Knowledge (XXG)

Perfect complex

Source 📝

761: 369: 167: 221: 408: 253: 164: 281: 465: 438: 802: 102: 605:
Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorÚme de Riemann-Roch - (SGA 6) (Lecture notes in mathematics
166:
is not coherent, working with coherent sheaves has awkwardness (namely the kernel of a finite presentation can fail to be coherent). Because of this,
628: 795: 297: 612: 716: 592: 826: 539:
Ben-Zvi, David; Francis, John; Nadler, David (2010), "Integral transforms and Drinfeld centers in derived algebraic geometry",
788: 704: 467:. If the complex consists only of the zero-th degree term, then it is pseudo-coherent if and only if it is so as a module. 72: 479: 821: 183: 596: 382: 227: 138: 47:
is a module that is perfect when it is viewed as a complex concentrated at degree zero. For example, if
665: 60: 21: 646:
Kerz, Moritz; Strunk, Florian; Tamme, Georg (2018). "Algebraic K-theory and descent for blow-ups".
655: 574: 548: 686: 470:
Roughly speaking, a pseudo-coherent complex may be thought of as a limit of perfect complexes.
624: 284: 109: 772: 260: 768: 673: 616: 558: 484: 447: 417: 224: 25: 687:"Algebraic K-Theory and Manifold Topology (Math 281), Lecture 19: K-Theory of Ring Spectra" 638: 570: 634: 566: 124: 116: 78: 52: 36: 669: 815: 120: 578: 178: 562: 760: 600: 740: 677: 611:. Lecture Notes in Mathematics (in French). Vol. 225. Berlin; New York: 728: 620: 444:
has degree bounded above and consists of finite free modules in degree
660: 553: 59:
is perfect if and only if it is finitely generated and of finite
364:{\displaystyle L_{n}\to L_{n-1}\to \cdots \to L_{0}\to F\to 0} 487:(related notion; discussed at SGA 6 ExposĂ© II, Appendix II.) 389: 234: 199: 145: 410:-modules is called pseudo-coherent if, for every integer 776: 717:"An alternative definition of pseudo-coherent complex" 450: 420: 385: 300: 263: 230: 186: 141: 81: 505: 459: 432: 402: 363: 275: 247: 215: 158: 115:A compact object in the ∞-category of (say right) 96: 705:"Determinantal identities for perfect complexes" 517: 257:is called pseudo-coherent if for every integer 796: 8: 541:Journal of the American Mathematical Society 803: 789: 659: 552: 449: 419: 394: 388: 387: 384: 343: 318: 305: 299: 262: 239: 233: 232: 229: 204: 198: 197: 185: 150: 144: 143: 140: 80: 31:is an object in the derived category of 497: 414:, there is locally a quasi-isomorphism 35:-modules that is quasi-isomorphic to a 216:{\displaystyle (X,{\mathcal {O}}_{X})} 108:-modules. They are also precisely the 528: 7: 757: 755: 506:Ben-Zvi, Francis & Nadler (2010) 71:Perfect complexes are precisely the 775:. You can help Knowledge (XXG) by 403:{\displaystyle {\mathcal {O}}_{X}} 248:{\displaystyle {\mathcal {O}}_{X}} 159:{\displaystyle {\mathcal {O}}_{X}} 123:is often called perfect; see also 75:in the unbounded derived category 14: 759: 518:Kerz, Strunk & Tamme (2018) 424: 355: 349: 336: 330: 311: 210: 187: 91: 85: 1: 563:10.1090/S0894-0347-10-00669-7 170:introduces the notion of a 843: 754: 729:"15.74 Perfect complexes" 678:10.1007/s00222-017-0752-2 287:of finite type of length 135:When the structure sheaf 648:Inventiones Mathematicae 276:{\displaystyle n\geq 0} 177:By definition, given a 67:Other characterizations 827:Abstract algebra stubs 771:-related article is a 597:Alexandre Grothendieck 461: 460:{\displaystyle \geq n} 434: 433:{\displaystyle L\to F} 404: 365: 283:, locally, there is a 277: 249: 217: 160: 98: 685:Lurie, Jacob (2014). 480:Hilbert–Burch theorem 462: 435: 405: 366: 278: 250: 218: 172:pseudo-coherent sheaf 161: 131:Pseudo-coherent sheaf 99: 39:of finite projective 448: 418: 383: 298: 261: 228: 184: 139: 97:{\displaystyle D(A)} 79: 61:projective dimension 670:2018InMat.211..523K 733:The Stacks project 621:10.1007/BFb0066283 457: 430: 400: 361: 273: 245: 213: 156: 112:in this category. 110:dualizable objects 94: 784: 783: 630:978-3-540-05647-8 593:Berthelot, Pierre 285:free presentation 834: 822:Abstract algebra 805: 798: 791: 769:abstract algebra 763: 756: 748: 741:"perfect module" 736: 724: 712: 693: 691: 681: 663: 642: 581: 556: 531: 526: 520: 514: 508: 502: 485:elliptic complex 466: 464: 463: 458: 439: 437: 436: 431: 409: 407: 406: 401: 399: 398: 393: 392: 370: 368: 367: 362: 348: 347: 329: 328: 310: 309: 282: 280: 279: 274: 254: 252: 251: 246: 244: 243: 238: 237: 222: 220: 219: 214: 209: 208: 203: 202: 165: 163: 162: 157: 155: 154: 149: 148: 103: 101: 100: 95: 55:, a module over 26:commutative ring 842: 841: 837: 836: 835: 833: 832: 831: 812: 811: 810: 809: 752: 739: 727: 715: 703: 700: 689: 684: 645: 631: 613:Springer-Verlag 603:, eds. (1971). 591: 588: 538: 535: 534: 527: 523: 515: 511: 503: 499: 494: 476: 446: 445: 416: 415: 386: 381: 380: 339: 314: 301: 296: 295: 259: 258: 231: 226: 225: 196: 182: 181: 142: 137: 136: 133: 125:module spectrum 77: 76: 73:compact objects 69: 37:bounded complex 18:perfect complex 12: 11: 5: 840: 838: 830: 829: 824: 814: 813: 808: 807: 800: 793: 785: 782: 781: 764: 750: 749: 737: 725: 713: 699: 698:External links 696: 695: 694: 682: 654:(2): 523–577. 643: 629: 587: 584: 583: 582: 547:(4): 909–966, 533: 532: 521: 516:Lemma 2.6. of 509: 496: 495: 493: 490: 489: 488: 482: 475: 472: 456: 453: 429: 426: 423: 397: 391: 373: 372: 360: 357: 354: 351: 346: 342: 338: 335: 332: 327: 324: 321: 317: 313: 308: 304: 272: 269: 266: 242: 236: 212: 207: 201: 195: 192: 189: 153: 147: 132: 129: 117:module spectra 93: 90: 87: 84: 68: 65: 45:perfect module 16:In algebra, a 13: 10: 9: 6: 4: 3: 2: 839: 828: 825: 823: 820: 819: 817: 806: 801: 799: 794: 792: 787: 786: 780: 778: 774: 770: 765: 762: 758: 753: 746: 742: 738: 734: 730: 726: 722: 718: 714: 710: 706: 702: 701: 697: 688: 683: 679: 675: 671: 667: 662: 657: 653: 649: 644: 640: 636: 632: 626: 622: 618: 614: 610: 608: 602: 598: 594: 590: 589: 585: 580: 576: 572: 568: 564: 560: 555: 550: 546: 542: 537: 536: 530: 525: 522: 519: 513: 510: 507: 501: 498: 491: 486: 483: 481: 478: 477: 473: 471: 468: 454: 451: 443: 427: 421: 413: 395: 378: 358: 352: 344: 340: 333: 325: 322: 319: 315: 306: 302: 294: 293: 292: 290: 286: 270: 267: 264: 256: 240: 205: 193: 190: 180: 175: 173: 169: 151: 130: 128: 126: 122: 121:ring spectrum 118: 113: 111: 107: 88: 82: 74: 66: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 27: 23: 19: 777:expanding it 766: 751: 744: 732: 721:MathOverflow 720: 709:MathOverflow 708: 651: 647: 606: 604: 586:Bibliography 544: 540: 529:Lurie (2014) 524: 512: 500: 469: 441: 411: 376: 374: 288: 179:ringed space 176: 171: 168:SGA 6 Expo I 134: 114: 105: 70: 56: 48: 44: 43:-modules. A 40: 32: 28: 17: 15: 745:ncatlab.org 615:. xii+700. 601:Luc Illusie 504:See, e.g., 816:Categories 661:1611.08466 492:References 375:A complex 53:Noetherian 554:0805.0157 452:≥ 425:→ 356:→ 350:→ 337:→ 334:⋯ 331:→ 323:− 312:→ 291:; i.e., 268:≥ 474:See also 666:Bibcode 639:0354655 579:2202294 571:2669705 255:-module 119:over a 24:over a 22:modules 637:  627:  577:  569:  440:where 767:This 690:(PDF) 656:arXiv 575:S2CID 549:arXiv 223:, an 773:stub 625:ISBN 674:doi 652:211 617:doi 607:225 559:doi 379:of 104:of 51:is 20:of 818:: 743:. 731:. 719:. 707:. 672:. 664:. 650:. 635:MR 633:. 623:. 599:; 595:; 573:, 567:MR 565:, 557:, 545:23 543:, 174:. 127:. 63:. 804:e 797:t 790:v 779:. 747:. 735:. 723:. 711:. 692:. 680:. 676:: 668:: 658:: 641:. 619:: 609:) 561:: 551:: 455:n 442:L 428:F 422:L 412:n 396:X 390:O 377:F 371:. 359:0 353:F 345:0 341:L 326:1 320:n 316:L 307:n 303:L 289:n 271:0 265:n 241:X 235:O 211:) 206:X 200:O 194:, 191:X 188:( 152:X 146:O 106:A 92:) 89:A 86:( 83:D 57:A 49:A 41:A 33:A 29:A

Index

modules
commutative ring
bounded complex
Noetherian
projective dimension
compact objects
dualizable objects
module spectra
ring spectrum
module spectrum
SGA 6 Expo I
ringed space
O X {\displaystyle {\mathcal {O}}_{X}} -module
free presentation
Hilbert–Burch theorem
elliptic complex
Ben-Zvi, Francis & Nadler (2010)
Kerz, Strunk & Tamme (2018)
Lurie (2014)
arXiv
0805.0157
doi
10.1090/S0894-0347-10-00669-7
MR
2669705
S2CID
2202294
Berthelot, Pierre
Alexandre Grothendieck
Luc Illusie

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑