825:1999JChPh.110.1754F 772:1996JPSJ...65.1604H 711:1992EL.....19..451M 574:simulated annealing 153:that evaluates the 147:Metropolis–Hastings 952:Molecular dynamics 920:10.1007/BF00143556 540: 151:stochastic process 123:molecular dynamics 95:Monte Carlo method 72:Parallel tempering 750:J. Phys. Soc. Jpn 523: 498: 415: 407: 375: 325: 293: 69: 68: 61: 974: 932: 931: 903: 897: 896: 879:(1–2): 141–151. 868: 862: 851: 845: 844: 833:10.1063/1.477812 818: 816:cond-mat/9809085 798: 792: 791: 765: 763:cond-mat/9512035 756:(6): 1604–1608. 745: 739: 738: 704: 680: 674: 667: 661: 654: 555:detailed balance 549: 547: 546: 541: 536: 532: 531: 530: 529: 525: 524: 522: 521: 520: 504: 499: 497: 496: 495: 479: 469: 468: 456: 455: 421: 417: 416: 414: 413: 409: 408: 406: 405: 404: 391: 390: 381: 376: 374: 373: 372: 359: 358: 349: 332: 331: 327: 326: 324: 323: 322: 309: 308: 299: 294: 292: 291: 290: 277: 276: 267: 250: 107:Charles J. Geyer 64: 57: 53: 50: 44: 24: 23: 16: 982: 981: 977: 976: 975: 973: 972: 971: 937: 936: 935: 905: 904: 900: 870: 869: 865: 852: 848: 800: 799: 795: 747: 746: 742: 702:hep-lat/9205018 682: 681: 677: 668: 664: 655: 651: 647: 635: 630: 583: 581:Implementations 512: 508: 487: 483: 477: 473: 460: 447: 439: 432: 428: 396: 392: 382: 364: 360: 350: 344: 340: 333: 314: 310: 300: 282: 278: 268: 262: 258: 251: 242: 238: 224: 223: 218: 211: 200: 193: 139: 103:Robert Swendsen 65: 54: 48: 45: 37:help improve it 34: 25: 21: 12: 11: 5: 980: 978: 970: 969: 964: 959: 954: 949: 939: 938: 934: 933: 914:(4): 353–366. 898: 863: 846: 793: 740: 695:(6): 451–458. 675: 662: 648: 646: 643: 642: 641: 634: 631: 629: 628: 623: 618: 613: 608: 603: 598: 593: 590: 584: 582: 579: 551: 550: 539: 535: 528: 519: 515: 511: 507: 502: 494: 490: 486: 482: 476: 472: 467: 463: 459: 454: 450: 446: 442: 438: 435: 431: 427: 424: 420: 412: 403: 399: 395: 389: 385: 379: 371: 367: 363: 357: 353: 347: 343: 339: 336: 330: 321: 317: 313: 307: 303: 297: 289: 285: 281: 275: 271: 265: 261: 257: 254: 248: 245: 241: 237: 234: 231: 216: 209: 201:. Because the 198: 191: 138: 135: 115:Koji Hukushima 111:Giorgio Parisi 67: 66: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 979: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 944: 942: 929: 925: 921: 917: 913: 909: 902: 899: 894: 890: 886: 882: 878: 874: 867: 864: 860: 856: 850: 847: 842: 838: 834: 830: 826: 822: 817: 812: 808: 804: 803:J. Chem. Phys 797: 794: 789: 785: 781: 777: 773: 769: 764: 759: 755: 751: 744: 741: 736: 732: 728: 724: 720: 716: 712: 708: 703: 698: 694: 690: 686: 679: 676: 672: 666: 663: 659: 653: 650: 644: 640: 637: 636: 632: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 591: 589: 586: 585: 580: 578: 575: 570: 566: 562: 559: 556: 537: 533: 526: 517: 513: 509: 505: 500: 492: 488: 484: 480: 474: 465: 461: 457: 452: 448: 440: 436: 433: 429: 422: 418: 410: 401: 397: 393: 387: 383: 377: 369: 365: 361: 355: 351: 345: 341: 337: 334: 328: 319: 315: 311: 305: 301: 295: 287: 283: 279: 273: 269: 263: 259: 255: 252: 246: 243: 239: 232: 229: 222: 221: 220: 215: 208: 204: 197: 190: 185: 183: 178: 174: 170: 165: 163: 160: 156: 152: 148: 144: 136: 134: 131: 126: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 83: 81: 77: 73: 63: 60: 52: 49:December 2021 42: 38: 32: 29:This article 27: 18: 17: 911: 907: 901: 876: 872: 866: 858: 849: 806: 802: 796: 753: 749: 743: 692: 688: 678: 670: 665: 652: 571: 567: 563: 560: 552: 213: 206: 203:Markov chain 195: 188: 186: 181: 172: 168: 166: 161: 141:Typically a 140: 129: 127: 86: 84: 71: 70: 55: 46: 30: 809:(3): 1754. 159:temperature 119:Koji Nemoto 957:Heuristics 941:Categories 861:, 7, 3910 645:References 177:histograms 137:Background 91:simulation 80:statistics 735:250781561 727:0295-5075 621:RASPA-2.0 501:− 458:− 378:− 346:− 338:⁡ 296:− 264:− 256:⁡ 928:11106113 841:13963102 788:15032087 633:See also 145:using a 89:), is a 881:Bibcode 821:Bibcode 768:Bibcode 707:Bibcode 611:GROMACS 606:Desmond 588:Abalone 76:physics 35:Please 926:  839:  786:  733:  725:  616:LAMMPS 601:CHARMM 155:energy 924:S2CID 837:S2CID 811:arXiv 784:S2CID 758:arXiv 731:S2CID 697:arXiv 596:AMBER 592:ACEMD 74:, in 723:ISSN 626:Orac 212:and 117:and 78:and 916:doi 889:doi 877:314 857:, 829:doi 807:110 776:doi 715:doi 426:min 335:exp 253:exp 236:min 113:, 39:to 943:: 922:. 910:. 887:. 875:. 835:. 827:. 819:. 805:. 782:. 774:. 766:. 754:65 752:. 729:. 721:. 713:. 705:. 693:19 691:. 687:. 930:. 918:: 912:6 895:. 891:: 883:: 843:. 831:: 823:: 813:: 790:. 778:: 770:: 760:: 737:. 717:: 709:: 699:: 538:, 534:) 527:) 518:j 514:T 510:k 506:1 493:i 489:T 485:k 481:1 475:( 471:) 466:j 462:E 453:i 449:E 445:( 441:e 437:, 434:1 430:( 423:= 419:) 411:) 402:j 398:T 394:k 388:j 384:E 370:i 366:T 362:k 356:i 352:E 342:( 329:) 320:j 316:T 312:k 306:i 302:E 288:i 284:T 280:k 274:j 270:E 260:( 247:, 244:1 240:( 233:= 230:p 217:2 214:T 210:1 207:T 199:2 196:T 192:1 189:T 182:T 180:Δ 173:T 169:T 162:T 130:N 62:) 56:( 51:) 47:( 33:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
physics
statistics
simulation
Monte Carlo method
Markov chain Monte Carlo
Robert Swendsen
Charles J. Geyer
Giorgio Parisi
Koji Hukushima
Koji Nemoto
molecular dynamics
Monte Carlo simulation
Metropolis–Hastings
stochastic process
energy
temperature
histograms
Markov chain
detailed balance
simulated annealing
Abalone
AMBER
CHARMM
Desmond
GROMACS
LAMMPS
RASPA-2.0

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑