Knowledge (XXG)

Parsimonious reduction

Source 📝

751:. Seta Takahiro provided a reduction from 3SAT to this problem when restricted to planar directed max degree-3 graphs. The reduction provides a bijection between the solutions to an instance of 3SAT and the solutions to an instance of Hamiltonian Cycle in planar directed max degree-3 graphs. Hence the reduction is parsimonious and Hamiltonian Cycle in planar directed max degree-3 graphs is #P-complete. Consequently, the general version of Hamiltonian Cycle problem must be #P-complete as well. 762:
is an example of how parsimonious reduction could be used in showing hardness of logic puzzles. The decision version of this problem asks whether there is a solution to a given instance of the puzzle. The counting version asks for the number of distinct solutions to such a problem. The reduction from
734:
This is the counting version of Planar 3SAT. The hardness reduction from 3SAT to Planar 3SAT given by Lichtenstein has the additional property that for every valid assignment of an instance of 3SAT, there is a unique valid assignment of the corresponding instance of Planar 3SAT, and vice versa. Hence
763:
Planar 3SAT given by Demaine, Okamoto, Uehara and Uno also provides a bijection between the set of solutions to an instance of Planar 3SAT and the set of solutions to the corresponding instance of Shakashaka. Hence the reduction is parsimonious, and the counting version of Shakashaka is #P-complete.
725:
form. Any valid assignment of a boolean formula is a valid assignment of the corresponding 3-CNF formula, and vice versa. Hence, this reduction preserves the number of satisfying assignments, and is a parsimonious reduction. Then, #SAT and #3SAT are counting equivalents, and #3SAT is #P-complete as
525:
are used; these are parsimonious reductions whose transformation is a fixed-parameter tractable algorithm and that map bounded parameter values to bounded parameter values by a computable function.
602: 365: 336: 676: 699: 653: 630: 573: 553: 465: 445: 425: 405: 385: 307: 287: 267: 247: 224: 204: 165: 141: 117: 97: 77: 57: 502:
Specific types of parsimonious reductions may be defined by the computational complexity or other properties of the transformation algorithm. For instance, a
178:. Additionally, they are used in game complexity, as a way to design hard puzzles that have a unique solution, as many types of puzzles require. 1003: 529: 888: 848: 799: 998: 20: 528:
Polynomial-time parsimonious reductions are a special case of a more general class of reductions for counting problems, the
484: 171: 875: 520: 515: 722: 491:. Because parsimonious reductions preserve the property of having a unique solution, they are also used in 948: 32: 883:, Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press, pp. 633–654, 953: 170:
Parsimonious reductions are commonly used in computational complexity for proving the hardness of
476: 925: 895: 884: 844: 838: 795: 789: 744: 338:. If such a reduction exists, and if we have an oracle that counts the number of solutions to 917: 969:"JAIST Repository: Computational complexity and an integer programming model of Shakashaka" 815: 702: 511: 499:
where the uniqueness of the solution is an important part of the definition of the puzzle.
39:
between the respective sets of solutions of two problems. A general reduction from problem
578: 507: 492: 480: 341: 312: 24: 658: 816:"Complexity and Completeness of Finding Another Solution and Its Application to Puzzles" 681: 635: 123:
solution and vice versa. A parsimonious reduction guarantees that for every solution of
968: 820:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
785: 748: 615: 612:
The class #P contains the counting versions of NP decision problems. Given an instance
558: 538: 450: 430: 410: 390: 370: 292: 272: 252: 232: 209: 189: 150: 126: 102: 82: 62: 42: 992: 555:
is parsimonious is to show that there is a bijection between the set of solutions to
871: 834: 945:
The Complexities of Puzzles, Cross Sum, and their Another Solution Problems (ASP)
867: 863: 759: 929: 735:
the reduction is parsimonious, and consequently Planar #3SAT is #P-complete.
604:
which guarantees that the number of solutions to both problems is the same.
36: 387:, then we can design an algorithm that counts the number of solutions to 427:. Consequently, if counting the number of solutions to the instances of 843:, EATCS Texts in Theoretical Computer Science, Springer, p. 363, 488: 175: 496: 483:, parsimonious reductions are important for proving completeness for 921: 908:
Lichtenstein, David (May 1982). "Planar Formulae and Their Uses".
718: 714: 35:) that preserves the number of solutions. Informally, it is a 747:
problem asks for the number of Hamiltonian cycles in a given
608:
Examples of parsimonious reduction in proving #P-completeness
870:(2009), "Chapter 20. Model Counting", in Biere, Armin; 535:
One common technique used in proving that a reduction
684: 661: 638: 618: 581: 561: 541: 453: 433: 413: 393: 373: 344: 315: 295: 275: 255: 235: 212: 192: 153: 129: 105: 85: 65: 45: 289:
is a reduction such that the number of solutions to
506:is one in which the transformation algorithm takes 31:is a transformation from one problem to another (a 791:Computational Complexity: A Conceptual Perspective 693: 670: 647: 624: 596: 567: 547: 459: 447:is hard, then counting the number of solutions to 439: 419: 399: 379: 359: 330: 301: 281: 261: 241: 218: 198: 159: 135: 111: 91: 79:is a transformation that guarantees that whenever 71: 51: 705:below rely on the fact that #SAT is #P-complete. 510:. These are the types of reduction used to prove 794:, Cambridge University Press, pp. 203–204, 309:is equal to the number of solutions to problem 8: 678:asks for the number of solutions to problem 780: 778: 776: 495:, to show the hardness of puzzles such as 174:, for counting complexity classes such as 952: 683: 660: 637: 617: 580: 560: 540: 452: 432: 412: 392: 372: 343: 314: 294: 274: 254: 234: 211: 191: 152: 128: 104: 84: 64: 44: 16:Notion in computational complexity theory 874:; van Maaren, Hans; Walsh, Toby (eds.), 717:. One can show that any boolean formula 814:Yato, Takayuki; Seta, Takahiro (2003), 772: 504:polynomial-time parsimonious reduction 7: 530:polynomial-time counting reductions 662: 14: 713:This is the counting version of 407:, the corresponding instance of 840:Parameterized Complexity Theory 21:computational complexity theory 591: 585: 354: 348: 325: 319: 1: 575:and the set of solutions to 485:counting complexity classes 1020: 877:Handbook of Satisfiability 632:of an NP decision problem 479:are important for proving 206:be an instance of problem 1004:Combinatorial game theory 910:SIAM Journal on Computing 743:The counting version of 516:parameterized complexity 367:which is an instance of 943:Seta, Takahiro (2001). 523:parsimonious reductions 999:Reduction (complexity) 822:, E86-A (5): 1052–1060 695: 672: 649: 626: 598: 569: 549: 467:must be hard as well. 461: 441: 421: 401: 381: 361: 332: 303: 283: 263: 243: 228:Parsimonious reduction 220: 200: 161: 137: 113: 93: 73: 53: 29:parsimonious reduction 866:; Sabharwal, Ashish; 696: 673: 650: 627: 599: 570: 550: 462: 442: 422: 402: 382: 362: 333: 304: 284: 264: 244: 221: 201: 162: 138: 114: 94: 74: 54: 894:. See in particular 682: 659: 636: 616: 597:{\displaystyle R(x)} 579: 559: 539: 451: 431: 411: 391: 371: 360:{\displaystyle R(x)} 342: 331:{\displaystyle R(x)} 313: 293: 273: 253: 233: 210: 190: 151: 127: 103: 83: 63: 43: 671:{\displaystyle \#x} 477:many-one reductions 973:dspace.jaist.ac.jp 721:as a formula in 3- 694:{\displaystyle x.} 691: 668: 648:{\displaystyle X,} 645: 622: 594: 565: 545: 457: 437: 417: 397: 377: 357: 328: 299: 279: 259: 239: 216: 196: 157: 133: 109: 89: 69: 49: 739:Hamiltonian Cycle 625:{\displaystyle x} 568:{\displaystyle x} 548:{\displaystyle R} 460:{\displaystyle Y} 440:{\displaystyle X} 420:{\displaystyle X} 400:{\displaystyle x} 380:{\displaystyle Y} 302:{\displaystyle x} 282:{\displaystyle Y} 262:{\displaystyle X} 242:{\displaystyle R} 219:{\displaystyle X} 199:{\displaystyle x} 182:Formal definition 172:counting problems 160:{\displaystyle B} 145:a unique solution 136:{\displaystyle A} 112:{\displaystyle B} 92:{\displaystyle A} 72:{\displaystyle B} 52:{\displaystyle A} 1011: 983: 982: 980: 979: 965: 959: 958: 956: 940: 934: 933: 905: 899: 893: 882: 860: 854: 853: 830: 824: 823: 811: 805: 804: 782: 719:can be rewritten 701:The examples of 700: 698: 697: 692: 677: 675: 674: 669: 654: 652: 651: 646: 631: 629: 628: 623: 603: 601: 600: 595: 574: 572: 571: 566: 554: 552: 551: 546: 466: 464: 463: 458: 446: 444: 443: 438: 426: 424: 423: 418: 406: 404: 403: 398: 386: 384: 383: 378: 366: 364: 363: 358: 337: 335: 334: 329: 308: 306: 305: 300: 288: 286: 285: 280: 268: 266: 265: 260: 248: 246: 245: 240: 225: 223: 222: 217: 205: 203: 202: 197: 167:and vice versa. 166: 164: 163: 158: 142: 140: 139: 134: 118: 116: 115: 110: 98: 96: 95: 90: 78: 76: 75: 70: 58: 56: 55: 50: 1019: 1018: 1014: 1013: 1012: 1010: 1009: 1008: 989: 988: 987: 986: 977: 975: 967: 966: 962: 942: 941: 937: 922:10.1137/0211025 907: 906: 902: 891: 880: 864:Gomes, Carla P. 862: 861: 857: 851: 832: 831: 827: 813: 812: 808: 802: 786:Goldreich, Oded 784: 783: 774: 769: 757: 741: 732: 711: 703:#P-completeness 680: 679: 657: 656: 634: 633: 614: 613: 610: 577: 576: 557: 556: 537: 536: 512:#P-Completeness 508:polynomial time 493:game complexity 481:NP-completeness 473: 449: 448: 429: 428: 409: 408: 389: 388: 369: 368: 340: 339: 311: 310: 291: 290: 271: 270: 251: 250: 231: 230: 208: 207: 188: 187: 184: 149: 148: 143:, there exists 125: 124: 101: 100: 99:has a solution 81: 80: 61: 60: 41: 40: 25:game complexity 17: 12: 11: 5: 1017: 1015: 1007: 1006: 1001: 991: 990: 985: 984: 960: 954:10.1.1.81.7891 935: 916:(2): 329–343. 900: 889: 855: 849: 825: 806: 800: 771: 770: 768: 765: 756: 753: 749:directed graph 740: 737: 731: 728: 710: 707: 690: 687: 667: 664: 644: 641: 621: 609: 606: 593: 590: 587: 584: 564: 544: 472: 469: 456: 436: 416: 396: 376: 356: 353: 350: 347: 327: 324: 321: 318: 298: 278: 258: 238: 215: 195: 183: 180: 156: 132: 108: 88: 68: 48: 15: 13: 10: 9: 6: 4: 3: 2: 1016: 1005: 1002: 1000: 997: 996: 994: 974: 970: 964: 961: 955: 950: 946: 939: 936: 931: 927: 923: 919: 915: 911: 904: 901: 897: 892: 890:9781586039295 886: 879: 878: 873: 872:Heule, Marijn 869: 865: 859: 856: 852: 850:9783540299530 846: 842: 841: 836: 829: 826: 821: 817: 810: 807: 803: 801:9781139472746 797: 793: 792: 787: 781: 779: 777: 773: 766: 764: 761: 754: 752: 750: 746: 738: 736: 729: 727: 724: 720: 716: 708: 706: 704: 688: 685: 665: 642: 639: 619: 607: 605: 588: 582: 562: 542: 533: 531: 526: 524: 522: 517: 513: 509: 505: 500: 498: 494: 490: 486: 482: 478: 470: 468: 454: 434: 414: 394: 374: 351: 345: 322: 316: 296: 276: 256: 249:from problem 236: 229: 213: 193: 181: 179: 177: 173: 168: 154: 146: 130: 122: 106: 86: 66: 46: 38: 34: 30: 26: 22: 976:. Retrieved 972: 963: 944: 938: 913: 909: 903: 876: 868:Selman, Bart 858: 839: 828: 819: 809: 790: 758: 742: 733: 730:Planar #3SAT 712: 655:the problem 611: 534: 527: 519: 503: 501: 474: 471:Applications 227: 185: 169: 144: 121:at least one 120: 28: 18: 896:pp. 634–635 269:to problem 59:to problem 993:Categories 978:2019-05-15 833:Flum, J.; 767:References 760:Shakashaka 755:Shakashaka 949:CiteSeerX 930:0097-5397 835:Grohe, M. 663:# 119:also has 37:bijection 33:reduction 837:(2006), 788:(2008), 487:such as 475:Just as 951:  928:  887:  847:  798:  726:well. 497:sudoku 881:(PDF) 709:#3SAT 514:. In 926:ISSN 885:ISBN 845:ISBN 796:ISBN 745:this 715:3SAT 226:. A 186:Let 27:, a 23:and 918:doi 723:CNF 521:FPT 147:of 19:In 995:: 971:. 947:. 924:. 914:11 912:. 818:, 775:^ 532:. 518:, 489:#P 176:#P 981:. 957:. 932:. 920:: 898:. 689:. 686:x 666:x 643:, 640:X 620:x 592:) 589:x 586:( 583:R 563:x 543:R 455:Y 435:X 415:X 395:x 375:Y 355:) 352:x 349:( 346:R 326:) 323:x 320:( 317:R 297:x 277:Y 257:X 237:R 214:X 194:x 155:B 131:A 107:B 87:A 67:B 47:A

Index

computational complexity theory
game complexity
reduction
bijection
counting problems
#P
many-one reductions
NP-completeness
counting complexity classes
#P
game complexity
sudoku
polynomial time
#P-Completeness
parameterized complexity
FPT
polynomial-time counting reductions
#P-completeness
3SAT
can be rewritten
CNF
this
directed graph
Shakashaka



Goldreich, Oded
Computational Complexity: A Conceptual Perspective
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.