Knowledge (XXG)

Phi value analysis

Source πŸ“

243: 479: 275: 772:
values throughout the protein's sequence agreed with all of the simulated transition state but one helix which folded semi-independently and made native-like contacts with the rest of the protein only once the transition state had formed fully. Such variation in the folding rate in one protein makes
726:
to numbers greater than zero is the same as assuming the mutation increases the stability and lowers the energy of neither the native nor the transition state. It is in the same line assumed that interactions that stabilize a folding transition state are like those of the native structure, though
973:
depend strongly on how many data point are available. A study of 78 mutants of WW domain with up to four mutations per residue has quantified what types of mutations avoid interference from native state flexibility, solvation, and other effects, and statistical analysis shows that reliable
642:
is relatively unfolded or unstructured in the transition state, and values near one suggest the transition state's local structure near the mutation site is similar to the native state's. Conservative substitutions on the protein's surface often give phi values near one. When
751:
simulations, he found that the transition state between folding and unfolding looks like the native state and is the same no matter the reaction direction. Phi varied with the mutation location as some regions gave values near zero and others near one. The distribution of
474:{\displaystyle \phi ={\frac {(\Delta G_{W}^{TS\rightarrow D}-\Delta G_{M}^{TS\rightarrow D})}{(\Delta G_{W}^{N\rightarrow D}-\Delta G_{M}^{N\rightarrow D})}}={\frac {\Delta \Delta G^{TS\rightarrow D}}{\Delta \Delta G^{N\rightarrow D}}}} 637:
doesn't affect the structure of the folding pathway's rate-limiting transition state, and a value of one suggests the mutation destabilizes the transition state as much as the folded state; values near zero suggest the
688:, which states that energy and chemical structure are correlated. Though the relationship between the folding intermediate and native state's structures may correlate that between their energies when the 572: 524: 610:
bits are the differences in energy between the native and denatured state. The phi value is interpreted as how much the mutation destabilizes the transition state versus the folded state.
703:
may be. As nonconservative mutations may not bear this out, conservative substitutions, though they may give smaller energetic destabilizations which are harder to detect, are preferred.
608: 136:
The protein's residues are mutated one by one to identify residue clusters that are well-ordered in the folded transition state. These residues' interactions can be checked by
692:
has a well-defined, deep global minimum, free energy destabilizations may not give useful structural information when the energy landscape is flatter or has many local minima.
897:-value analysis to measure the response of mutants as a function of temperature to separate enthalpic and entropic contributions to the transition state free energy. 162:, in which the single-site mutants' effects are compared to the double mutants'. Most mutations are conservative and replace the original residue with a smaller one ( 1603:
Miguel; Los Rios, A. De; Muraidhara, B.K.; Wildes, David; Sosnick, Tobin R.; Marqusee, Susan; Wittung-Stafshede, Pernilla; Plaxco, Kevin W.; Ruczinski, Ingo (2006).
1424: 1404: 1304: 1235: 1215: 971: 951: 923: 895: 875: 851: 819: 791: 770: 724: 661: 631: 264: 232: 156: 107: 61: 37: 1028:
Rios, MA; Daneshi, M; Plaxco, KW (2005). "Experimental investigation of the frequency and substitution dependence of negative phi-values in two-state proteins".
1160:
Fersht, AR; Matouschek, A; Serrano, L (1992). "The folding of an enzyme I. Theory of protein engineering analysis of stability and pathway of protein folding".
1476: 1286:
Krantz, BA; Dothager, RS; Sosnick, TR (March 2004). "Discerning the structure and energy of multiple transition states in protein folding using
1117:
Matouschek, A; Kellis, JT; Serrano, L; Fersht, AR (1989). "Mapping the transition state and pathway of protein folding by protein engineering".
793:
values as the transition state structure must otherwise be compared to folding-unfolding simulations which are computationally expensive.
933:
that are nearly pure or the stability difference between the native and mutant protein is 'low', or less than 7 kJ/mol. This may cause
266:= 0 (left) or 1 (right). D is the energy of the denatured state, dagger, that of the transition state, and N, that of the native state. 1568:
Sanchez, IE; Kiefhaber, T (2003). "Origin of unusual phi-values in protein folding: evidence against specific nucleation sites".
801:
Other 'kinetic perturbation' techniques for studying the folding transition state have appeared recently. Best known is the psi (
1341:
Krantz, BA; Sosnick, TR (2001). "Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil".
125:. These measure the mutant residue's energetic contribution to the folding transition state, which reveals the degree of 1716: 926: 727:
some protein folding studies found that stabilizing non-native interactions in a transition state facilitates folding.
1065:"Theoretical and Experimental Demonstration of the Importance of Specific Nonnative Interactions in Protein Folding" 533: 485: 1706: 130: 1721: 1711: 577: 81:
in a two-state manner. The structure of the folding transition state is hard to find using methods such as
685: 905:
The error in equilibrium stability and aqueous (un)folding rate measurements may be large when values of
133:
of the unfolded state, the folded state, and the transition state for the wild-type and mutant proteins.
993: 988: 671: 633:
may have been meant to range from zero to one, negative values can appear. A value of zero suggests the
86: 853:-value was used to study segment association in a folding transition state as covalent crosslinks like 66: 1366: 1142: 748: 126: 663:
is well between zero and one, it is less informative as it doesn't tell us which is the case:
1683: 1634: 1585: 1550: 1501: 1457: 1358: 1323: 1268: 1177: 1134: 1099: 1045: 674:
of near-equal numbers, one kind which is mostly-unfolded and the other which is mostly-folded.
1673: 1665: 1624: 1616: 1577: 1540: 1532: 1491: 1447: 1437: 1350: 1315: 1258: 1248: 1169: 1126: 1089: 1079: 1037: 930: 829:
as a function of metal ion concentration, though Fersht thought this approach difficult. A '
689: 527: 70: 1409: 1389: 1289: 1220: 1200: 974:
information about transition state perturbation can be obtained from large mutant screens.
956: 936: 908: 880: 860: 836: 804: 776: 755: 709: 646: 616: 249: 217: 141: 92: 46: 22: 1011: 826: 110: 78: 89:
because folding transitions states are mobile and partly unstructured by definition. In
1678: 1653: 1629: 1604: 1545: 1520: 1094: 854: 242: 118: 74: 1452: 1385: 1263: 1196: 1700: 1173: 175: 1605:"On the precision of experimentally determined protein folding rates and phi-values" 1146: 1064: 983: 195: 129:
around the mutated residue in the transition state, by accounting for the relative
1370: 821:) value which is found by engineering two metal-binding amino acid residues like 736: 82: 1072:
Proceedings of the National Academy of Sciences of the United States of America
1669: 1581: 1536: 1319: 830: 199: 179: 1442: 1253: 1084: 822: 207: 203: 187: 114: 1687: 1638: 1589: 1554: 1505: 1461: 1362: 1327: 1272: 1103: 1049: 1181: 1138: 1620: 740: 171: 1654:"High-Resolution Mapping of the Folding Transition State of a WW Domain" 1197:"Differences in the folding transition state of ubiquitin indicated by 744: 211: 167: 1496: 1041: 1130: 191: 183: 1354: 574:
is the same energy difference but for the mutant protein, and the
241: 1475:
Wedemeyer, WJ; Welker, E; Narayan, M; Scheraga, HA (June 2000).
1014:, Fersht AR. (2000). Transition states in protein folding. In 1652:
Dave, K; JΓ€ger, M; Nguyen, H; Kelly, JW; Gruebele, M (2016).
526:
is the difference in energy between the wild-type protein's
1521:"Quantifying protein folding transition states with phi-T" 739:
pioneered phi value analysis in his study of the small
1063:
Zarrine-Asfar, Arash; Wallin, Stefan (July 22, 2008).
1412: 1392: 1292: 1223: 1203: 959: 953:
to fall beyond the zero-one range. Calculated values
939: 911: 883: 863: 839: 807: 779: 758: 712: 649: 619: 580: 536: 488: 278: 252: 220: 144: 95: 49: 25: 667:
The transition state itself is partly structured; or
69:
technique for studying the structure of the folding
877:-T value analysis has been used as an extension of 1418: 1398: 1298: 1229: 1209: 965: 945: 917: 889: 869: 845: 813: 785: 764: 718: 655: 625: 602: 566: 518: 473: 258: 226: 150: 101: 55: 31: 1018:2nd ed, editor RH Pain. Oxford University Press. 699:isn't significantly altered, though the folding 1078:(29). Natural Academy of Sciences: 9999–10004. 1195:Sosnick, TR; Dothager, RS; Krantz, BA (2004). 567:{\displaystyle \Delta G_{M}^{TS\rightarrow D}} 519:{\displaystyle \Delta G_{W}^{TS\rightarrow D}} 8: 113:and conformational folding stability of the 206:, individual domains of proteins L and G, 1677: 1628: 1544: 1495: 1451: 1441: 1411: 1391: 1291: 1262: 1252: 1222: 1202: 1093: 1083: 958: 938: 910: 882: 862: 838: 806: 778: 757: 711: 648: 618: 603:{\displaystyle \Delta G^{N\rightarrow D}} 588: 579: 549: 544: 535: 501: 496: 487: 456: 429: 416: 395: 390: 368: 363: 333: 328: 303: 298: 285: 277: 251: 219: 143: 94: 48: 24: 1004: 695:Phi value analysis assumes the folding 825:into a protein and then recording the 1477:"Disulfide bonds and protein folding" 7: 117:protein are compared with those of 1393: 581: 537: 489: 449: 446: 422: 419: 383: 356: 321: 291: 14: 1519:Ervin, J; Gruebele, M (2002). 592: 556: 508: 460: 436: 407: 399: 372: 353: 348: 340: 310: 288: 1: 1525:Journal of Biological Physics 1016:Mechanisms of Protein Folding 1658:Journal of Molecular Biology 1174:10.1016/0022-2836(92)90561-W 684:Phi value analysis assumes 1738: 1430:Proc. Natl. Acad. Sci. USA 1241:Proc. Natl. Acad. Sci. USA 1670:10.1016/j.jmb.2016.02.008 1582:10.1016/j.jmb.2003.10.016 1320:10.1016/j.jmb.2004.01.018 214:have all been studied by 194:mutants can be used too. 164:cavity-creating mutations 929:must be extrapolated to 640:area around the mutation 1537:10.1023/A:1019930203777 1443:10.1073/pnas.0407863101 1254:10.1073/pnas.0407683101 1085:10.1073/pnas.0801874105 1420: 1400: 1300: 1231: 1211: 967: 947: 919: 891: 871: 847: 815: 787: 766: 720: 657: 627: 604: 568: 520: 475: 267: 260: 228: 152: 103: 57: 33: 1421: 1419:{\displaystyle \psi } 1401: 1399:{\displaystyle \Phi } 1301: 1299:{\displaystyle \psi } 1232: 1230:{\displaystyle \psi } 1212: 1210:{\displaystyle \phi } 994:Equilibrium unfolding 989:Denaturation midpoint 968: 966:{\displaystyle \phi } 948: 946:{\displaystyle \phi } 920: 918:{\displaystyle \phi } 892: 890:{\displaystyle \phi } 872: 870:{\displaystyle \phi } 848: 846:{\displaystyle \phi } 816: 814:{\displaystyle \psi } 788: 786:{\displaystyle \phi } 773:it hard to interpret 767: 765:{\displaystyle \phi } 721: 719:{\displaystyle \phi } 658: 656:{\displaystyle \phi } 628: 626:{\displaystyle \phi } 605: 569: 530:and denatured state, 521: 476: 270:Phi is defined thus: 261: 259:{\displaystyle \phi } 245: 238:Mathematical approach 229: 227:{\displaystyle \phi } 153: 151:{\displaystyle \phi } 109:-value analysis, the 104: 102:{\displaystyle \phi } 87:X-ray crystallography 58: 56:{\displaystyle \phi } 34: 32:{\displaystyle \phi } 1621:10.1110/ps.051870506 1410: 1390: 1290: 1221: 1201: 957: 937: 909: 881: 861: 837: 805: 777: 756: 710: 647: 617: 578: 534: 486: 276: 250: 246:Energy diagrams for 218: 142: 138:double-mutant-cycle 93: 47: 23: 1717:Protein engineering 1436:(50): 17327–17328. 1384:Fersht, AR (2004). 1247:(50): 17377–17382. 925:for solutions with 686:Hammond's postulate 672:protein populations 563: 515: 406: 379: 347: 317: 67:protein engineering 65:is an experimental 1416: 1396: 1296: 1227: 1207: 963: 943: 915: 887: 867: 843: 811: 783: 762: 749:molecular dynamics 716: 653: 623: 600: 564: 540: 516: 492: 471: 386: 359: 324: 294: 268: 256: 224: 148: 99: 53: 29: 17:Phi value analysis 1707:Protein structure 1497:10.1021/bi005111p 1349:(12): 1042–1047. 1343:Nat. Struct. Biol 1042:10.1021/bi0505621 931:aqueous solutions 857:were introduced. 833:' variant of the 469: 411: 1729: 1692: 1691: 1681: 1649: 1643: 1642: 1632: 1600: 1594: 1593: 1576:(5): 1077–1085. 1565: 1559: 1558: 1548: 1516: 1510: 1509: 1499: 1481: 1472: 1466: 1465: 1455: 1445: 1425: 1423: 1422: 1417: 1405: 1403: 1402: 1397: 1381: 1375: 1374: 1338: 1332: 1331: 1305: 1303: 1302: 1297: 1283: 1277: 1276: 1266: 1256: 1236: 1234: 1233: 1228: 1216: 1214: 1213: 1208: 1192: 1186: 1185: 1157: 1151: 1150: 1131:10.1038/340122a0 1114: 1108: 1107: 1097: 1087: 1069: 1060: 1054: 1053: 1025: 1019: 1009: 972: 970: 969: 964: 952: 950: 949: 944: 924: 922: 921: 916: 896: 894: 893: 888: 876: 874: 873: 868: 852: 850: 849: 844: 827:folding kinetics 820: 818: 817: 812: 792: 790: 789: 784: 771: 769: 768: 763: 732:Example: barnase 725: 723: 722: 717: 690:energy landscape 662: 660: 659: 654: 632: 630: 629: 624: 609: 607: 606: 601: 599: 598: 573: 571: 570: 565: 562: 548: 525: 523: 522: 517: 514: 500: 480: 478: 477: 472: 470: 468: 467: 466: 444: 443: 442: 417: 412: 410: 405: 394: 378: 367: 351: 346: 332: 316: 302: 286: 265: 263: 262: 257: 233: 231: 230: 225: 157: 155: 154: 149: 127:native structure 111:folding kinetics 108: 106: 105: 100: 71:transition state 62: 60: 59: 54: 38: 36: 35: 30: 1737: 1736: 1732: 1731: 1730: 1728: 1727: 1726: 1722:Protein methods 1712:Protein folding 1697: 1696: 1695: 1651: 1650: 1646: 1609:Protein Science 1602: 1601: 1597: 1567: 1566: 1562: 1531:(23): 115–128. 1518: 1517: 1513: 1479: 1474: 1473: 1469: 1408: 1407: 1388: 1387: 1383: 1382: 1378: 1340: 1339: 1335: 1288: 1287: 1285: 1284: 1280: 1219: 1218: 1199: 1198: 1194: 1193: 1189: 1159: 1158: 1154: 1125:(6229): 122–6. 1116: 1115: 1111: 1067: 1062: 1061: 1057: 1036:(36): 12160–7. 1027: 1026: 1022: 1010: 1006: 1002: 980: 955: 954: 935: 934: 907: 906: 903: 879: 878: 859: 858: 855:disulfide bonds 835: 834: 803: 802: 799: 775: 774: 754: 753: 734: 708: 707: 681: 679:Key assumptions 645: 644: 615: 614: 584: 576: 575: 532: 531: 484: 483: 452: 445: 425: 418: 352: 287: 274: 273: 248: 247: 240: 216: 215: 140: 139: 91: 90: 75:protein domains 63:-value analysis 45: 44: 21: 20: 12: 11: 5: 1735: 1733: 1725: 1724: 1719: 1714: 1709: 1699: 1698: 1694: 1693: 1664:(8): 115–128. 1644: 1615:(3): 553–563. 1595: 1560: 1511: 1467: 1415: 1395: 1376: 1355:10.1038/nsb723 1333: 1295: 1278: 1226: 1206: 1187: 1152: 1109: 1055: 1020: 1003: 1001: 998: 997: 996: 991: 986: 979: 976: 962: 942: 914: 902: 899: 886: 866: 842: 810: 798: 795: 782: 761: 733: 730: 729: 728: 715: 704: 693: 680: 677: 676: 675: 670:There are two 668: 652: 622: 597: 594: 591: 587: 583: 561: 558: 555: 552: 547: 543: 539: 513: 510: 507: 504: 499: 495: 491: 465: 462: 459: 455: 451: 448: 441: 438: 435: 432: 428: 424: 421: 415: 409: 404: 401: 398: 393: 389: 385: 382: 377: 374: 371: 366: 362: 358: 355: 350: 345: 342: 339: 336: 331: 327: 323: 320: 315: 312: 309: 306: 301: 297: 293: 290: 284: 281: 255: 239: 236: 223: 147: 98: 52: 28: 13: 10: 9: 6: 4: 3: 2: 1734: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1704: 1702: 1689: 1685: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1645: 1640: 1636: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1599: 1596: 1591: 1587: 1583: 1579: 1575: 1571: 1564: 1561: 1556: 1552: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1512: 1507: 1503: 1498: 1493: 1489: 1485: 1478: 1471: 1468: 1463: 1459: 1454: 1449: 1444: 1439: 1435: 1431: 1427: 1413: 1406:value versus 1380: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1321: 1317: 1314:(2): 463–75. 1313: 1309: 1293: 1282: 1279: 1274: 1270: 1265: 1260: 1255: 1250: 1246: 1242: 1238: 1224: 1204: 1191: 1188: 1183: 1179: 1175: 1171: 1168:(3): 771–82. 1167: 1163: 1156: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1096: 1091: 1086: 1081: 1077: 1073: 1066: 1059: 1056: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1017: 1013: 1008: 1005: 999: 995: 992: 990: 987: 985: 982: 981: 977: 975: 960: 940: 932: 928: 912: 900: 898: 884: 864: 856: 840: 832: 831:cross-linking 828: 824: 808: 796: 794: 780: 759: 750: 746: 742: 738: 731: 713: 705: 702: 698: 694: 691: 687: 683: 682: 678: 673: 669: 666: 665: 664: 650: 641: 636: 620: 611: 595: 589: 585: 559: 553: 550: 545: 541: 529: 511: 505: 502: 497: 493: 481: 463: 457: 453: 439: 433: 430: 426: 413: 402: 396: 391: 387: 380: 375: 369: 364: 360: 343: 337: 334: 329: 325: 318: 313: 307: 304: 299: 295: 282: 279: 271: 253: 244: 237: 235: 221: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 176:phenylalanine 173: 169: 165: 161: 158: 145: 134: 132: 131:free energies 128: 124: 120: 119:point mutants 116: 112: 96: 88: 84: 80: 76: 72: 68: 64: 50: 41: 26: 18: 1661: 1657: 1647: 1612: 1608: 1598: 1573: 1570:J. Mol. Biol 1569: 1563: 1528: 1524: 1514: 1490:(23): 7032. 1487: 1484:Biochemistry 1483: 1470: 1433: 1429: 1379: 1346: 1342: 1336: 1311: 1308:J. Mol. Biol 1307: 1306:-analysis". 1281: 1244: 1240: 1190: 1165: 1161: 1155: 1122: 1118: 1112: 1075: 1071: 1058: 1033: 1030:Biochemistry 1029: 1023: 1015: 1007: 984:Chevron plot 904: 800: 735: 706:Restricting 700: 696: 639: 634: 612: 482: 272: 269: 196:Chymotrypsin 163: 159: 137: 135: 122: 43: 39: 16: 15: 927:denaturants 901:Limitations 737:Alan Fersht 200:SH3 domains 198:inhibitor, 83:protein NMR 1701:Categories 1162:J Mol Biol 1000:References 528:transition 234:analysis. 180:isoleucine 123:phi values 1426:analysis" 1414:ψ 1394:Φ 1294:ψ 1237:analyses" 1225:ψ 1205:ϕ 1012:Daggett V 961:ϕ 941:ϕ 913:ϕ 885:ϕ 865:ϕ 841:ϕ 823:histidine 809:ψ 781:ϕ 760:ϕ 741:bacterial 714:ϕ 651:ϕ 621:ϕ 593:→ 582:Δ 557:→ 538:Δ 509:→ 490:Δ 461:→ 450:Δ 447:Δ 437:→ 423:Δ 420:Δ 400:→ 384:Δ 381:− 373:→ 357:Δ 341:→ 322:Δ 319:− 311:→ 292:Δ 280:ϕ 254:ϕ 222:ϕ 208:ubiquitin 204:WW domain 188:threonine 170:, though 146:ϕ 115:wild-type 97:ϕ 73:of small 51:ϕ 27:ϕ 1688:26880334 1639:16501226 1590:14643667 1555:23345761 1506:10841785 1462:15583125 1363:11694889 1328:15003460 1273:15576508 1104:18626019 1050:16142914 978:See also 797:Variants 747:. Using 743:protein 701:energies 635:mutation 172:tyrosine 160:analysis 121:to find 40:analysis 1679:4835268 1630:2249776 1546:3456662 1182:1569556 1147:4302226 1139:2739734 1095:2481363 745:barnase 697:pathway 613:Though 212:barnase 168:alanine 166:) like 1686:  1676:  1637:  1627:  1588:  1553:  1543:  1504:  1460:  1453:536033 1450:  1371:940674 1369:  1361:  1326:  1271:  1264:536030 1261:  1180:  1145:  1137:  1119:Nature 1102:  1092:  1048:  210:, and 192:serine 184:valine 1480:(PDF) 1367:S2CID 1143:S2CID 1068:(PDF) 77:that 42:, or 1684:PMID 1635:PMID 1586:PMID 1551:PMID 1502:PMID 1458:PMID 1359:PMID 1324:PMID 1269:PMID 1217:and 1178:PMID 1135:PMID 1100:PMID 1046:PMID 190:-to- 186:and 182:-to- 174:-to- 79:fold 1674:PMC 1666:doi 1662:428 1625:PMC 1617:doi 1578:doi 1574:334 1541:PMC 1533:doi 1492:doi 1448:PMC 1438:doi 1434:101 1351:doi 1316:doi 1312:337 1259:PMC 1249:doi 1245:101 1170:doi 1166:224 1127:doi 1123:340 1090:PMC 1080:doi 1076:105 1038:doi 85:or 1703:: 1682:. 1672:. 1660:. 1656:. 1633:. 1623:. 1613:15 1611:. 1607:. 1584:. 1572:. 1549:. 1539:. 1529:28 1527:. 1523:. 1500:. 1488:39 1486:. 1482:. 1456:. 1446:. 1432:. 1428:. 1365:. 1357:. 1345:. 1322:. 1310:. 1267:. 1257:. 1243:. 1239:. 1176:. 1164:. 1141:. 1133:. 1121:. 1098:. 1088:. 1074:. 1070:. 1044:. 1034:44 1032:. 202:, 178:, 19:, 1690:. 1668:: 1641:. 1619:: 1592:. 1580:: 1557:. 1535:: 1508:. 1494:: 1464:. 1440:: 1386:" 1373:. 1353:: 1347:8 1330:. 1318:: 1275:. 1251:: 1184:. 1172:: 1149:. 1129:: 1106:. 1082:: 1052:. 1040:: 596:D 590:N 586:G 560:D 554:S 551:T 546:M 542:G 512:D 506:S 503:T 498:W 494:G 464:D 458:N 454:G 440:D 434:S 431:T 427:G 414:= 408:) 403:D 397:N 392:M 388:G 376:D 370:N 365:W 361:G 354:( 349:) 344:D 338:S 335:T 330:M 326:G 314:D 308:S 305:T 300:W 296:G 289:( 283:=

Index

protein engineering
transition state
protein domains
fold
protein NMR
X-ray crystallography
folding kinetics
wild-type
point mutants
native structure
free energies
alanine
tyrosine
phenylalanine
isoleucine
valine
threonine
serine
Chymotrypsin
SH3 domains
WW domain
ubiquitin
barnase

transition
protein populations
Hammond's postulate
energy landscape
Alan Fersht
bacterial

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑