Knowledge (XXG)

Spontaneous parametric down-conversion

Source đź“ť

82: 31: 133:
photon (the pump) and the two output photons (signal and idler). If the signal and idler photons share the same polarization with each other and with the destroyed pump photon it is deemed Type-0 SPDC; if the signal and idler photons share the same polarization to each other, but are orthogonal to the pump polarization, it is Type-I SPDC; and if the signal and idler photons have perpendicular polarizations, it is deemed Type II SPDC.
90: 157: 376:
of quantum uncertainty, the pair of emitted photons were assumed to be co-located: they are born from the same location. However, a new nonlocalized mechanism for the production of correlated photon pairs in SPDC has highlighted that occasionally the individual photons that constitute the pair can be emitted from spatially separated points.
95: 94: 91: 96: 375:
from electrically driven semiconductors has been proposed as a basis for more efficient sources of entangled photon pairs. Other than SPDC-generated photon pairs, the photons of a semiconductor-emitted pair usually are not identical but have different energies. Until recently, within the constraints
181:
whose axes are symmetrically arranged relative to the pump beam. Due to the conservation of momentum, the two photons are always symmetrically located on the sides of the cones, relative to the pump beam. In particular, the trajectories of a small proportion of photon pairs will lie simultaneously
132:
so that simultaneous energy and momentum conservation can be achieved. Phase-matching is most commonly achieved using birefringent nonlinear materials, whose index of refraction changes with polarization. As a result of this, different types of SPDC are categorized by the polarizations of the input
176:
crystal. Most of the photons continue straight through the crystal. However, occasionally, some of the photons undergo spontaneous down-conversion with Type II polarization correlation, and the resultant correlated photon pairs have trajectories that are constrained along the sides of two
93: 182:
on the two lines where the surfaces of the two cones intersect. This results in entanglement of the polarizations of the pairs of photons emerging on those two lines. The photon pairs are in an equal weight quantum superposition of the unentangled states
57:) is a nonlinear instant optical process that converts one photon of higher energy (namely, a pump photon) into a pair of photons (namely, a signal photon, and an idler photon) of lower energy, in accordance with the 92: 275:
Temperature and pressure sensitivity: The nonlinearity of the crystal can change with temperature and pressure, and thus the crystal should be kept in a stable temperature and pressure environment.
363:, in which information is combined from two light detectors: a conventional, multi-pixel detector that does not view the object, and a single-pixel (bucket) detector that does view the object. 250: 215: 140:
in waveguides. However, if one half of the pair is detected at any time then its partner is known to be present. The degenerate portion of the output of a Type I down converter is a
269:
Periodicity: The crystal has a regular, repeating structure. This is known as the lattice structure, which is responsible for the regular arrangement of the atoms in the crystal.
287:
High optical quality and low absorption: The crystal should be high optical quality and low absorption to minimize loss of the pump beam and the generated entangled photons.
284:
Transparency in the desired wavelength range: It is important for the crystal to be transparent in the wavelength range of the pump beam for efficient nonlinear interactions
404:
Lerch, Stefan; Bessire, Bänz; Bernhard, Christof; Feurer, Thomas; Stefanov, André (2013-04-01). "Tuning curve of type-0 spontaneous parametric down-conversion".
340:
containing (to a good approximation) a single photon. As of 2005, this is the predominant mechanism for an experimenter to create single photons (also known as
788:
Zavatta, Alessandro; Viciani, Silvia; Bellini, Marco (2004). "Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection".
124:, the pairs have combined energies and momenta equal to the energy and momentum of the original photon. Because the index of refraction changes with frequency ( 266:
Nonlinearity: The refractive index of the crystal changes with the intensity of the incident light. This is known as the nonlinear optical response.
616: 482: 136:
The conversion efficiency of SPDC is typically very low, with the highest efficiency obtained on the order of 4x10 incoming photons for
937:
Chluba, J.; Sunyaev, R. A. (2006). "Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination".
325: 278:
High nonlinear coefficient: Large nonlinear coefficient is desirable, this allow to generate a high number of entangled photons.
121: 62: 256: 1041: 359:
SPDC is widely used to create pairs of entangled photons with a high degree of spatial correlation. Such pairs are used in
841:
Walborn, S.P.; Monken, C.H.; Pádua, S.; Souto Ribeiro, P.H. (2010). "Spatial correlations in parametric down-conversion".
117: 81: 58: 281:
High optical damage threshold: Crystal with high optical damage threshold can endure high intensity of the pumping beam.
902:
Hayat, Alex; Ginzburg, Pavel; Orenstein, Meir (2008-03-02). "Observation of two-photon emission from semiconductors".
220: 185: 321: 691:"Study in Ammonium Dihydrogen Phosphate of Spontaneous Parametric Interaction Tunable from 4400 to 16 000 \AA{}" 1087: 141: 30: 733:
Ghosh, R.; Mandel, L. (1987). "Observation of Nonclassical Effects in the Interference of Two Photons".
353: 272:
Optical anisotropy: The crystal has different refractive indices along different crystallographic axes.
1056: 1006: 956: 860: 807: 742: 571: 511: 423: 349: 148:
number terms. The nondegenerate output of the Type II down converter is a two-mode squeezed vacuum.
385: 372: 345: 305: 125: 101: 70: 991: 500:"Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide" 972: 946: 884: 850: 823: 797: 447: 413: 259:) which is mostly used in Type I down conversion, where both photons have the same polarization. 498:
Bock, Matthias; Lenhard, Andreas; Chunnilall, Christopher; Becher, Christoph (17 October 2016).
262:
Some of the characteristics of effective parametric down-converting nonlinear crystals include:
34:
Schematic of SPDC process. Note that conservation laws are with respect to energy and momentum
1022: 919: 876: 758: 612: 607:
Anton Zeilinger (12 October 2010). "The super-source and closing the communication loophole".
589: 537: 529: 478: 474: 439: 313: 297: 633: 1064: 1014: 964: 960: 911: 868: 815: 750: 702: 671: 579: 519: 466: 431: 109: 178: 173: 17: 1060: 1010: 864: 811: 746: 575: 515: 427: 1092: 317: 301: 129: 66: 721:
Proceedings of the 2nd Int'l Symposium on Foundations of QM in Light of New Technology
690: 659: 635:
Quantum Interferometry with Multiports: Entangled Photons in Optical Fibers (page 115)
1081: 976: 888: 827: 467: 360: 337: 309: 304:, as well as by D. Magde and H. Mahr. It was first applied to experiments related to 169: 252:, corresponding to polarizations of left-hand side photon, right-hand side photon. 1018: 992:"Nonlocalized Generation of Correlated Photon Pairs in Degenerate Down-Conversion" 872: 451: 1040:
Forbes, Kayn A.; Ford, Jack S.; Jones, Garth A.; Andrews, David L. (2017-08-23).
968: 775: 754: 584: 559: 1068: 819: 706: 675: 555: 341: 165: 923: 880: 533: 443: 915: 435: 1026: 762: 593: 541: 951: 802: 524: 499: 156: 104:(in the red ring) amplified by SPDC (corresponding to the image above) 145: 113: 344:). The single photons as well as the photon pairs are often used in 855: 560:"New High-Intensity Source of Polarization-Entangled Photon Pairs" 418: 155: 88: 80: 990:
Forbes, Kayn A.; Ford, Jack S.; Andrews, David L. (2017-03-30).
137: 723:, Namiki et al., eds., Physical Society of Japan, Tokyo, 1986. 778:- Duality between partial coherence and partial entanglement 609:
Dance of the Photons: From Einstein to Quantum Teleportation
308:
by two independent pairs of researchers in the late 1980s:
660:"Observation of Tunable Optical Parametric Fluorescence" 658:
Harris, S. E.; Oshman, M. K.; Byer, R. L. (1967-05-01).
910:(4). Springer Science and Business Media LLC: 238–241. 223: 188: 164:In a commonly used SPDC apparatus design, a strong 1042:"Quantum delocalization in photon-pair generation" 244: 209: 128:), only certain triplets of frequencies will be 168:, termed the "pump" beam, is directed at a BBO 776:http://pra.aps.org/abstract/PRA/v62/i4/e043816 245:{\displaystyle \vert V\rangle \vert H\rangle } 210:{\displaystyle \vert H\rangle \vert V\rangle } 8: 689:Magde, Douglas; Mahr, Herbert (1967-05-22). 239: 233: 230: 224: 204: 198: 195: 189: 406:Journal of the Optical Society of America B 112:is used to produce pairs of photons from a 296:SPDC was demonstrated as early as 1967 by 950: 854: 801: 583: 523: 417: 222: 187: 29: 396: 160:An SPDC scheme with the Type II output 43:Spontaneous parametric down-conversion 473:. New York: Academic Press. pp.  85:An SPDC scheme with the Type I output 7: 328:) and biphoton emissions was found. 100:The video of an experiment showing 348:experiments and applications like 25: 336:SPDC allows for the creation of 65:. It is an important process in 469:Nonlinear Optics, Third Edition 122:law of conservation of momentum 63:law of conservation of momentum 1019:10.1103/PhysRevLett.118.133602 257:potassium dihydrogen phosphate 73:pairs, and of single photons. 1: 873:10.1016/j.physrep.2010.06.003 611:. Farrar, Straus and Giroux. 371:The newly observed effect of 118:law of conservation of energy 116:beam. In accordance with the 59:law of conservation of energy 755:10.1103/physrevlett.59.1903 585:10.1103/PhysRevLett.75.4337 326:Van Cittert–Zernike theorem 1109: 1069:10.1103/PhysRevA.96.023850 969:10.1051/0004-6361:20053988 939:Astronomy and Astrophysics 820:10.1103/PhysRevA.70.053821 707:10.1103/PhysRevLett.18.905 676:10.1103/PhysRevLett.18.732 18:Parametric down conversion 719:Y. Shih and C. Alley, in 255:Another crystal is KDP ( 144:that contains only even 69:, for the generation of 999:Physical Review Letters 961:2006A&A...446...39C 916:10.1038/nphoton.2008.28 695:Physical Review Letters 664:Physical Review Letters 436:10.1364/JOSAB.30.000953 51:parametric fluorescence 558:; et al. (1995). 246: 211: 161: 105: 86: 39: 465:Boyd, Robert (2008). 354:Bell test experiments 312:and Yanhua Shih, and 247: 212: 159: 99: 84: 55:parametric scattering 33: 525:10.1364/OE.24.023992 350:quantum cryptography 324:between incoherent ( 300:, M. K. Oshman, and 221: 186: 170:(beta-barium borate) 1061:2017PhRvA..96b3850F 1011:2017PhRvL.118m3602F 865:2010PhR...495...87W 812:2004PhRvA..70e3821Z 747:1987PhRvL..59.1903G 576:1995PhRvL..75.4337K 516:2016OExpr..2423992B 510:(21): 23992–24001. 428:2013JOSAB..30..953L 386:Photon upconversion 373:two-photon emission 346:quantum information 102:vacuum fluctuations 242: 207: 162: 106: 87: 40: 1049:Physical Review A 790:Physical Review A 741:(17): 1903–1905. 618:978-1-4299-6379-4 570:(24): 4337–4341. 484:978-0-12-369470-6 314:Rupamanjari Ghosh 110:nonlinear crystal 97: 16:(Redirected from 1100: 1073: 1072: 1046: 1037: 1031: 1030: 996: 987: 981: 980: 954: 952:astro-ph/0508144 934: 928: 927: 904:Nature Photonics 899: 893: 892: 858: 838: 832: 831: 805: 803:quant-ph/0406090 785: 779: 773: 767: 766: 730: 724: 717: 711: 710: 686: 680: 679: 655: 649: 648: 647: 645: 640: 629: 623: 622: 604: 598: 597: 587: 552: 546: 545: 527: 495: 489: 488: 472: 462: 456: 455: 421: 401: 251: 249: 248: 243: 216: 214: 213: 208: 98: 71:entangled photon 21: 1108: 1107: 1103: 1102: 1101: 1099: 1098: 1097: 1078: 1077: 1076: 1044: 1039: 1038: 1034: 994: 989: 988: 984: 936: 935: 931: 901: 900: 896: 849:(4–5): 87–139. 843:Physics Reports 840: 839: 835: 787: 786: 782: 774: 770: 735:Phys. Rev. Lett 732: 731: 727: 718: 714: 701:(21): 905–907. 688: 687: 683: 670:(18): 732–734. 657: 656: 652: 643: 641: 638: 631: 630: 626: 619: 606: 605: 601: 564:Phys. Rev. Lett 554: 553: 549: 497: 496: 492: 485: 464: 463: 459: 403: 402: 398: 394: 382: 369: 334: 294: 219: 218: 184: 183: 174:lithium niobate 154: 142:squeezed vacuum 89: 79: 45:(also known as 28: 27:Optical process 23: 22: 15: 12: 11: 5: 1106: 1104: 1096: 1095: 1090: 1088:Quantum optics 1080: 1079: 1075: 1074: 1032: 1005:(13): 133602. 982: 929: 894: 833: 780: 768: 725: 712: 681: 650: 624: 617: 599: 547: 504:Optics Express 490: 483: 457: 412:(4): 953–958. 395: 393: 390: 389: 388: 381: 378: 368: 365: 338:optical fields 333: 330: 318:Leonard Mandel 293: 290: 289: 288: 285: 282: 279: 276: 273: 270: 267: 241: 238: 235: 232: 229: 226: 206: 203: 200: 197: 194: 191: 153: 150: 78: 75: 67:quantum optics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1105: 1094: 1091: 1089: 1086: 1085: 1083: 1070: 1066: 1062: 1058: 1055:(2): 023850. 1054: 1050: 1043: 1036: 1033: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 993: 986: 983: 978: 974: 970: 966: 962: 958: 953: 948: 944: 940: 933: 930: 925: 921: 917: 913: 909: 905: 898: 895: 890: 886: 882: 878: 874: 870: 866: 862: 857: 852: 848: 844: 837: 834: 829: 825: 821: 817: 813: 809: 804: 799: 796:(5): 053821. 795: 791: 784: 781: 777: 772: 769: 764: 760: 756: 752: 748: 744: 740: 736: 729: 726: 722: 716: 713: 708: 704: 700: 696: 692: 685: 682: 677: 673: 669: 665: 661: 654: 651: 637: 636: 632:Reck, M H A, 628: 625: 620: 614: 610: 603: 600: 595: 591: 586: 581: 577: 573: 569: 565: 561: 557: 551: 548: 543: 539: 535: 531: 526: 521: 517: 513: 509: 505: 501: 494: 491: 486: 480: 476: 471: 470: 461: 458: 453: 449: 445: 441: 437: 433: 429: 425: 420: 415: 411: 407: 400: 397: 391: 387: 384: 383: 379: 377: 374: 366: 364: 362: 361:ghost imaging 357: 355: 351: 347: 343: 339: 331: 329: 327: 323: 319: 315: 311: 310:Carroll Alley 307: 303: 299: 291: 286: 283: 280: 277: 274: 271: 268: 265: 264: 263: 260: 258: 253: 236: 227: 201: 192: 180: 175: 171: 167: 158: 151: 149: 147: 143: 139: 134: 131: 130:phase-matched 127: 123: 119: 115: 111: 103: 83: 77:Basic process 76: 74: 72: 68: 64: 60: 56: 52: 48: 44: 37: 32: 19: 1052: 1048: 1035: 1002: 998: 985: 945:(1): 39–42. 942: 938: 932: 907: 903: 897: 846: 842: 836: 793: 789: 783: 771: 738: 734: 728: 720: 715: 698: 694: 684: 667: 663: 653: 642:, retrieved 634: 627: 608: 602: 567: 563: 550: 507: 503: 493: 468: 460: 409: 405: 399: 370: 367:Alternatives 358: 335: 332:Applications 298:S. E. Harris 295: 261: 254: 163: 135: 107: 54: 50: 46: 42: 41: 38:the crystal. 35: 644:16 February 342:Fock states 1082:Categories 392:References 302:R. L. Byer 166:laser beam 126:dispersion 977:119526307 924:1749-4885 889:119221135 881:0370-1573 856:1010.1236 828:119387795 534:1094-4087 444:0740-3224 419:1404.1192 306:coherence 240:⟩ 231:⟩ 205:⟩ 196:⟩ 1027:28409956 763:10035364 594:10059884 556:P. Kwiat 542:27828232 380:See also 1057:Bibcode 1007:Bibcode 957:Bibcode 861:Bibcode 808:Bibcode 743:Bibcode 572:Bibcode 512:Bibcode 424:Bibcode 322:duality 292:History 152:Example 1025:  975:  922:  887:  879:  826:  761:  615:  592:  540:  532:  481:  452:149192 450:  442:  320:. The 146:photon 114:photon 36:inside 1093:Light 1045:(PDF) 995:(PDF) 973:S2CID 947:arXiv 885:S2CID 851:arXiv 824:S2CID 798:arXiv 639:(PDF) 477:–88. 448:S2CID 414:arXiv 179:cones 1023:PMID 920:ISSN 877:ISSN 759:PMID 646:2014 613:ISBN 590:PMID 538:PMID 530:ISSN 479:ISBN 440:ISSN 352:and 316:and 217:and 138:PPLN 120:and 61:and 47:SPDC 1065:doi 1015:doi 1003:118 965:doi 943:446 912:doi 869:doi 847:495 816:doi 751:doi 703:doi 672:doi 580:doi 520:doi 432:doi 172:or 53:or 1084:: 1063:. 1053:96 1051:. 1047:. 1021:. 1013:. 1001:. 997:. 971:. 963:. 955:. 941:. 918:. 906:. 883:. 875:. 867:. 859:. 845:. 822:. 814:. 806:. 794:70 792:. 757:. 749:. 739:59 737:. 699:18 697:. 693:. 668:18 666:. 662:. 588:. 578:. 568:75 566:. 562:. 536:. 528:. 518:. 508:24 506:. 502:. 475:79 446:. 438:. 430:. 422:. 410:30 408:. 356:. 108:A 49:, 1071:. 1067:: 1059:: 1029:. 1017:: 1009:: 979:. 967:: 959:: 949:: 926:. 914:: 908:2 891:. 871:: 863:: 853:: 830:. 818:: 810:: 800:: 765:. 753:: 745:: 709:. 705:: 678:. 674:: 621:. 596:. 582:: 574:: 544:. 522:: 514:: 487:. 454:. 434:: 426:: 416:: 237:H 234:| 228:V 225:| 202:V 199:| 193:H 190:| 20:)

Index

Parametric down conversion

law of conservation of energy
law of conservation of momentum
quantum optics
entangled photon

vacuum fluctuations
nonlinear crystal
photon
law of conservation of energy
law of conservation of momentum
dispersion
phase-matched
PPLN
squeezed vacuum
photon

laser beam
(beta-barium borate)
lithium niobate
cones
potassium dihydrogen phosphate
S. E. Harris
R. L. Byer
coherence
Carroll Alley
Rupamanjari Ghosh
Leonard Mandel
duality

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑