Knowledge (XXG)

Peregrine soliton

Source đź“ť

520: 1037: 95: 20: 1090: 1816:
components, it has been shown that even with an approximate initial condition (in the case of this work, an initial sinusoidal beating), a profile very close to the ideal Peregrine soliton can be generated. However, the non-ideal input condition lead to substructures that appear after the point of
1101:. In fact, the evolution of light in fiber optics and the evolution of surface waves in deep water are both modelled by the nonlinear Schrödinger equation (note however that spatial and temporal variables have to be switched). Such an analogy has been exploited in the past in order to generate 73:
localization. Therefore, starting from a weak oscillation on a continuous background, the Peregrine soliton develops undergoing a progressive increase of its amplitude and a narrowing of its temporal duration. At the point of maximum compression, the amplitude is three times the level of the
1237: 811: 223: 978: 74:
continuous background (and if one considers the intensity as it is relevant in optics, there is a factor 9 between the peak intensity and the surrounding background). After this point of maximal compression, the wave's amplitude decreases and its width increases.
1113: 552: 1606: 109: 1097:
In 2010, more than 25 years after the initial work of Peregrine, researchers took advantage of the analogy that can be drawn between hydrodynamics and optics in order to generate Peregrine solitons in
849: 1696: 454: 1807: 81:. Therefore, the Peregrine soliton is an attractive hypothesis to explain the formation of those waves which have a high amplitude and may appear from nowhere and disappear without a trace. 302: 1299: 1266: 1997: 1319: 1026: 833: 509: 1639: 483: 1750: 1723: 1000: 545: 267: 2212:
Erkintalo, M.; Kibler, B.; Hammani, K.; Finot, C.; Akhmediev, N.; Dudley, J.M.; Genty, G. (2011). "Higher-Order Modulation Instability in Nonlinear Fiber Optics".
247: 1359: 1339: 2016:
Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. (2010). "The Peregrine soliton in nonlinear fibre optics".
102:
The Peregrine soliton is a solution of the one-dimensional nonlinear Schrödinger equation that can be written in normalized units as follows :
1232:{\displaystyle i{\frac {\partial \psi }{\partial z}}-{\frac {\beta _{2}}{2}}{\frac {\partial ^{2}\psi }{\partial t^{2}}}+\gamma |\psi |^{2}\psi =0} 1836:. In 2013, complementary experiments using a scale model of a chemical tanker ship have discussed the potential devastating effects on the ship. 806:{\displaystyle {\tilde {\psi }}(\eta ,\tau )={\frac {1}{\sqrt {2\pi }}}\int {\psi (\xi ,\tau )e^{i\eta \xi }d\xi }={\sqrt {2\pi }}e^{i\tau }\left} 1108:
More precisely, the nonlinear Schrödinger equation can be written in the context of optical fibers under the following dimensional form :
1002:, the modulus of the spectrum exhibits a typical triangular shape when plotted on a logarithmic scale. The broadest spectrum is obtained for 1370: 1069:
The Peregrine soliton can also be seen as the limiting case of the time-periodic Kuznetsov-Ma breather when the period tends to infinity.
1081:. This is however very different from where the Peregrine soliton has been for the first time experimentally generated and characterized. 218:{\displaystyle i{\frac {\partial \psi }{\partial \tau }}+{\frac {1}{2}}{\frac {\partial ^{2}\psi }{\partial \xi ^{2}}}+|\psi |^{2}\psi =0} 77:
These features of the Peregrine soliton are fully consistent with the quantitative criteria usually used in order to qualify a wave as a
1817:
maximum compression. Those substructures have also a profile close to a Peregrine soliton, which can be analytically explained using a
2470:
Bailung, H.; Sharma, S. K.; Nakamura, Y. (2011). "Observation of Peregrine solitons in a multicomponent plasma with negative ions".
1857: 46: 973:{\displaystyle |{\tilde {\psi }}(\eta ,\tau )|={\sqrt {2\pi }}\exp \left(-{\frac {|\eta |}{2}}{\sqrt {1+4\tau ^{2}}}\right).} 519: 1929:
Shrira, V.I.; Geogjaev, V.V. (2009). "What makes the Peregrine soliton so special as a prototype of freak waves ?".
1036: 316:(note that similar results could be obtained for a normally dispersive medium combined with a defocusing nonlinearity). 1848:
have also highlighted the emergence of Peregrine solitons in other fields ruled by the nonlinear Schrödinger equation.
1832:
These results in optics have been confirmed in 2011 in hydrodynamics with experiments carried out in a 15-m long water
1644: 325: 1755: 2534: 2386: 2266: 2079: 2524: 70: 2265:
Hammani K.; Wetzel B.; Kibler B.; Fatome J.; Finot C.; Millot G.; Akhmediev N. & Dudley J. M. (2011).
2033: 305: 1991: 1813: 54: 2163: 527:
It is also possible to mathematically express the Peregrine soliton according to the spatial frequency
272: 2539: 2479: 2424: 2334: 2281: 2221: 2178: 2094: 2025: 1963: 1271: 836: 2325:
Chabchoub, A.; Hoffmann, N.P.; Akhmediev, N. (2011). "Rogue wave observation in a water wave tank".
2038: 69:
that can maintain its profile unchanged during propagation, the Peregrine soliton presents a double
1873: 1818: 309: 2368: 2194: 2051: 98:
Spatial and temporal profiles of a Peregrine soliton obtained at the point of maximum compression
1948: 1244: 2519: 2495: 2452: 2408: 2360: 2307: 2247: 2120: 1089: 1057:
The Peregrine soliton can also be seen as the limiting case of the space-periodic Akhmediev
1028:, which corresponds to the maximum of compression of the spatio-temporal nonlinear structure. 42: 1304: 1005: 818: 488: 2487: 2442: 2432: 2350: 2342: 2297: 2289: 2237: 2229: 2186: 2110: 2102: 2078:
Hammani, K.; Kibler, B.; Finot, C.; Morin, P.; Fatome, J.; Dudley, J.M.; Millot, G. (2011).
2043: 1979: 1971: 1909: 1845: 1614: 1102: 462: 50: 1728: 1701: 985: 530: 252: 94: 232: 1077:
Mathematical predictions by H. Peregrine had initially been established in the domain of
2483: 2428: 2338: 2285: 2225: 2182: 2098: 2029: 1967: 2529: 2447: 2412: 2267:"Spectral dynamics of modulation instability described using Akhmediev breather theory" 2159: 1344: 1324: 843: 2513: 2198: 1098: 1078: 313: 2372: 2055: 19: 2491: 2346: 2233: 2190: 1975: 2437: 1364:
In this context, the Peregrine soliton has the following dimensional expression:
2413:"Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test" 2164:"Akhmediev breather evolution in optical fiber for realistic initial conditions" 2080:"Peregrine soliton generation and breakup in standard telecommunications fiber" 1914: 1897: 1867: 1833: 1824:
The typical triangular spectral shape has also been experimentally confirmed.
78: 2138: 2499: 2456: 2364: 2311: 2251: 2124: 2115: 1947:
Akhmediev, N., Ankiewicz, A., Soto-Crespo, J. M. and Dudley J. M. (2011).
2293: 2106: 1862: 1058: 37: 1983: 1361:
are the propagation distance and the temporal coordinate respectively.
66: 30: 2355: 2302: 2242: 2047: 1601:{\displaystyle \psi (z,t)={\sqrt {P_{0}}}\lefte^{\dfrac {iz}{L_{NL}}}} 1898:"Water waves, nonlinear Schrödinger equations and their solutions" 1268:
being the second order dispersion (supposed to be anomalous, i.e.
1088: 1035: 518: 93: 18: 1093:
Record of the temporal profile of a Peregrine soliton in optics
1949:"Universal triangular spectra in parametrically-driven systems" 23:
3D view of the spatio-temporal evolution of a Peregrine soliton
846:(with the constant continuous background here omitted) : 1049:
The Peregrine soliton is a first-order rational soliton.
459:
so that the temporal and spatial maxima are obtained for
16:
Analytic solution of the nonlinear Schrödinger equation
1758: 1731: 1704: 1665: 1647: 1617: 1571: 1527: 1487: 1444: 1373: 1347: 1327: 1307: 1274: 1247: 1116: 1008: 988: 852: 821: 555: 533: 491: 465: 328: 275: 255: 235: 112: 523:Evolution of the spectrum of the Peregrine soliton 1801: 1744: 1717: 1690: 1633: 1600: 1353: 1333: 1313: 1293: 1260: 1231: 1032:Different interpretations of the Peregrine soliton 1020: 994: 972: 827: 805: 539: 503: 477: 448: 296: 261: 241: 217: 53:, researcher at the mathematics department of the 1691:{\displaystyle L_{NL}={\dfrac {1}{\gamma P_{0}}}} 449:{\displaystyle \psi (\xi ,\tau )=\lefte^{i\tau }} 1802:{\displaystyle T_{0}={\sqrt {\beta _{2}L_{NL}}}} 2162:; Genty, G.; Wetzel, B.; Dudley, J. M. (2011). 1942: 1940: 1725:being the power of the continuous background. 1040:Peregrine soliton and other nonlinear solutions 8: 2073: 2071: 2069: 2067: 2065: 1996:: CS1 maint: multiple names: authors list ( 2011: 2009: 2007: 1891: 1889: 2446: 2436: 2354: 2301: 2241: 2114: 2037: 1913: 1788: 1778: 1772: 1763: 1757: 1736: 1730: 1709: 1703: 1678: 1664: 1652: 1646: 1622: 1616: 1585: 1570: 1552: 1536: 1526: 1509: 1496: 1486: 1453: 1443: 1420: 1401: 1395: 1372: 1346: 1326: 1306: 1279: 1273: 1252: 1246: 1214: 1209: 1200: 1185: 1167: 1160: 1149: 1143: 1120: 1115: 1007: 987: 954: 939: 928: 920: 917: 893: 885: 859: 858: 853: 851: 820: 770: 755: 744: 736: 733: 710: 677: 663: 649: 627: 604: 586: 557: 556: 554: 532: 490: 464: 437: 419: 403: 361: 327: 274: 254: 234: 200: 195: 186: 174: 156: 149: 139: 116: 111: 2139:"Peregrine's 'Soliton' observed at last" 319:The Peregrine analytical expression is: 49:. This solution was proposed in 1983 by 1885: 1321:being the nonlinear Kerr coefficient. 982:One can notice that for any given time 1989: 1844:Other experiments carried out in the 1840:Generation in other fields of physics 312:is anomalous and the nonlinearity is 308:of a surface wave in deep water. The 7: 1061:when the period tends to infinity. 1178: 1164: 1131: 1123: 167: 153: 127: 119: 65:Contrary to the usual fundamental 14: 1641:is a nonlinear length defined as 297:{\displaystyle \psi (\xi ,\tau )} 1294:{\displaystyle \beta _{2}<0} 2492:10.1103/physrevlett.107.255005 2347:10.1103/PhysRevLett.106.204502 2234:10.1103/PhysRevLett.107.253901 2191:10.1016/j.physleta.2011.04.002 1976:10.1016/j.physleta.2010.11.044 1858:Nonlinear Schrödinger equation 1812:By using exclusively standard 1389: 1377: 1210: 1201: 929: 921: 886: 882: 870: 864: 854: 795: 789: 745: 737: 620: 608: 580: 568: 562: 385: 367: 344: 332: 291: 279: 196: 187: 47:nonlinear Schrödinger equation 1: 90:In the spatio-temporal domain 2438:10.1371/journal.pone.0054629 1828:Generation in hydrodynamics 249:the spatial coordinate and 2556: 2407:Onorato, M.; Proment, D.; 1752:is a duration defined as 1261:{\displaystyle \beta _{2}} 1073:Experimental demonstration 1915:10.1017/S0334270000003891 1896:Peregrine, D. H. (1983). 1065:As a Kuznetsov-Ma soliton 269:the temporal coordinate. 1053:As an Akhmediev breather 2214:Physical Review Letters 1314:{\displaystyle \gamma } 1021:{\displaystyle \tau =0} 828:{\displaystyle \delta } 504:{\displaystyle \tau =0} 85:Mathematical expression 2387:"Rogue waves captured" 1803: 1746: 1719: 1692: 1635: 1634:{\displaystyle L_{NL}} 1602: 1355: 1335: 1315: 1295: 1262: 1233: 1094: 1041: 1022: 996: 974: 842:This corresponds to a 829: 807: 541: 524: 515:In the spectral domain 505: 479: 478:{\displaystyle \xi =0} 450: 298: 263: 243: 219: 99: 24: 2411:; Clauss, M. (2013). 2389:. www.sciencenews.org 2280:(2140–2142): 2140–2. 1902:J. Austral. Math. Soc 1814:optical communication 1804: 1747: 1745:{\displaystyle T_{0}} 1720: 1718:{\displaystyle P_{0}} 1693: 1636: 1603: 1356: 1336: 1316: 1296: 1263: 1234: 1092: 1045:As a rational soliton 1039: 1023: 997: 995:{\displaystyle \tau } 975: 830: 808: 542: 540:{\displaystyle \eta } 522: 506: 480: 451: 299: 264: 262:{\displaystyle \tau } 244: 220: 97: 55:University of Bristol 22: 2294:10.1364/OL.36.002140 2107:10.1364/OL.36.000112 1880:Notes and references 1756: 1729: 1702: 1645: 1615: 1371: 1345: 1325: 1305: 1272: 1245: 1114: 1085:Generation in optics 1006: 986: 850: 837:Dirac delta function 819: 553: 531: 489: 463: 326: 273: 253: 242:{\displaystyle \xi } 233: 110: 2484:2011PhRvL.107y5005B 2429:2013PLoSO...854629O 2339:2011PhRvL.106t4502C 2286:2011OptL...36.2140H 2226:2011PhRvL.107y3901E 2183:2011PhLA..375.2029E 2099:2011OptL...36..112H 2030:2010NatPh...6..790K 1968:2011PhLA..375..775A 1874:Optical rogue waves 1105:in optical fibers. 1846:physics of plasmas 1799: 1742: 1715: 1688: 1686: 1631: 1598: 1595: 1546: 1503: 1463: 1351: 1331: 1311: 1291: 1258: 1229: 1095: 1042: 1018: 992: 970: 825: 803: 537: 525: 501: 475: 446: 294: 259: 239: 215: 100: 25: 2177:(19): 2029–2034. 2048:10.1038/nphys1740 1797: 1685: 1594: 1559: 1545: 1502: 1462: 1407: 1354:{\displaystyle t} 1334:{\displaystyle z} 1192: 1158: 1138: 960: 937: 901: 867: 776: 753: 717: 716: 657: 599: 598: 565: 426: 181: 147: 134: 43:analytic solution 2547: 2535:Nonlinear optics 2504: 2503: 2467: 2461: 2460: 2450: 2440: 2404: 2398: 2397: 2395: 2394: 2383: 2377: 2376: 2358: 2322: 2316: 2315: 2305: 2271: 2262: 2256: 2255: 2245: 2209: 2203: 2202: 2168: 2156: 2150: 2149: 2147: 2146: 2135: 2129: 2128: 2118: 2084: 2075: 2060: 2059: 2041: 2013: 2002: 2001: 1995: 1987: 1953: 1944: 1935: 1934: 1926: 1920: 1919: 1917: 1893: 1821:transformation. 1808: 1806: 1805: 1800: 1798: 1796: 1795: 1783: 1782: 1773: 1768: 1767: 1751: 1749: 1748: 1743: 1741: 1740: 1724: 1722: 1721: 1716: 1714: 1713: 1697: 1695: 1694: 1689: 1687: 1684: 1683: 1682: 1666: 1660: 1659: 1640: 1638: 1637: 1632: 1630: 1629: 1607: 1605: 1604: 1599: 1597: 1596: 1593: 1592: 1580: 1572: 1565: 1561: 1560: 1558: 1557: 1556: 1551: 1547: 1544: 1543: 1528: 1514: 1513: 1508: 1504: 1501: 1500: 1488: 1470: 1469: 1465: 1464: 1461: 1460: 1445: 1421: 1408: 1406: 1405: 1396: 1360: 1358: 1357: 1352: 1340: 1338: 1337: 1332: 1320: 1318: 1317: 1312: 1300: 1298: 1297: 1292: 1284: 1283: 1267: 1265: 1264: 1259: 1257: 1256: 1238: 1236: 1235: 1230: 1219: 1218: 1213: 1204: 1193: 1191: 1190: 1189: 1176: 1172: 1171: 1161: 1159: 1154: 1153: 1144: 1139: 1137: 1129: 1121: 1103:optical solitons 1027: 1025: 1024: 1019: 1001: 999: 998: 993: 979: 977: 976: 971: 966: 962: 961: 959: 958: 940: 938: 933: 932: 924: 918: 902: 894: 889: 869: 868: 860: 857: 834: 832: 831: 826: 812: 810: 809: 804: 802: 798: 782: 778: 777: 775: 774: 756: 754: 749: 748: 740: 734: 718: 715: 714: 696: 695: 678: 671: 670: 658: 650: 645: 638: 637: 600: 591: 587: 567: 566: 558: 546: 544: 543: 538: 510: 508: 507: 502: 484: 482: 481: 476: 455: 453: 452: 447: 445: 444: 432: 428: 427: 425: 424: 423: 408: 407: 388: 362: 303: 301: 300: 295: 268: 266: 265: 260: 248: 246: 245: 240: 224: 222: 221: 216: 205: 204: 199: 190: 182: 180: 179: 178: 165: 161: 160: 150: 148: 140: 135: 133: 125: 117: 51:Howell Peregrine 2555: 2554: 2550: 2549: 2548: 2546: 2545: 2544: 2510: 2509: 2508: 2507: 2472:Phys. Rev. Lett 2469: 2468: 2464: 2406: 2405: 2401: 2392: 2390: 2385: 2384: 2380: 2327:Phys. Rev. Lett 2324: 2323: 2319: 2269: 2264: 2263: 2259: 2211: 2210: 2206: 2166: 2158: 2157: 2153: 2144: 2142: 2137: 2136: 2132: 2082: 2077: 2076: 2063: 2039:10.1.1.222.8599 2024:(10): 790–795. 2015: 2014: 2005: 1988: 1951: 1946: 1945: 1938: 1928: 1927: 1923: 1895: 1894: 1887: 1882: 1854: 1842: 1830: 1784: 1774: 1759: 1754: 1753: 1732: 1727: 1726: 1705: 1700: 1699: 1674: 1670: 1648: 1643: 1642: 1618: 1613: 1612: 1581: 1573: 1566: 1532: 1522: 1521: 1492: 1482: 1481: 1471: 1449: 1430: 1426: 1422: 1413: 1409: 1397: 1369: 1368: 1343: 1342: 1323: 1322: 1303: 1302: 1275: 1270: 1269: 1248: 1243: 1242: 1208: 1181: 1177: 1163: 1162: 1145: 1130: 1122: 1112: 1111: 1087: 1075: 1067: 1055: 1047: 1034: 1004: 1003: 984: 983: 950: 919: 913: 909: 848: 847: 817: 816: 766: 735: 729: 725: 706: 679: 676: 672: 659: 623: 551: 550: 529: 528: 517: 487: 486: 461: 460: 433: 415: 399: 389: 363: 354: 350: 324: 323: 271: 270: 251: 250: 231: 230: 194: 170: 166: 152: 151: 126: 118: 108: 107: 92: 87: 71:spatio-temporal 63: 61:Main properties 17: 12: 11: 5: 2553: 2551: 2543: 2542: 2537: 2532: 2527: 2525:Fluid dynamics 2522: 2512: 2511: 2506: 2505: 2478:(25): 255005. 2462: 2399: 2378: 2333:(20): 204502. 2317: 2257: 2220:(25): 253901. 2204: 2151: 2130: 2116:2027.42/149759 2093:(2): 112–114. 2087:Optics Letters 2061: 2018:Nature Physics 2003: 1962:(3): 775–779. 1936: 1921: 1884: 1883: 1881: 1878: 1877: 1876: 1871: 1865: 1860: 1853: 1850: 1841: 1838: 1829: 1826: 1794: 1791: 1787: 1781: 1777: 1771: 1766: 1762: 1739: 1735: 1712: 1708: 1681: 1677: 1673: 1669: 1663: 1658: 1655: 1651: 1628: 1625: 1621: 1610: 1609: 1591: 1588: 1584: 1579: 1576: 1569: 1564: 1555: 1550: 1542: 1539: 1535: 1531: 1525: 1520: 1517: 1512: 1507: 1499: 1495: 1491: 1485: 1480: 1477: 1474: 1468: 1459: 1456: 1452: 1448: 1442: 1439: 1436: 1433: 1429: 1425: 1419: 1416: 1412: 1404: 1400: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1350: 1330: 1310: 1290: 1287: 1282: 1278: 1255: 1251: 1228: 1225: 1222: 1217: 1212: 1207: 1203: 1199: 1196: 1188: 1184: 1180: 1175: 1170: 1166: 1157: 1152: 1148: 1142: 1136: 1133: 1128: 1125: 1119: 1099:optical fibers 1086: 1083: 1074: 1071: 1066: 1063: 1054: 1051: 1046: 1043: 1033: 1030: 1017: 1014: 1011: 991: 969: 965: 957: 953: 949: 946: 943: 936: 931: 927: 923: 916: 912: 908: 905: 900: 897: 892: 888: 884: 881: 878: 875: 872: 866: 863: 856: 824: 801: 797: 794: 791: 788: 785: 781: 773: 769: 765: 762: 759: 752: 747: 743: 739: 732: 728: 724: 721: 713: 709: 705: 702: 699: 694: 691: 688: 685: 682: 675: 669: 666: 662: 656: 653: 648: 644: 641: 636: 633: 630: 626: 622: 619: 616: 613: 610: 607: 603: 597: 594: 590: 585: 582: 579: 576: 573: 570: 564: 561: 536: 516: 513: 500: 497: 494: 474: 471: 468: 457: 456: 443: 440: 436: 431: 422: 418: 414: 411: 406: 402: 398: 395: 392: 387: 384: 381: 378: 375: 372: 369: 366: 360: 357: 353: 349: 346: 343: 340: 337: 334: 331: 293: 290: 287: 284: 281: 278: 258: 238: 227: 226: 214: 211: 208: 203: 198: 193: 189: 185: 177: 173: 169: 164: 159: 155: 146: 143: 138: 132: 129: 124: 121: 115: 91: 88: 86: 83: 62: 59: 15: 13: 10: 9: 6: 4: 3: 2: 2552: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2517: 2515: 2501: 2497: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2463: 2458: 2454: 2449: 2444: 2439: 2434: 2430: 2426: 2423:(2): e54629. 2422: 2418: 2414: 2410: 2403: 2400: 2388: 2382: 2379: 2374: 2370: 2366: 2362: 2357: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2321: 2318: 2313: 2309: 2304: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2261: 2258: 2253: 2249: 2244: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2208: 2205: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2171:Phys. Lett. A 2165: 2161: 2160:Erkintalo, M. 2155: 2152: 2140: 2134: 2131: 2126: 2122: 2117: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2074: 2072: 2070: 2068: 2066: 2062: 2057: 2053: 2049: 2045: 2040: 2035: 2031: 2027: 2023: 2019: 2012: 2010: 2008: 2004: 1999: 1993: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1956:Phys. Lett. A 1950: 1943: 1941: 1937: 1932: 1925: 1922: 1916: 1911: 1907: 1903: 1899: 1892: 1890: 1886: 1879: 1875: 1872: 1869: 1866: 1864: 1861: 1859: 1856: 1855: 1851: 1849: 1847: 1839: 1837: 1835: 1827: 1825: 1822: 1820: 1815: 1810: 1792: 1789: 1785: 1779: 1775: 1769: 1764: 1760: 1737: 1733: 1710: 1706: 1679: 1675: 1671: 1667: 1661: 1656: 1653: 1649: 1626: 1623: 1619: 1589: 1586: 1582: 1577: 1574: 1567: 1562: 1553: 1548: 1540: 1537: 1533: 1529: 1523: 1518: 1515: 1510: 1505: 1497: 1493: 1489: 1483: 1478: 1475: 1472: 1466: 1457: 1454: 1450: 1446: 1440: 1437: 1434: 1431: 1427: 1423: 1417: 1414: 1410: 1402: 1398: 1392: 1386: 1383: 1380: 1374: 1367: 1366: 1365: 1362: 1348: 1328: 1308: 1288: 1285: 1280: 1276: 1253: 1249: 1239: 1226: 1223: 1220: 1215: 1205: 1197: 1194: 1186: 1182: 1173: 1168: 1155: 1150: 1146: 1140: 1134: 1126: 1117: 1109: 1106: 1104: 1100: 1091: 1084: 1082: 1080: 1079:hydrodynamics 1072: 1070: 1064: 1062: 1060: 1052: 1050: 1044: 1038: 1031: 1029: 1015: 1012: 1009: 989: 980: 967: 963: 955: 951: 947: 944: 941: 934: 925: 914: 910: 906: 903: 898: 895: 890: 879: 876: 873: 861: 845: 840: 838: 822: 813: 799: 792: 786: 783: 779: 771: 767: 763: 760: 757: 750: 741: 730: 726: 722: 719: 711: 707: 703: 700: 697: 692: 689: 686: 683: 680: 673: 667: 664: 660: 654: 651: 646: 642: 639: 634: 631: 628: 624: 617: 614: 611: 605: 601: 595: 592: 588: 583: 577: 574: 571: 559: 548: 534: 521: 514: 512: 498: 495: 492: 472: 469: 466: 441: 438: 434: 429: 420: 416: 412: 409: 404: 400: 396: 393: 390: 382: 379: 376: 373: 370: 364: 358: 355: 351: 347: 341: 338: 335: 329: 322: 321: 320: 317: 315: 314:self-focusing 311: 307: 288: 285: 282: 276: 256: 236: 225: 212: 209: 206: 201: 191: 183: 175: 171: 162: 157: 144: 141: 136: 130: 122: 113: 105: 104: 103: 96: 89: 84: 82: 80: 75: 72: 68: 60: 58: 56: 52: 48: 44: 40: 39: 33: 32: 21: 2475: 2471: 2465: 2420: 2416: 2402: 2391:. Retrieved 2381: 2330: 2326: 2320: 2277: 2273: 2260: 2217: 2213: 2207: 2174: 2170: 2154: 2143:. Retrieved 2141:. bris.ac.uk 2133: 2090: 2086: 2021: 2017: 1992:cite journal 1959: 1955: 1931:J. Eng. Math 1930: 1924: 1905: 1901: 1843: 1831: 1823: 1811: 1611: 1363: 1240: 1110: 1107: 1096: 1076: 1068: 1056: 1048: 981: 841: 814: 549: 526: 458: 318: 228: 106: 101: 76: 64: 35: 28: 26: 2540:Water waves 1984:10261/63134 2514:Categories 2409:Clauss, G. 2393:2011-06-03 2356:1885/70717 2303:1885/68911 2243:1885/30263 2145:2010-08-24 1868:Rogue wave 835:being the 310:dispersion 304:being the 79:rogue wave 36:Peregrine 29:Peregrine 2274:Opt. Lett 2199:123250580 2034:CiteSeerX 1908:: 16–43. 1834:wave tank 1776:β 1672:γ 1418:− 1375:ψ 1309:γ 1277:β 1250:β 1221:ψ 1206:ψ 1198:γ 1179:∂ 1174:ψ 1165:∂ 1147:β 1141:− 1132:∂ 1127:ψ 1124:∂ 1010:τ 990:τ 952:τ 926:η 915:− 907:⁡ 899:π 880:τ 874:η 865:~ 862:ψ 823:δ 793:η 787:δ 784:− 768:τ 742:η 731:− 723:⁡ 708:τ 693:τ 668:τ 655:π 643:ξ 635:ξ 632:η 618:τ 612:ξ 606:ψ 602:∫ 596:π 578:τ 572:η 563:~ 560:ψ 535:η 493:τ 467:ξ 442:τ 417:τ 401:ξ 383:τ 359:− 342:τ 336:ξ 330:ψ 289:τ 283:ξ 277:ψ 257:τ 237:ξ 207:ψ 192:ψ 172:ξ 168:∂ 163:ψ 154:∂ 131:τ 128:∂ 123:ψ 120:∂ 2520:Solitons 2500:22243086 2457:23405086 2417:PLOS ONE 2373:12444306 2365:21668234 2312:21633475 2252:22243074 2125:21263470 2056:16176134 1863:Breather 1852:See also 1059:breather 306:envelope 41:) is an 38:breather 2480:Bibcode 2448:3566097 2425:Bibcode 2335:Bibcode 2282:Bibcode 2222:Bibcode 2179:Bibcode 2095:Bibcode 2026:Bibcode 1964:Bibcode 1819:Darboux 1241:with 844:modulus 67:soliton 45:of the 31:soliton 2498:  2455:  2445:  2371:  2363:  2310:  2250:  2197:  2123:  2054:  2036:  1698:with 1301:) and 2530:Waves 2369:S2CID 2270:(PDF) 2195:S2CID 2167:(PDF) 2083:(PDF) 2052:S2CID 1952:(PDF) 1904:. B. 1341:and 815:with 229:with 2496:PMID 2453:PMID 2361:PMID 2308:PMID 2248:PMID 2121:PMID 1998:link 1286:< 485:and 34:(or 27:The 2488:doi 2476:107 2443:PMC 2433:doi 2351:hdl 2343:doi 2331:106 2298:hdl 2290:doi 2238:hdl 2230:doi 2218:107 2187:doi 2175:375 2111:hdl 2103:doi 2044:doi 1980:hdl 1972:doi 1960:375 1910:doi 904:exp 720:exp 2516:: 2494:. 2486:. 2474:. 2451:. 2441:. 2431:. 2419:. 2415:. 2367:. 2359:. 2349:. 2341:. 2329:. 2306:. 2296:. 2288:. 2278:36 2276:. 2272:. 2246:. 2236:. 2228:. 2216:. 2193:. 2185:. 2173:. 2169:. 2119:. 2109:. 2101:. 2091:36 2089:. 2085:. 2064:^ 2050:. 2042:. 2032:. 2020:. 2006:^ 1994:}} 1990:{{ 1978:. 1970:. 1958:. 1954:. 1939:^ 1906:25 1900:. 1888:^ 1809:. 839:. 547:: 511:. 57:. 2502:. 2490:: 2482:: 2459:. 2435:: 2427:: 2421:8 2396:. 2375:. 2353:: 2345:: 2337:: 2314:. 2300:: 2292:: 2284:: 2254:. 2240:: 2232:: 2224:: 2201:. 2189:: 2181:: 2148:. 2127:. 2113:: 2105:: 2097:: 2058:. 2046:: 2028:: 2022:6 2000:) 1986:. 1982:: 1974:: 1966:: 1933:. 1918:. 1912:: 1870:, 1793:L 1790:N 1786:L 1780:2 1770:= 1765:0 1761:T 1738:0 1734:T 1711:0 1707:P 1680:0 1676:P 1668:1 1662:= 1657:L 1654:N 1650:L 1627:L 1624:N 1620:L 1608:. 1590:L 1587:N 1583:L 1578:z 1575:i 1568:e 1563:] 1554:2 1549:) 1541:L 1538:N 1534:L 1530:z 1524:( 1519:4 1516:+ 1511:2 1506:) 1498:0 1494:T 1490:t 1484:( 1479:4 1476:+ 1473:1 1467:) 1458:L 1455:N 1451:L 1447:z 1441:i 1438:2 1435:+ 1432:1 1428:( 1424:4 1415:1 1411:[ 1403:0 1399:P 1393:= 1390:) 1387:t 1384:, 1381:z 1378:( 1349:t 1329:z 1289:0 1281:2 1254:2 1227:0 1224:= 1216:2 1211:| 1202:| 1195:+ 1187:2 1183:t 1169:2 1156:2 1151:2 1135:z 1118:i 1016:0 1013:= 968:. 964:) 956:2 948:4 945:+ 942:1 935:2 930:| 922:| 911:( 896:2 891:= 887:| 883:) 877:, 871:( 855:| 800:] 796:) 790:( 780:) 772:2 764:4 761:+ 758:1 751:2 746:| 738:| 727:( 712:2 704:4 701:+ 698:1 690:i 687:2 684:+ 681:1 674:[ 665:i 661:e 652:2 647:= 640:d 629:i 625:e 621:) 615:, 609:( 593:2 589:1 584:= 581:) 575:, 569:( 499:0 496:= 473:0 470:= 439:i 435:e 430:] 421:2 413:4 410:+ 405:2 397:4 394:+ 391:1 386:) 380:i 377:2 374:+ 371:1 368:( 365:4 356:1 352:[ 348:= 345:) 339:, 333:( 292:) 286:, 280:( 213:0 210:= 202:2 197:| 188:| 184:+ 176:2 158:2 145:2 142:1 137:+ 114:i

Index


soliton
breather
analytic solution
nonlinear Schrödinger equation
Howell Peregrine
University of Bristol
soliton
spatio-temporal
rogue wave

envelope
dispersion
self-focusing

Dirac delta function
modulus

breather
hydrodynamics

optical fibers
optical solitons
optical communication
Darboux
wave tank
physics of plasmas
Nonlinear Schrödinger equation
Breather
Rogue wave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑