Knowledge (XXG)

Self-focusing

Source 📝

772: 1784: 481: 1496: 1211: 996: 2480:
results in the beams propagating divergence-free. Self-focusing in photopolymerizable media is possible, owing to a photoreaction dependent refractive index, and the fact that refractive index in polymers is proportional to molecular weight and crosslinking degree which increases over the duration of
2467:
Self-focusing can also been observed in a number of soft matter systems, such as solutions of polymers and particles as well as photo-polymers. Self-focusing was observed in photo-polymer systems with microscale laser beams of either UV or visible light. The self-trapping of incoherent light was also
2445:
the plasma frequency. For an electron density of 10 cm and radiation at the wavelength of 800 nm, the critical power is about 3 TW. Such values are realisable with modern lasers, which can exceed PW powers. For example, a laser delivering 50 fs pulses with an energy of 1 J has a peak power of 20
174:
is positive in most materials, the refractive index becomes larger in the areas where the intensity is higher, usually at the centre of a beam, creating a focusing density profile which potentially leads to the collapse of a beam on itself. Self-focusing beams have been found to naturally evolve into
2458:
Self-focusing can be induced by a permanent refractive index change resulting from a multi-pulse exposure. This effect has been observed in glasses which increase the refractive index during an exposure to ultraviolet laser radiation. Accumulated self-focusing develops as a wave guiding, rather than
59:
Self-focusing is often observed when radiation generated by femtosecond lasers propagates through many solids, liquids and gases. Depending on the type of material and on the intensity of the radiation, several mechanisms produce variations in the refractive index which result in self-focusing: the
3294:
Borisov, A. B.; Borovskiy, A. V.; Korobkin, V. V.; Prokhorov, A. M.; Shiryaev, O. B.; Shi, X. M.; Luk, T. S.; McPherson, A.; Solem, J. C.; Boyer, K.; Rhodes, C. K. (1992). "Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in
2416: 2073:
Advances in laser technology have recently enabled the observation of self-focusing in the interaction of intense laser pulses with plasmas. Self-focusing in plasma can occur through thermal, relativistic and ponderomotive effects. Thermal self-focusing is due to collisional heating of a plasma
268:
in vacuum and α is a constant which depends on the initial spatial distribution of the beam. Although there is no general analytical expression for α, its value has been derived numerically for many beam profiles. The lower limit is α ≈ 1.86225, which corresponds to Townes beams, whereas for a
2449:
Self-focusing in a plasma can balance the natural diffraction and channel a laser beam. Such effect is beneficial for many applications, since it helps increasing the length of the interaction between laser and medium. This is crucial, for example, in laser-driven particle acceleration,
767:{\displaystyle {\frac {\partial {{E}({\vec {\mathbf {r} }},t)}}{\partial z}}+{\frac {1}{c}}{\frac {\partial {{E}({\vec {\mathbf {r} }},t)}}{\partial t}}+{\frac {i}{2k}}\nabla _{\bot }^{2}E({\vec {\mathbf {r} }},t)=+ikn_{2}|E({\vec {\mathbf {r} }},t)|^{2}{{E}({\vec {\mathbf {r} }},t)}+} 1779:{\displaystyle {\frac {\partial {{E}({\vec {\mathbf {r} }},t)}}{\partial z}}+{\frac {1}{c}}{\frac {\partial {{E}({\vec {\mathbf {r} }},t)}}{\partial t}}+{\frac {i}{2k}}\nabla _{\bot }^{2}E({\vec {\mathbf {r} }},t)=+ikn_{2}|E({\vec {\mathbf {r} }},t)|^{2}{{E}({\vec {\mathbf {r} }},t)}} 1002: 778: 2459:
a lensing effect. The scale of actively forming beam filaments is a function of the exposure dose. Evolution of each beam filament towards a singularity is limited by the maximum induced refractive index change or by laser damage resistance of the glass.
1492:
is affected by modulational instability. The small perturbations caused by roughnesses and medium defects are amplified in propagation. This effect is referred to as Bespalov-Talanov instability. In a framework of nonlinear Schrödinger equation :
3338:
Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.; Dulieu, A.; Louis-Jacquet, M.; Malka, G.; Miquel, J. L. (1995). "Experimental Demonstration of Relativistic Self-Channeling of a Multiterawatt Laser Pulse in an Underdense Plasma".
1311: 1970: 475:
the refractive index is changed. "Red" detuning leads to an increased index of refraction during saturation of the resonant transition, i.e. to self-focusing, while for "blue" detuning the radiation is defocused during saturation:
17: 2266: 3050:
Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; André, Y.-B.; Mysyrowicz, A.; Sauerbrey, R.; Wolf, J.-P.; Wöste, L. (2003). "White-Light Filaments for Atmospheric Analysis".
307:
was developed to overcome the nonlinearities and damage of optical components that self-focusing would produce in the amplification of femtosecond laser pulses. On the other hand, self-focusing is a major mechanism behind
258: 2248: 3784:
Tabak, M.; Clark, D. S.; Hatchett, S. P.; Key, M. H.; Lasinski, B. F.; Snavely, R. A.; Wilks, S. C.; Town, R. P. J.; Stephens, R.; Campbell, E. M.; Kodama, R.; Mima, K.; Tanaka, K. A.; Atzeni, S.; Freeman, R. (2005).
3006:
Garcia, Hernando; Johnson, Anthony M.; Oguama, Ferdinand A.; Trivedi, Sudhir (2003). "New approach to the measurement of the nonlinear refractive index of short (< 25 m) lengths of silica and erbium-doped fibers".
2164: 51:
beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by
4127:
Basker, Dinesh K.; Brook, Michael A.; Saravanamuttu, Kalaichelvi (2015). "Spontaneous Emergence of Nonlinear Light Waves and Self-Inscribed Waveguide Microstructure during the Cationic Polymerization of Epoxides".
4064:
Biria, Saeid; Malley, Philip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016). "Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization".
1206:{\displaystyle {\frac {\partial {{N}({\vec {\mathbf {r} }},t)}}{\partial t}}=-{\frac {{N_{0}}({\vec {\mathbf {r} }})}{T_{1}}}-\sigma (\omega )N({\vec {\mathbf {r} }},t)|E({\vec {\mathbf {r} }},t)|^{2},} 991:{\displaystyle {\frac {\sigma N({\vec {\mathbf {r} }},t)}{2}}{{E}({\vec {\mathbf {r} }},t)},\nabla _{\bot }^{2}={\frac {\partial ^{2}}{{\partial x}^{2}}}+{\frac {\partial ^{2}}{{\partial y}^{2}}},} 4190:
Biria, Saeid; Hosein, Ian D. (2017-05-09). "Control of Morphology in Polymer Blends through Light Self-Trapping: An in Situ Study of Structure Evolution, Reaction Kinetics, and Phase Separation".
4092:
Burgess, Ian B.; Shimmell, Whitney E.; Saravanamuttu, Kalaichelvi (2007). "Spontaneous Pattern Formation Due to Modulation Instability of Incoherent White Light in a Photopolymerizable Medium".
2021: 4155:
Biria, Saeid; Malley, Phillip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016). "Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring".
2063: 3663:
Faure, J.; Malka, V.; Marquès, J.-R.; David, P.-G.; Amiranoff, F.; Ta Phuoc, K.; Rousse, A. (2002). "Effects of pulse duration on self-focusing of ultra-short lasers in underdense plasmas".
1360: 1490: 423: 2963:
Nibbering, E. T. J.; Grillon, G.; Franco, M. A.; Prade, B. S.; Mysyrowicz, A. (1997). "Determination of the inertial contribution to the nonlinear refractive index of air, N
2260:
The evaluation of the contribution and interplay of these processes is a complex task, but a reference threshold for plasma self-focusing is the relativistic critical power
143: 1837: 2074:
exposed to electromagnetic radiation: the rise in temperature induces a hydrodynamic expansion which leads to an increase of the index of refraction and further heating.
473: 377: 446: 350: 1414: 1387: 1218: 1842: 1807: 1434: 303:
Kerr-induced self-focusing is crucial for many applications in laser physics, both as a key ingredient and as a limiting factor. For example, the technique of
94: 2257:, which pushes electrons away from the region where the laser beam is more intense, therefore increasing the refractive index and inducing a focusing effect. 2411:{\displaystyle P_{cr}={\frac {m_{e}^{2}c^{5}\omega ^{2}}{e^{2}\omega _{p}^{2}}}\simeq 17{\bigg (}{\frac {\omega }{\omega _{p}}}{\bigg )}^{2}\ {\textrm {GW}}} 3147:
Stibenz, Gero; Zhavoronkov, Nickolai; Steinmeyer, Günter (2006). "Self-compression of millijoule pulses to 78 fs duration in a white-light filament".
3577:
Pizzo, V Del; Luther-Davies, B (1979). "Evidence of filamentation (self-focusing) of a laser beam propagating in a laser-produced aluminium plasma".
188: 76:, a non-linear process which arises in media exposed to intense electromagnetic radiation, and which produces a variation of the refractive index 2184: 2094: 4281: 3930:
Biria, Saeid (2017). "Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives".
3464:
Max, Claire Ellen; Arons, Jonathan; Langdon, A. Bruce (1974). "Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas".
3620:
Del Pizzo, V.; Luther-Davies, B.; Siegrist, M. R. (1979). "Self-focussing of a laser beam in a multiply ionized, absorbing plasma".
2831:
Rashidian Vaziri, M R (2013). "Describing the propagation of intense laser pulses in nonlinear Kerr media using the ducting model".
4018:
Yamashita, T.; Kagami, M. (2005). "Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile".
3236:
Okulov, A Yu; Oraevskiĭ, A N (1988). "Compensation of self-focusing distortions in quasiresonant amplification of a light pulse".
1972:. Generalization of this link between Bespalov-Talanov increments and filament size in gain medium as a function of linear gain 47:
intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a
2874:
Moll, K. D.; Gaeta, Alexander L.; Fibich, Gadi (2003). "Self-Similar Optical Wave Collapse: Observation of the Townes Profile".
2743:
Garmire, E.; Chiao, R. Y.; Townes, C. H. (1966). "Dynamics and Characteristics of the Self-Trapping of Intense Light Beams".
178:
Self-focusing beyond a threshold of power can lead to laser collapse and damage to the medium, which occurs if the radiation
2574:
Rashidian Vaziri, M.R. (2015). "Comment on 'Nonlinear refraction measurements of materials using the moiré deflectometry'".
1975: 2026: 68:
Kerr-induced self-focusing was first predicted in the 1960s and experimentally verified by studying the interaction of
304: 2920:
Fibich, Gadi; Gaeta, Alexander L. (2000). "Critical power for self-focusing in bulk media and in hollow waveguides".
3698:
Sun, Guo-Zheng; Ott, Edward; Lee, Y. C.; Guzdar, Parvez (1987). "Self-focusing of short intense pulses in plasmas".
2468:
later observed. Self-focusing can also be observed in wide-area beams, wherein the beam undergoes filamentation, or
1316: 1447: 4306: 4301: 40: 382: 3542:
Kaw, P.; Schmidt, G.; Wilcox, T. (1973). "Filamentation and trapping of electromagnetic radiation in plasmas".
2469: 24:
is focused as in a convex lens. In self-focusing, the refractive index gradient is induced by the light itself.
2708:
Lallemand, P.; Bloembergen, N. (1965). "Self-Focusing of Laser Beams and Stimulated Raman Gain in Liquids".
3733:
Malka, V; Faure, J; Glinec, Y; Lifschitz, A.F (2006). "Laser-plasma accelerator: Status and perspectives".
2077:
Relativistic self-focusing is caused by the mass increase of electrons travelling at speed approaching the
4311: 3068: 329: 3786: 309: 21: 3838: 4199: 4027: 3984: 3902: 3801: 3742: 3707: 3672: 3629: 3586: 3551: 3508: 3473: 3438: 3395: 3348: 3304: 3245: 3207: 3156: 3121: 3073: 3060: 3016: 2980: 2929: 2883: 2840: 2797: 2752: 2717: 2682: 2644: 2583: 2548: 2490: 2473: 313: 2539:
Mourou, Gerard A.; Tajima, Toshiki; Bulanov, Sergei V. (2006). "Optics in the relativistic regime".
99: 2254: 164: 73: 4233:
Askadskii, A.A (1990). "Influence of crosslinking density on the properties of polymer networks".
3735:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
3429:
Perkins, F. W.; Valeo, E. J. (1974). "Thermal Self-Focusing of Electromagnetic Waves in Plasmas".
1812: 288:≈ 2.4 GW, corresponding to an energy of about 0.3 mJ for a pulse duration of 100 fs. For silica, n 4043: 3871: 3766: 3645: 3602: 3524: 3180: 3094: 2856: 451: 355: 3889:
Khrapko, Rostislav; Lai, Changyi; Casey, Julie; Wood, William A.; Borrelli, Nicholas F. (2014).
4277: 4215: 4172: 4109: 4000: 3947: 3758: 3411: 3364: 3320: 3172: 3086: 3032: 2945: 2899: 2813: 2171: 431: 335: 4269: 4242: 4207: 4164: 4137: 4101: 4074: 4035: 3992: 3939: 3910: 3861: 3853: 3817: 3809: 3750: 3715: 3680: 3637: 3594: 3559: 3516: 3481: 3446: 3403: 3356: 3312: 3253: 3215: 3164: 3129: 3078: 3024: 2988: 2937: 2891: 2848: 2805: 2768: 2760: 2725: 2690: 2652: 2591: 2556: 2518: 2179: 1306:{\displaystyle \sigma (\omega )={\frac {\sigma _{0}}{1+T_{2}^{2}(\omega _{0}-\omega )^{2}}}} 317: 36: 32: 3272: 2610: 1965:{\displaystyle h^{2}=\kappa ^{2}(n_{2}|E({\vec {\mathbf {r} }},t)|^{2}-\kappa ^{2}/4k^{2})} 1392: 1365: 2477: 179: 53: 3969: 3198:
Cerullo, Giulio; De Silvestri, Sandro (2003). "Ultrafast optical parametric amplifiers".
2852: 4203: 4031: 3988: 3906: 3805: 3746: 3711: 3676: 3633: 3590: 3555: 3512: 3477: 3442: 3399: 3352: 3308: 3249: 3211: 3160: 3125: 3064: 3020: 2984: 2933: 2887: 2844: 2801: 2756: 2721: 2686: 2648: 2587: 2552: 2078: 1792: 1419: 79: 44: 4295: 4246: 3857: 3649: 3606: 3598: 3528: 3520: 3112:
Couairon, A; Mysyrowicz, A (2007). "Femtosecond filamentation in transparent media".
2860: 2430: 270: 4047: 3875: 3770: 3257: 3184: 3098: 2635:
Chiao, R. Y.; Garmire, E.; Townes, C. H. (1964). "Self-Trapping of Optical Beams".
3133: 2895: 4211: 4168: 2595: 3450: 3407: 3360: 3316: 2809: 2729: 2694: 425:
is governed in gain medium by the nonlinear Schrödinger-Frantz-Nodvik equation.
320:, parametric generation, and many areas of laser-matter interaction in general. 3485: 2764: 2656: 4273: 3382:
Mori, W. B.; Joshi, C.; Dawson, J. M.; Forslund, D. W.; Kindel, J. M. (1988).
2560: 265: 69: 4219: 4141: 4078: 2522: 2472:, spontaneous dividing into a multitude of microscale self-focused beams, or 4039: 3082: 2992: 2773: 253:{\displaystyle P_{\text{cr}}=\alpha {\frac {\lambda ^{2}}{4\pi n_{0}n_{2}}}} 4176: 4113: 4004: 3970:"Self-focusing and self-trapping of optical beams upon photopolymerization" 3951: 3762: 3754: 3415: 3368: 3324: 3176: 3090: 3036: 2949: 2903: 2817: 2243:{\displaystyle \omega _{p}={\sqrt {\frac {ne^{2}}{\gamma m\epsilon _{0}}}}} 2788:
Gaeta, Alexander L. (2000). "Catastrophic Collapse of Ultrashort Pulses".
2159:{\displaystyle n_{rel}={\sqrt {1-{\frac {\omega _{p}^{2}}{\omega ^{2}}}}}} 3996: 3866: 3499:
Pukhov, Alexander (2003). "Strong field interaction of laser radiation".
3168: 3028: 2941: 2611:"Cerenkov Radiation and Transition Radiation from Electromagnetic Waves" 3641: 3384:"Evolution of self-focusing of intense electromagnetic waves in plasma" 4105: 3943: 3915: 3890: 3822: 3813: 3684: 3563: 3219: 159:
are the linear and non-linear components of the refractive index, and
16: 3719: 3383: 60:
main cases are Kerr-induced self-focusing and plasma self-focusing.
1416:
are longitudinal and transverse lifetimes of two-level medium and
332:
two-level atoms may focus or defocus light when carrier frequency
48: 3891:"Accumulated self-focusing of ultraviolet light in silica glass" 1789:
The rate of the perturbation growth or instability increment
2971:
by use of unfocused high-intensity femtosecond laser pulses".
2509:
Cumberbatch, E. (1970). "Self-focusing in Non-linear Optics".
3273:"Filamentary Structure of Light Beams in Nonlinear Liquids" 284:≈ 4×10 m/W for λ = 800 nm, and the critical power is P 1362:
is the population inversion density before pulse arrival,
2673:
Kelley, P. L. (1965). "Self-Focusing of Optical Beams".
2437:
the speed of light, ω the radiation angular frequency,
379:. Laser pulse propagation with slowly varying envelope 4264:
Carrigan, Richard A.; Ellison, James A., eds. (1987).
352:
is detuned downward or upward the center of gain line
2269: 2187: 2097: 2029: 1978: 1845: 1815: 1795: 1499: 1450: 1422: 1395: 1368: 1319: 1221: 1005: 781: 484: 454: 434: 385: 358: 338: 191: 102: 82: 43:. A medium whose refractive index increases with the 3231: 3229: 175:
a Townes profile regardless of their initial shape.
2668: 2666: 2450:laser-fusion schemes and high harmonic generation. 2016:{\displaystyle {\sigma N({\vec {\mathbf {r} }},t)}} 2410: 2242: 2158: 2058:{\displaystyle \delta \omega =\omega _{0}-\omega } 2057: 2015: 1964: 1831: 1801: 1778: 1484: 1428: 1408: 1381: 1354: 1305: 1205: 990: 766: 467: 440: 417: 371: 344: 252: 137: 88: 72:with glasses and liquids. Its origin lies in the 2387: 2362: 2463:Self-focusing in soft matter and polymer systems 3963: 3961: 2615:Journal of Experimental and Theoretical Physics 1355:{\displaystyle {N_{0}}({\vec {\mathbf {r} }})} 4059: 4057: 2915: 2913: 2253:Ponderomotive self-focusing is caused by the 2081:, which modifies the plasma refractive index 1444:The laser beam with a smooth spatial profile 8: 2534: 2532: 1485:{\displaystyle {E}({\vec {\mathbf {r} }},t)} 3968:Kewitsch, Anthony S.; Yariv, Amnon (1996). 2973:Journal of the Optical Society of America B 2630: 2628: 2476:. The balance of self-focusing and natural 324:Self-focusing and defocusing in gain medium 1313:is the stimulated emission cross section, 418:{\displaystyle E({\vec {\mathbf {r} }},t)} 316:in transparent media, self-compression of 3914: 3865: 3821: 3072: 2772: 2402: 2401: 2392: 2386: 2385: 2376: 2367: 2361: 2360: 2345: 2340: 2330: 2318: 2308: 2298: 2293: 2286: 2274: 2268: 2230: 2212: 2201: 2192: 2186: 2146: 2136: 2131: 2125: 2117: 2102: 2096: 2043: 2028: 1992: 1990: 1989: 1979: 1977: 1953: 1941: 1935: 1922: 1917: 1896: 1894: 1893: 1882: 1876: 1863: 1850: 1844: 1820: 1814: 1794: 1755: 1753: 1752: 1744: 1743: 1737: 1732: 1711: 1709: 1708: 1697: 1691: 1655: 1653: 1652: 1640: 1635: 1616: 1581: 1579: 1578: 1570: 1569: 1563: 1553: 1518: 1516: 1515: 1507: 1506: 1500: 1498: 1462: 1460: 1459: 1451: 1449: 1421: 1400: 1394: 1373: 1367: 1338: 1336: 1335: 1325: 1320: 1318: 1294: 1278: 1265: 1260: 1243: 1237: 1220: 1194: 1189: 1168: 1166: 1165: 1154: 1134: 1132: 1131: 1102: 1083: 1081: 1080: 1070: 1065: 1062: 1024: 1022: 1021: 1013: 1012: 1006: 1004: 977: 969: 962: 956: 945: 937: 930: 924: 915: 910: 882: 880: 879: 871: 870: 861: 842: 797: 795: 794: 782: 780: 740: 738: 737: 729: 728: 722: 717: 696: 694: 693: 682: 676: 640: 638: 637: 625: 620: 601: 566: 564: 563: 555: 554: 548: 538: 503: 501: 500: 492: 491: 485: 483: 459: 453: 433: 395: 393: 392: 384: 363: 357: 337: 296:≈ 2.4×10 m/W, and the critical power is P 241: 231: 214: 208: 196: 190: 126: 113: 101: 81: 4094:Journal of the American Chemical Society 3839:"Relativistic laser plasma interactions" 15: 2501: 3846:Journal of Physics D: Applied Physics 3787:"Review of progress in Fast Ignition" 3579:Journal of Physics D: Applied Physics 3238:Soviet Journal of Quantum Electronics 7: 4130:The Journal of Physical Chemistry C 4067:The Journal of Physical Chemistry C 448:is detuned downward or upward from 182:is greater than the critical power 4268:. NATO ASI Series. Vol. 165. 3271:Bespalov, VI; Talanov, VI (1966). 2511:IMA Journal of Applied Mathematics 1636: 1632: 1604: 1566: 1541: 1503: 1047: 1009: 970: 959: 938: 927: 911: 907: 621: 617: 589: 551: 526: 488: 14: 35:process induced by the change in 3200:Review of Scientific Instruments 1993: 1897: 1756: 1712: 1656: 1582: 1519: 1463: 1339: 1169: 1135: 1084: 1025: 883: 798: 741: 697: 641: 567: 504: 396: 39:of materials exposed to intense 4020:Journal of Lightwave Technology 3258:10.1070/QE1988v018n02ABEH011482 2178:the relativistically corrected 3501:Reports on Progress in Physics 2853:10.1088/1054-660X/23/10/105401 2009: 1997: 1986: 1959: 1918: 1913: 1901: 1890: 1883: 1869: 1772: 1760: 1749: 1733: 1728: 1716: 1705: 1698: 1672: 1660: 1649: 1598: 1586: 1575: 1535: 1523: 1512: 1479: 1467: 1456: 1349: 1343: 1332: 1291: 1271: 1231: 1225: 1190: 1185: 1173: 1162: 1155: 1151: 1139: 1128: 1122: 1116: 1094: 1088: 1077: 1041: 1029: 1018: 899: 887: 876: 867: 854: 835: 823: 814: 802: 791: 757: 745: 734: 718: 713: 701: 690: 683: 657: 645: 634: 583: 571: 560: 520: 508: 497: 412: 400: 389: 138:{\displaystyle n=n_{0}+n_{2}I} 1: 3134:10.1016/j.physrep.2006.12.005 2896:10.1103/PhysRevLett.90.203902 1809:is linked with filament size 4247:10.1016/0032-3950(90)90361-9 4212:10.1021/acs.macromol.7b00484 4169:10.1021/acsmacrolett.6b00659 2596:10.1016/j.optcom.2014.09.017 1832:{\displaystyle \kappa ^{-1}} 96:as described by the formula 3451:10.1103/PhysRevLett.32.1234 3408:10.1103/PhysRevLett.60.1298 3361:10.1103/PhysRevLett.74.2953 3317:10.1103/PhysRevLett.68.2309 2810:10.1103/PhysRevLett.84.3582 2730:10.1103/PhysRevLett.15.1010 2695:10.1103/PhysRevLett.15.1005 468:{\displaystyle \omega _{0}} 372:{\displaystyle \omega _{0}} 305:chirped pulse amplification 4328: 3858:10.1088/0022-3727/36/8/202 3837:Umstadter, Donald (2003). 3599:10.1088/0022-3727/12/8/005 3521:10.1088/0034-4885/66/1/202 3486:10.1103/PhysRevLett.33.209 2765:10.1103/PhysRevLett.16.347 2657:10.1103/PhysRevLett.13.479 2088:according to the equation 64:Kerr-induced self-focusing 4274:10.1007/978-1-4757-6394-2 2609:Askar'yan, G. A. (1962). 2561:10.1103/RevModPhys.78.309 2541:Reviews of Modern Physics 2454:Accumulated self-focusing 2441:the electron charge and ω 2170:where ω is the radiation 1436:is the propagation axis. 264:where λ is the radiation 41:electromagnetic radiation 4142:10.1021/acs.jpcc.5b07117 4079:10.1021/acs.jpcc.5b11377 2065:had been realized in . 167:of the radiation. Since 20:Light passing through a 4266:Relativistic Channeling 4235:Polymer Science U.S.S.R 4040:10.1109/JLT.2005.850783 3895:Applied Physics Letters 3466:Physical Review Letters 3431:Physical Review Letters 3388:Physical Review Letters 3341:Physical Review Letters 3297:Physical Review Letters 3083:10.1126/science.1085020 2993:10.1364/JOSAB.14.000650 2876:Physical Review Letters 2790:Physical Review Letters 2745:Physical Review Letters 2710:Physical Review Letters 2675:Physical Review Letters 2637:Physical Review Letters 441:{\displaystyle \omega } 345:{\displaystyle \omega } 330:homogeneously broadened 318:ultrashort laser pulses 3755:10.1098/rsta.2005.1725 2523:10.1093/imamat/6.3.250 2481:photo-polymerization. 2470:Modulation Instability 2412: 2244: 2160: 2059: 2017: 1966: 1833: 1803: 1780: 1486: 1430: 1410: 1383: 1356: 1307: 1207: 992: 768: 469: 442: 419: 373: 346: 328:Kelley predicted that 254: 139: 90: 25: 2576:Optics Communications 2413: 2245: 2161: 2060: 2018: 1967: 1839:via simple equation: 1834: 1804: 1781: 1487: 1431: 1411: 1409:{\displaystyle T_{2}} 1384: 1382:{\displaystyle T_{1}} 1357: 1308: 1208: 993: 769: 470: 443: 420: 374: 347: 310:Kerr-lens modelocking 255: 140: 91: 19: 3997:10.1364/ol.21.000024 3169:10.1364/OL.31.000274 3029:10.1364/OL.28.001796 2942:10.1364/OL.25.000335 2491:Filament propagation 2267: 2185: 2095: 2069:Plasma self-focusing 2027: 1976: 1843: 1813: 1793: 1497: 1448: 1420: 1393: 1366: 1317: 1219: 1003: 779: 482: 452: 432: 383: 356: 336: 189: 100: 80: 4204:2017MaMol..50.3617B 4032:2005JLwT...23.2542Y 3989:1996OptL...21...24K 3907:2014ApPhL.105x4110K 3806:2005PhPl...12e7305T 3747:2006RSPTA.364..601M 3712:1987PhFl...30..526S 3677:2002PhPl....9..756F 3634:1979ApPhy..18..199D 3591:1979JPhD...12.1261D 3556:1973PhFl...16.1522K 3513:2003RPPh...66...47P 3478:1974PhRvL..33..209M 3443:1974PhRvL..32.1234P 3400:1988PhRvL..60.1298M 3353:1995PhRvL..74.2953M 3309:1992PhRvL..68.2309B 3250:1988QuEle..18..233O 3212:2003RScI...74....1C 3161:2006OptL...31..274S 3126:2007PhR...441...47C 3065:2003Sci...301...61K 3021:2003OptL...28.1796G 2985:1997JOSAB..14..650N 2934:2000OptL...25..335F 2888:2003PhRvL..90t3902M 2845:2013LaPhy..23j5401R 2802:2000PhRvL..84.3582G 2757:1966PhRvL..16..347G 2722:1965PhRvL..15.1010L 2687:1965PhRvL..15.1005K 2649:1964PhRvL..13..479C 2588:2015OptCo.357..200R 2553:2006RvMP...78..309M 2350: 2303: 2255:ponderomotive force 2141: 1645: 1270: 920: 630: 314:laser filamentation 74:optical Kerr effect 22:gradient-index lens 3794:Physics of Plasmas 3665:Physics of Plasmas 3642:10.1007/BF00934416 2408: 2336: 2289: 2240: 2156: 2127: 2055: 2013: 1962: 1829: 1799: 1776: 1631: 1482: 1426: 1406: 1379: 1352: 1303: 1256: 1203: 988: 906: 764: 616: 465: 438: 415: 369: 342: 250: 135: 86: 33:non-linear optical 26: 4283:978-1-4419-3207-5 4157:ACS Macro Letters 4106:10.1021/ja068967b 3944:10.1063/1.5001821 3916:10.1063/1.4904098 3814:10.1063/1.1871246 3700:Physics of Fluids 3685:10.1063/1.1447556 3564:10.1063/1.1694552 3544:Physics of Fluids 3394:(13): 1298–1301. 3347:(15): 2953–2956. 3303:(15): 2309–2312. 3220:10.1063/1.1523642 2681:(26): 1005–1008. 2405: 2400: 2382: 2352: 2238: 2237: 2172:angular frequency 2154: 2152: 2000: 1904: 1802:{\displaystyle h} 1763: 1719: 1663: 1629: 1611: 1589: 1561: 1548: 1526: 1470: 1429:{\displaystyle z} 1346: 1301: 1176: 1142: 1108: 1091: 1054: 1032: 983: 951: 890: 821: 805: 748: 704: 648: 614: 596: 574: 546: 533: 511: 403: 248: 199: 89:{\displaystyle n} 4319: 4307:Plasma phenomena 4302:Nonlinear optics 4287: 4251: 4250: 4230: 4224: 4223: 4198:(9): 3617–3626. 4187: 4181: 4180: 4152: 4146: 4145: 4124: 4118: 4117: 4089: 4083: 4082: 4061: 4052: 4051: 4015: 4009: 4008: 3974: 3965: 3956: 3955: 3927: 3921: 3920: 3918: 3886: 3880: 3879: 3869: 3843: 3834: 3828: 3827: 3825: 3791: 3781: 3775: 3774: 3741:(1840): 601–10. 3730: 3724: 3723: 3720:10.1063/1.866349 3695: 3689: 3688: 3660: 3654: 3653: 3617: 3611: 3610: 3574: 3568: 3567: 3539: 3533: 3532: 3496: 3490: 3489: 3461: 3455: 3454: 3426: 3420: 3419: 3379: 3373: 3372: 3335: 3329: 3328: 3291: 3285: 3284: 3268: 3262: 3261: 3233: 3224: 3223: 3195: 3189: 3188: 3144: 3138: 3137: 3109: 3103: 3102: 3076: 3074:10.1.1.1028.4581 3047: 3041: 3040: 3003: 2997: 2996: 2960: 2954: 2953: 2917: 2908: 2907: 2871: 2865: 2864: 2828: 2822: 2821: 2785: 2779: 2778: 2776: 2774:2060/19660014476 2740: 2734: 2733: 2705: 2699: 2698: 2670: 2661: 2660: 2632: 2623: 2622: 2606: 2600: 2599: 2571: 2565: 2564: 2536: 2527: 2526: 2506: 2417: 2415: 2414: 2409: 2407: 2406: 2403: 2398: 2397: 2396: 2391: 2390: 2383: 2381: 2380: 2368: 2366: 2365: 2353: 2351: 2349: 2344: 2335: 2334: 2324: 2323: 2322: 2313: 2312: 2302: 2297: 2287: 2282: 2281: 2249: 2247: 2246: 2241: 2239: 2236: 2235: 2234: 2218: 2217: 2216: 2203: 2202: 2197: 2196: 2180:plasma frequency 2165: 2163: 2162: 2157: 2155: 2153: 2151: 2150: 2140: 2135: 2126: 2118: 2113: 2112: 2064: 2062: 2061: 2056: 2048: 2047: 2022: 2020: 2019: 2014: 2012: 2002: 2001: 1996: 1991: 1971: 1969: 1968: 1963: 1958: 1957: 1945: 1940: 1939: 1927: 1926: 1921: 1906: 1905: 1900: 1895: 1886: 1881: 1880: 1868: 1867: 1855: 1854: 1838: 1836: 1835: 1830: 1828: 1827: 1808: 1806: 1805: 1800: 1785: 1783: 1782: 1777: 1775: 1765: 1764: 1759: 1754: 1748: 1742: 1741: 1736: 1721: 1720: 1715: 1710: 1701: 1696: 1695: 1665: 1664: 1659: 1654: 1644: 1639: 1630: 1628: 1617: 1612: 1610: 1602: 1601: 1591: 1590: 1585: 1580: 1574: 1564: 1562: 1554: 1549: 1547: 1539: 1538: 1528: 1527: 1522: 1517: 1511: 1501: 1491: 1489: 1488: 1483: 1472: 1471: 1466: 1461: 1455: 1435: 1433: 1432: 1427: 1415: 1413: 1412: 1407: 1405: 1404: 1388: 1386: 1385: 1380: 1378: 1377: 1361: 1359: 1358: 1353: 1348: 1347: 1342: 1337: 1331: 1330: 1329: 1312: 1310: 1309: 1304: 1302: 1300: 1299: 1298: 1283: 1282: 1269: 1264: 1248: 1247: 1238: 1212: 1210: 1209: 1204: 1199: 1198: 1193: 1178: 1177: 1172: 1167: 1158: 1144: 1143: 1138: 1133: 1109: 1107: 1106: 1097: 1093: 1092: 1087: 1082: 1076: 1075: 1074: 1063: 1055: 1053: 1045: 1044: 1034: 1033: 1028: 1023: 1017: 1007: 997: 995: 994: 989: 984: 982: 981: 976: 967: 966: 957: 952: 950: 949: 944: 935: 934: 925: 919: 914: 902: 892: 891: 886: 881: 875: 866: 865: 847: 846: 822: 817: 807: 806: 801: 796: 783: 773: 771: 770: 765: 760: 750: 749: 744: 739: 733: 727: 726: 721: 706: 705: 700: 695: 686: 681: 680: 650: 649: 644: 639: 629: 624: 615: 613: 602: 597: 595: 587: 586: 576: 575: 570: 565: 559: 549: 547: 539: 534: 532: 524: 523: 513: 512: 507: 502: 496: 486: 474: 472: 471: 466: 464: 463: 447: 445: 444: 439: 424: 422: 421: 416: 405: 404: 399: 394: 378: 376: 375: 370: 368: 367: 351: 349: 348: 343: 259: 257: 256: 251: 249: 247: 246: 245: 236: 235: 219: 218: 209: 201: 200: 197: 144: 142: 141: 136: 131: 130: 118: 117: 95: 93: 92: 87: 37:refractive index 4327: 4326: 4322: 4321: 4320: 4318: 4317: 4316: 4292: 4291: 4290: 4284: 4263: 4259: 4254: 4232: 4231: 4227: 4189: 4188: 4184: 4163:(11): 1237–41. 4154: 4153: 4149: 4126: 4125: 4121: 4100:(15): 4738–46. 4091: 4090: 4086: 4063: 4062: 4055: 4017: 4016: 4012: 3972: 3967: 3966: 3959: 3929: 3928: 3924: 3888: 3887: 3883: 3841: 3836: 3835: 3831: 3789: 3783: 3782: 3778: 3732: 3731: 3727: 3697: 3696: 3692: 3662: 3661: 3657: 3622:Applied Physics 3619: 3618: 3614: 3576: 3575: 3571: 3541: 3540: 3536: 3498: 3497: 3493: 3463: 3462: 3458: 3428: 3427: 3423: 3381: 3380: 3376: 3337: 3336: 3332: 3293: 3292: 3288: 3270: 3269: 3265: 3235: 3234: 3227: 3197: 3196: 3192: 3146: 3145: 3141: 3120:(2–4): 47–189. 3114:Physics Reports 3111: 3110: 3106: 3049: 3048: 3044: 3005: 3004: 3000: 2970: 2966: 2962: 2961: 2957: 2919: 2918: 2911: 2873: 2872: 2868: 2830: 2829: 2825: 2787: 2786: 2782: 2742: 2741: 2737: 2707: 2706: 2702: 2672: 2671: 2664: 2634: 2633: 2626: 2608: 2607: 2603: 2573: 2572: 2568: 2538: 2537: 2530: 2508: 2507: 2503: 2499: 2487: 2478:beam divergence 2465: 2456: 2444: 2427: 2384: 2372: 2326: 2325: 2314: 2304: 2288: 2270: 2265: 2264: 2226: 2219: 2208: 2204: 2188: 2183: 2182: 2177: 2142: 2098: 2093: 2092: 2086: 2071: 2039: 2025: 2024: 1974: 1973: 1949: 1931: 1916: 1872: 1859: 1846: 1841: 1840: 1816: 1811: 1810: 1791: 1790: 1731: 1687: 1621: 1603: 1565: 1540: 1502: 1495: 1494: 1446: 1445: 1442: 1418: 1417: 1396: 1391: 1390: 1369: 1364: 1363: 1321: 1315: 1314: 1290: 1274: 1249: 1239: 1217: 1216: 1188: 1098: 1066: 1064: 1046: 1008: 1001: 1000: 968: 958: 936: 926: 857: 838: 784: 777: 776: 716: 672: 606: 588: 550: 525: 487: 480: 479: 455: 450: 449: 430: 429: 381: 380: 359: 354: 353: 334: 333: 326: 299: 295: 291: 287: 283: 279: 237: 227: 220: 210: 192: 187: 186: 173: 158: 151: 122: 109: 98: 97: 78: 77: 66: 54:Gurgen Askaryan 12: 11: 5: 4325: 4323: 4315: 4314: 4309: 4304: 4294: 4293: 4289: 4288: 4282: 4260: 4258: 4255: 4253: 4252: 4241:(10): 2061–9. 4225: 4192:Macromolecules 4182: 4147: 4119: 4084: 4073:(8): 4517–28. 4053: 4010: 3977:Optics Letters 3957: 3938:(10): 104611. 3922: 3901:(24): 244110. 3881: 3852:(8): R151–65. 3829: 3776: 3725: 3690: 3655: 3628:(2): 199–204. 3612: 3585:(8): 1261–73. 3569: 3534: 3491: 3456: 3421: 3374: 3330: 3286: 3283:(12): 307–310. 3263: 3225: 3190: 3149:Optics Letters 3139: 3104: 3059:(5629): 61–4. 3042: 3015:(19): 1796–8. 3009:Optics Letters 2998: 2968: 2964: 2955: 2922:Optics Letters 2909: 2882:(20): 203902. 2866: 2839:(10): 105401. 2823: 2796:(16): 3582–5. 2780: 2735: 2700: 2662: 2624: 2601: 2566: 2528: 2500: 2498: 2495: 2494: 2493: 2486: 2483: 2464: 2461: 2455: 2452: 2442: 2425: 2420: 2419: 2395: 2389: 2379: 2375: 2371: 2364: 2359: 2356: 2348: 2343: 2339: 2333: 2329: 2321: 2317: 2311: 2307: 2301: 2296: 2292: 2285: 2280: 2277: 2273: 2233: 2229: 2225: 2222: 2215: 2211: 2207: 2200: 2195: 2191: 2175: 2168: 2167: 2149: 2145: 2139: 2134: 2130: 2124: 2121: 2116: 2111: 2108: 2105: 2101: 2084: 2079:speed of light 2070: 2067: 2054: 2051: 2046: 2042: 2038: 2035: 2032: 2011: 2008: 2005: 1999: 1995: 1988: 1985: 1982: 1961: 1956: 1952: 1948: 1944: 1938: 1934: 1930: 1925: 1920: 1915: 1912: 1909: 1903: 1899: 1892: 1889: 1885: 1879: 1875: 1871: 1866: 1862: 1858: 1853: 1849: 1826: 1823: 1819: 1798: 1774: 1771: 1768: 1762: 1758: 1751: 1747: 1740: 1735: 1730: 1727: 1724: 1718: 1714: 1707: 1704: 1700: 1694: 1690: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1662: 1658: 1651: 1648: 1643: 1638: 1634: 1627: 1624: 1620: 1615: 1609: 1606: 1600: 1597: 1594: 1588: 1584: 1577: 1573: 1568: 1560: 1557: 1552: 1546: 1543: 1537: 1534: 1531: 1525: 1521: 1514: 1510: 1505: 1481: 1478: 1475: 1469: 1465: 1458: 1454: 1441: 1438: 1425: 1403: 1399: 1376: 1372: 1351: 1345: 1341: 1334: 1328: 1324: 1297: 1293: 1289: 1286: 1281: 1277: 1273: 1268: 1263: 1259: 1255: 1252: 1246: 1242: 1236: 1233: 1230: 1227: 1224: 1202: 1197: 1192: 1187: 1184: 1181: 1175: 1171: 1164: 1161: 1157: 1153: 1150: 1147: 1141: 1137: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1105: 1101: 1096: 1090: 1086: 1079: 1073: 1069: 1061: 1058: 1052: 1049: 1043: 1040: 1037: 1031: 1027: 1020: 1016: 1011: 987: 980: 975: 972: 965: 961: 955: 948: 943: 940: 933: 929: 923: 918: 913: 909: 905: 901: 898: 895: 889: 885: 878: 874: 869: 864: 860: 856: 853: 850: 845: 841: 837: 834: 831: 828: 825: 820: 816: 813: 810: 804: 800: 793: 790: 787: 763: 759: 756: 753: 747: 743: 736: 732: 725: 720: 715: 712: 709: 703: 699: 692: 689: 685: 679: 675: 671: 668: 665: 662: 659: 656: 653: 647: 643: 636: 633: 628: 623: 619: 612: 609: 605: 600: 594: 591: 585: 582: 579: 573: 569: 562: 558: 553: 545: 542: 537: 531: 528: 522: 519: 516: 510: 506: 499: 495: 490: 462: 458: 437: 414: 411: 408: 402: 398: 391: 388: 366: 362: 341: 325: 322: 297: 293: 289: 285: 281: 277: 262: 261: 244: 240: 234: 230: 226: 223: 217: 213: 207: 204: 195: 171: 156: 149: 134: 129: 125: 121: 116: 112: 108: 105: 85: 65: 62: 45:electric field 13: 10: 9: 6: 4: 3: 2: 4324: 4313: 4312:Laser science 4310: 4308: 4305: 4303: 4300: 4299: 4297: 4285: 4279: 4275: 4271: 4267: 4262: 4261: 4256: 4248: 4244: 4240: 4236: 4229: 4226: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4193: 4186: 4183: 4178: 4174: 4170: 4166: 4162: 4158: 4151: 4148: 4143: 4139: 4136:(35): 20606. 4135: 4131: 4123: 4120: 4115: 4111: 4107: 4103: 4099: 4095: 4088: 4085: 4080: 4076: 4072: 4068: 4060: 4058: 4054: 4049: 4045: 4041: 4037: 4033: 4029: 4026:(8): 2542–8. 4025: 4021: 4014: 4011: 4006: 4002: 3998: 3994: 3990: 3986: 3982: 3978: 3971: 3964: 3962: 3958: 3953: 3949: 3945: 3941: 3937: 3933: 3926: 3923: 3917: 3912: 3908: 3904: 3900: 3896: 3892: 3885: 3882: 3877: 3873: 3868: 3867:2027.42/48918 3863: 3859: 3855: 3851: 3847: 3840: 3833: 3830: 3824: 3819: 3815: 3811: 3807: 3803: 3800:(5): 057305. 3799: 3795: 3788: 3780: 3777: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3744: 3740: 3736: 3729: 3726: 3721: 3717: 3713: 3709: 3705: 3701: 3694: 3691: 3686: 3682: 3678: 3674: 3670: 3666: 3659: 3656: 3651: 3647: 3643: 3639: 3635: 3631: 3627: 3623: 3616: 3613: 3608: 3604: 3600: 3596: 3592: 3588: 3584: 3580: 3573: 3570: 3565: 3561: 3557: 3553: 3549: 3545: 3538: 3535: 3530: 3526: 3522: 3518: 3514: 3510: 3507:(1): 47–101. 3506: 3502: 3495: 3492: 3487: 3483: 3479: 3475: 3471: 3467: 3460: 3457: 3452: 3448: 3444: 3440: 3436: 3432: 3425: 3422: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3385: 3378: 3375: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3334: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3290: 3287: 3282: 3278: 3274: 3267: 3264: 3259: 3255: 3251: 3247: 3243: 3239: 3232: 3230: 3226: 3221: 3217: 3213: 3209: 3205: 3201: 3194: 3191: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3140: 3135: 3131: 3127: 3123: 3119: 3115: 3108: 3105: 3100: 3096: 3092: 3088: 3084: 3080: 3075: 3070: 3066: 3062: 3058: 3054: 3046: 3043: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3002: 2999: 2994: 2990: 2986: 2982: 2979:(3): 650–60. 2978: 2974: 2959: 2956: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2916: 2914: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2870: 2867: 2862: 2858: 2854: 2850: 2846: 2842: 2838: 2834: 2833:Laser Physics 2827: 2824: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2784: 2781: 2775: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2739: 2736: 2731: 2727: 2723: 2719: 2715: 2711: 2704: 2701: 2696: 2692: 2688: 2684: 2680: 2676: 2669: 2667: 2663: 2658: 2654: 2650: 2646: 2642: 2638: 2631: 2629: 2625: 2620: 2616: 2612: 2605: 2602: 2597: 2593: 2589: 2585: 2581: 2577: 2570: 2567: 2562: 2558: 2554: 2550: 2546: 2542: 2535: 2533: 2529: 2524: 2520: 2517:(3): 250–62. 2516: 2512: 2505: 2502: 2496: 2492: 2489: 2488: 2484: 2482: 2479: 2475: 2471: 2462: 2460: 2453: 2451: 2447: 2440: 2436: 2432: 2431:electron mass 2428: 2393: 2377: 2373: 2369: 2357: 2354: 2346: 2341: 2337: 2331: 2327: 2319: 2315: 2309: 2305: 2299: 2294: 2290: 2283: 2278: 2275: 2271: 2263: 2262: 2261: 2258: 2256: 2251: 2231: 2227: 2223: 2220: 2213: 2209: 2205: 2198: 2193: 2189: 2181: 2173: 2147: 2143: 2137: 2132: 2128: 2122: 2119: 2114: 2109: 2106: 2103: 2099: 2091: 2090: 2089: 2087: 2080: 2075: 2068: 2066: 2052: 2049: 2044: 2040: 2036: 2033: 2030: 2023:and detuning 2006: 2003: 1983: 1980: 1954: 1950: 1946: 1942: 1936: 1932: 1928: 1923: 1910: 1907: 1887: 1877: 1873: 1864: 1860: 1856: 1851: 1847: 1824: 1821: 1817: 1796: 1787: 1769: 1766: 1745: 1738: 1725: 1722: 1702: 1692: 1688: 1684: 1681: 1678: 1675: 1669: 1666: 1646: 1641: 1625: 1622: 1618: 1613: 1607: 1595: 1592: 1571: 1558: 1555: 1550: 1544: 1532: 1529: 1508: 1476: 1473: 1452: 1440:Filamentation 1439: 1437: 1423: 1401: 1397: 1374: 1370: 1326: 1322: 1295: 1287: 1284: 1279: 1275: 1266: 1261: 1257: 1253: 1250: 1244: 1240: 1234: 1228: 1222: 1213: 1200: 1195: 1182: 1179: 1159: 1148: 1145: 1125: 1119: 1113: 1110: 1103: 1099: 1071: 1067: 1059: 1056: 1050: 1038: 1035: 1014: 998: 985: 978: 973: 963: 953: 946: 941: 931: 921: 916: 903: 896: 893: 872: 862: 858: 851: 848: 843: 839: 832: 829: 826: 818: 811: 808: 788: 785: 774: 761: 754: 751: 730: 723: 710: 707: 687: 677: 673: 669: 666: 663: 660: 654: 651: 631: 626: 610: 607: 603: 598: 592: 580: 577: 556: 543: 540: 535: 529: 517: 514: 493: 477: 460: 456: 435: 426: 409: 406: 386: 364: 360: 339: 331: 323: 321: 319: 315: 311: 306: 301: 274: 272: 271:Gaussian beam 267: 242: 238: 232: 228: 224: 221: 215: 211: 205: 202: 193: 185: 184: 183: 181: 176: 170: 166: 162: 155: 148: 132: 127: 123: 119: 114: 110: 106: 103: 83: 75: 71: 63: 61: 57: 55: 50: 46: 42: 38: 34: 30: 29:Self-focusing 23: 18: 4265: 4257:Bibliography 4238: 4234: 4228: 4195: 4191: 4185: 4160: 4156: 4150: 4133: 4129: 4122: 4097: 4093: 4087: 4070: 4066: 4023: 4019: 4013: 3980: 3976: 3935: 3931: 3925: 3898: 3894: 3884: 3849: 3845: 3832: 3797: 3793: 3779: 3738: 3734: 3728: 3703: 3699: 3693: 3668: 3664: 3658: 3625: 3621: 3615: 3582: 3578: 3572: 3547: 3543: 3537: 3504: 3500: 3494: 3469: 3465: 3459: 3437:(22): 1234. 3434: 3430: 3424: 3391: 3387: 3377: 3344: 3340: 3333: 3300: 3296: 3289: 3280: 3277:JETP Letters 3276: 3266: 3244:(2): 233–7. 3241: 3237: 3203: 3199: 3193: 3155:(2): 274–6. 3152: 3148: 3142: 3117: 3113: 3107: 3056: 3052: 3045: 3012: 3008: 3001: 2976: 2972: 2958: 2928:(5): 335–7. 2925: 2921: 2879: 2875: 2869: 2836: 2832: 2826: 2793: 2789: 2783: 2748: 2744: 2738: 2716:(26): 1010. 2713: 2709: 2703: 2678: 2674: 2640: 2636: 2618: 2614: 2604: 2579: 2575: 2569: 2544: 2540: 2514: 2510: 2504: 2466: 2457: 2448: 2438: 2434: 2423: 2421: 2259: 2252: 2169: 2082: 2076: 2072: 1788: 1443: 1214: 999: 775: 478: 427: 327: 302: 275: 273:α ≈ 1.8962. 263: 177: 168: 160: 153: 146: 67: 58: 28: 27: 3983:(1): 24–6. 3550:(9): 1522. 2643:(15): 479. 2621:(5): 943–6. 70:ruby lasers 4296:Categories 3823:11094/3277 3706:(2): 526. 3671:(3): 756. 3472:(4): 209. 3295:plasmas". 2751:(9): 347. 2547:(2): 309. 2497:References 300:≈ 2.8 MW. 292:≈ 1.453, n 276:For air, n 266:wavelength 4220:0024-9297 3650:122912958 3607:250749005 3529:250909633 3069:CiteSeerX 2861:250912159 2582:: 200–1. 2474:filaments 2374:ω 2370:ω 2355:≃ 2338:ω 2316:ω 2228:ϵ 2221:γ 2190:ω 2144:ω 2129:ω 2123:− 2053:ω 2050:− 2041:ω 2034:ω 2031:δ 1998:→ 1981:σ 1933:κ 1929:− 1902:→ 1861:κ 1822:− 1818:κ 1761:→ 1717:→ 1661:→ 1637:⊥ 1633:∇ 1605:∂ 1587:→ 1567:∂ 1542:∂ 1524:→ 1504:∂ 1468:→ 1344:→ 1288:ω 1285:− 1276:ω 1241:σ 1229:ω 1223:σ 1174:→ 1140:→ 1120:ω 1114:σ 1111:− 1089:→ 1060:− 1048:∂ 1030:→ 1010:∂ 971:∂ 960:∂ 939:∂ 928:∂ 912:⊥ 908:∇ 888:→ 852:ω 849:− 840:ω 803:→ 786:σ 746:→ 702:→ 646:→ 622:⊥ 618:∇ 590:∂ 572:→ 552:∂ 527:∂ 509:→ 489:∂ 457:ω 436:ω 401:→ 361:ω 340:ω 225:π 212:λ 206:α 165:intensity 4177:35614732 4114:17378567 4048:36961681 4005:19865292 3952:29092420 3876:10185064 3771:12223379 3763:16483951 3416:10037999 3369:10058066 3325:10045362 3206:(1): 1. 3185:12957688 3177:16441054 3099:37270331 3091:12843384 3037:14514104 2950:18059872 2904:12785895 2818:11019151 2485:See also 145:, where 4200:Bibcode 4028:Bibcode 3985:Bibcode 3903:Bibcode 3802:Bibcode 3743:Bibcode 3708:Bibcode 3673:Bibcode 3630:Bibcode 3587:Bibcode 3552:Bibcode 3509:Bibcode 3474:Bibcode 3439:Bibcode 3396:Bibcode 3349:Bibcode 3305:Bibcode 3246:Bibcode 3208:Bibcode 3157:Bibcode 3122:Bibcode 3061:Bibcode 3053:Science 3017:Bibcode 2981:Bibcode 2967:, and O 2930:Bibcode 2884:Bibcode 2841:Bibcode 2798:Bibcode 2753:Bibcode 2718:Bibcode 2683:Bibcode 2645:Bibcode 2584:Bibcode 2549:Bibcode 2429:is the 163:is the 4280:  4218:  4175:  4112:  4046:  4003:  3950:  3874:  3769:  3761:  3648:  3605:  3527:  3414:  3367:  3323:  3183:  3175:  3097:  3089:  3071:  3035:  2948:  2902:  2859:  2816:  2422:where 2399:  1215:where 280:≈ 1, n 4044:S2CID 3973:(PDF) 3932:Chaos 3872:S2CID 3842:(PDF) 3790:(PDF) 3767:S2CID 3646:S2CID 3603:S2CID 3525:S2CID 3181:S2CID 3095:S2CID 2857:S2CID 2174:and ω 428:When 180:power 49:laser 31:is a 4278:ISBN 4216:ISSN 4173:PMID 4110:PMID 4001:PMID 3948:PMID 3759:PMID 3412:PMID 3365:PMID 3321:PMID 3173:PMID 3087:PMID 3033:PMID 2946:PMID 2900:PMID 2814:PMID 2446:TW. 1389:and 152:and 4270:doi 4243:doi 4208:doi 4165:doi 4138:doi 4134:119 4102:doi 4098:129 4075:doi 4071:120 4036:doi 3993:doi 3940:doi 3911:doi 3899:105 3862:hdl 3854:doi 3818:hdl 3810:doi 3751:doi 3739:364 3716:doi 3681:doi 3638:doi 3595:doi 3560:doi 3517:doi 3482:doi 3447:doi 3404:doi 3357:doi 3313:doi 3254:doi 3216:doi 3165:doi 3130:doi 3118:441 3079:doi 3057:301 3025:doi 2989:doi 2938:doi 2892:doi 2849:doi 2806:doi 2769:hdl 2761:doi 2726:doi 2691:doi 2653:doi 2592:doi 2580:357 2557:doi 2519:doi 2085:rel 4298:: 4276:. 4239:32 4237:. 4214:. 4206:. 4196:50 4194:. 4171:. 4159:. 4132:. 4108:. 4096:. 4069:. 4056:^ 4042:. 4034:. 4024:23 4022:. 3999:. 3991:. 3981:21 3979:. 3975:. 3960:^ 3946:. 3936:27 3934:. 3909:. 3897:. 3893:. 3870:. 3860:. 3850:36 3848:. 3844:. 3816:. 3808:. 3798:12 3796:. 3792:. 3765:. 3757:. 3749:. 3737:. 3714:. 3704:30 3702:. 3679:. 3667:. 3644:. 3636:. 3626:18 3624:. 3601:. 3593:. 3583:12 3581:. 3558:. 3548:16 3546:. 3523:. 3515:. 3505:66 3503:. 3480:. 3470:33 3468:. 3445:. 3435:32 3433:. 3410:. 3402:. 3392:60 3390:. 3386:. 3363:. 3355:. 3345:74 3343:. 3319:. 3311:. 3301:68 3299:. 3279:. 3275:. 3252:. 3242:18 3240:. 3228:^ 3214:. 3204:74 3202:. 3179:. 3171:. 3163:. 3153:31 3151:. 3128:. 3116:. 3093:. 3085:. 3077:. 3067:. 3055:. 3031:. 3023:. 3013:28 3011:. 2987:. 2977:14 2975:. 2944:. 2936:. 2926:25 2924:. 2912:^ 2898:. 2890:. 2880:90 2878:. 2855:. 2847:. 2837:23 2835:. 2812:. 2804:. 2794:84 2792:. 2767:. 2759:. 2749:16 2747:. 2724:. 2714:15 2712:. 2689:. 2679:15 2677:. 2665:^ 2651:. 2641:13 2639:. 2627:^ 2619:15 2617:. 2613:. 2590:. 2578:. 2555:. 2545:78 2543:. 2531:^ 2513:. 2433:, 2404:GW 2358:17 2250:. 1786:. 312:, 298:cr 286:cr 198:cr 56:. 4286:. 4272:: 4249:. 4245:: 4222:. 4210:: 4202:: 4179:. 4167:: 4161:5 4144:. 4140:: 4116:. 4104:: 4081:. 4077:: 4050:. 4038:: 4030:: 4007:. 3995:: 3987:: 3954:. 3942:: 3919:. 3913:: 3905:: 3878:. 3864:: 3856:: 3826:. 3820:: 3812:: 3804:: 3773:. 3753:: 3745:: 3722:. 3718:: 3710:: 3687:. 3683:: 3675:: 3669:9 3652:. 3640:: 3632:: 3609:. 3597:: 3589:: 3566:. 3562:: 3554:: 3531:. 3519:: 3511:: 3488:. 3484:: 3476:: 3453:. 3449:: 3441:: 3418:. 3406:: 3398:: 3371:. 3359:: 3351:: 3327:. 3315:: 3307:: 3281:3 3260:. 3256:: 3248:: 3222:. 3218:: 3210:: 3187:. 3167:: 3159:: 3136:. 3132:: 3124:: 3101:. 3081:: 3063:: 3039:. 3027:: 3019:: 2995:. 2991:: 2983:: 2969:2 2965:2 2952:. 2940:: 2932:: 2906:. 2894:: 2886:: 2863:. 2851:: 2843:: 2820:. 2808:: 2800:: 2777:. 2771:: 2763:: 2755:: 2732:. 2728:: 2720:: 2697:. 2693:: 2685:: 2659:. 2655:: 2647:: 2598:. 2594:: 2586:: 2563:. 2559:: 2551:: 2525:. 2521:: 2515:6 2443:p 2439:e 2435:c 2426:e 2424:m 2418:, 2394:2 2388:) 2378:p 2363:( 2347:2 2342:p 2332:2 2328:e 2320:2 2310:5 2306:c 2300:2 2295:e 2291:m 2284:= 2279:r 2276:c 2272:P 2232:0 2224:m 2214:2 2210:e 2206:n 2199:= 2194:p 2176:p 2166:, 2148:2 2138:2 2133:p 2120:1 2115:= 2110:l 2107:e 2104:r 2100:n 2083:n 2045:0 2037:= 2010:) 2007:t 2004:, 1994:r 1987:( 1984:N 1960:) 1955:2 1951:k 1947:4 1943:/ 1937:2 1924:2 1919:| 1914:) 1911:t 1908:, 1898:r 1891:( 1888:E 1884:| 1878:2 1874:n 1870:( 1865:2 1857:= 1852:2 1848:h 1825:1 1797:h 1773:) 1770:t 1767:, 1757:r 1750:( 1746:E 1739:2 1734:| 1729:) 1726:t 1723:, 1713:r 1706:( 1703:E 1699:| 1693:2 1689:n 1685:k 1682:i 1679:+ 1676:= 1673:) 1670:t 1667:, 1657:r 1650:( 1647:E 1642:2 1626:k 1623:2 1619:i 1614:+ 1608:t 1599:) 1596:t 1593:, 1583:r 1576:( 1572:E 1559:c 1556:1 1551:+ 1545:z 1536:) 1533:t 1530:, 1520:r 1513:( 1509:E 1480:) 1477:t 1474:, 1464:r 1457:( 1453:E 1424:z 1402:2 1398:T 1375:1 1371:T 1350:) 1340:r 1333:( 1327:0 1323:N 1296:2 1292:) 1280:0 1272:( 1267:2 1262:2 1258:T 1254:+ 1251:1 1245:0 1235:= 1232:) 1226:( 1201:, 1196:2 1191:| 1186:) 1183:t 1180:, 1170:r 1163:( 1160:E 1156:| 1152:) 1149:t 1146:, 1136:r 1129:( 1126:N 1123:) 1117:( 1104:1 1100:T 1095:) 1085:r 1078:( 1072:0 1068:N 1057:= 1051:t 1042:) 1039:t 1036:, 1026:r 1019:( 1015:N 986:, 979:2 974:y 964:2 954:+ 947:2 942:x 932:2 922:= 917:2 904:, 900:) 897:t 894:, 884:r 877:( 873:E 868:] 863:2 859:T 855:) 844:0 836:( 833:i 830:+ 827:1 824:[ 819:2 815:) 812:t 809:, 799:r 792:( 789:N 762:+ 758:) 755:t 752:, 742:r 735:( 731:E 724:2 719:| 714:) 711:t 708:, 698:r 691:( 688:E 684:| 678:2 674:n 670:k 667:i 664:+ 661:= 658:) 655:t 652:, 642:r 635:( 632:E 627:2 611:k 608:2 604:i 599:+ 593:t 584:) 581:t 578:, 568:r 561:( 557:E 544:c 541:1 536:+ 530:z 521:) 518:t 515:, 505:r 498:( 494:E 461:0 413:) 410:t 407:, 397:r 390:( 387:E 365:0 294:2 290:0 282:2 278:0 260:, 243:2 239:n 233:0 229:n 222:4 216:2 203:= 194:P 172:2 169:n 161:I 157:2 154:n 150:0 147:n 133:I 128:2 124:n 120:+ 115:0 111:n 107:= 104:n 84:n

Index


gradient-index lens
non-linear optical
refractive index
electromagnetic radiation
electric field
laser
Gurgen Askaryan
ruby lasers
optical Kerr effect
intensity
power
wavelength
Gaussian beam
chirped pulse amplification
Kerr-lens modelocking
laser filamentation
ultrashort laser pulses
homogeneously broadened
speed of light
angular frequency
plasma frequency
ponderomotive force
electron mass
Modulation Instability
filaments
beam divergence
Filament propagation
doi
10.1093/imamat/6.3.250

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.