Knowledge (XXG)

Photoautotrophism

Source 📝

33: 286:. There are multiple hypotheses for how oxygenic photosynthesis evolved. The loss hypothesis states that PSI and PSII were present in anoxygenic ancestor cyanobacteria from which the different branches of anoxygenic bacteria evolved. The fusion hypothesis states that the photosystems merged later through 290:. The most recent hypothesis suggests that PSI and PSII diverged from an unknown common ancestor with a protein complex that was coded by one gene. These photosystems then specialized into the ones that are found today. 338:
that gradually lost the genes required to be free-living. However, it is difficult to determine whether all chloroplasts originated from a single, primary endosymbiotic event, or multiple independent events. Some
330:
and are believed to have originated about 2 billion years ago. Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of
720: 730: 32: 764: 448:
Hodgskiss, Malcolm S. W.; Crockford, Peter W.; Peng, Yongbo; Wing, Boswell A.; Horner, Tristan J. (27 August 2019).
184: 168: 141: 759: 287: 164: 670:
Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (May 2004).
769: 671: 382: 252: 192: 203:
boundary. Although the end of the Great Oxidation Event was marked by a significant decrease in gross
528: 461: 398: 208: 283: 130: 560: 430: 204: 67: 36: 726: 701: 693: 622: 614: 552: 544: 497: 479: 422: 414: 386: 148: 683: 604: 594: 536: 487: 469: 406: 345: 200: 71: 59: 651: 282:, which are pigment protein complexes for capturing light. Both of these photosystems use 260: 248: 410: 532: 465: 402: 492: 449: 323: 275: 267: 240: 188: 83: 753: 646: 335: 271: 244: 236: 212: 180: 95: 564: 434: 331: 307: 224: 119: 105: 51: 515:
Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J. (February 2014).
151:. The vast majority of known photoautotrophs perform photosynthesis that produce 327: 319: 315: 311: 279: 160: 126: 122: 108: 17: 722:
Convergent Evolution on Earth. Lessons for the Search for Extraterrestrial Life
340: 303: 196: 115: 101: 79: 75: 697: 618: 548: 516: 483: 418: 688: 474: 299: 256: 220: 216: 156: 137: 134: 112: 705: 626: 609: 556: 501: 426: 29:
Organisms that use light and inorganic carbon to produce organic materials
355: 55: 47: 540: 350: 144: 599: 582: 152: 63: 266:
Cyanobacteria is the only prokaryotic group that performs oxygenic
211:
enabled more energetic metabolism of organic molecules, leading to
672:"A Molecular Timeline for the Origin of Photosynthetic Eukaryotes" 187:
had been taking place since a billion years before that. Oxygenic
91: 87: 31: 179:
Chemical and geological evidence indicate that photosynthetic
581:
Sánchez-Baracaldo, Patricia; Cardona, Tanai (February 2020).
583:"On the origin of oxygenic photosynthesis and Cyanobacteria" 517:"The rise of oxygen in Earth's early ocean and atmosphere" 450:"A productivity collapse to end Earth's Great Oxidation" 191:
was the primary source of free oxygen and led to the
207:
that eclipsed extinction events, the development of
104:photoautotrophs absorb photonic energy through the 647:"The evolution of photosynthesis and chloroplasts" 387:"Thinking About the Evolution of Photosynthesis" 195:roughly 2.4 to 2.1 billion years ago during the 454:Proceedings of the National Academy of Sciences 8: 82:). Such biological activities are known as 39:showing Photoautotrophs in purple and green 687: 608: 598: 491: 473: 270:. Anoxygenic photosynthetic bacteria use 86:, and examples of such organisms include 183:existed about 2.6 billion years ago and 368: 223:, and allowing the diversification of 129:photoautotrophs use chlorophylls and 7: 640: 638: 636: 576: 574: 376: 374: 372: 235:Prokaryotic photoautotrophs include 175:Origin and the Great Oxidation Event 298:Eukaryotic photoautotrophs include 411:10.1023/B:PRES.0000030457.06495.83 159:, while a small minority (such as 25: 359:) also evolved photoautotrophy. 676:Molecular Biology and Evolution 719:George R. McGhee, Jr. (2019). 1: 74:needed to sustain their own 231:Prokaryotic photoautotrophs 786: 326:through organelles called 322:. These organisms perform 294:Eukaryotic photoautotrophs 725:. MIT Press. p. 47. 645:Björn, Lars (June 2009). 185:anoxygenic photosynthesis 169:anoxygenic photosynthesis 133:present in free-floating 288:horizontal gene transfer 165:sulfur-reducing bacteria 475:10.1073/pnas.1900325116 391:Photosynthesis Research 263:, and Eremiobacterota. 383:Blankenship, Robert E. 40: 689:10.1093/molbev/msh075 193:Great Oxidation Event 35: 205:primary productivity 147:derivatives such as 131:bacteriochlorophylls 765:Biology terminology 541:10.1038/nature13068 533:2014Natur.506..307L 466:2019PNAS..11617207H 460:(35): 17207–17212. 403:2004PhoRe..80..373O 284:bacteriochlorophyll 209:aerobic respiration 140:or, in rare cases, 68:inorganic compounds 41: 37:Winogradsky column 600:10.1111/nph.16249 527:(7488): 307–315. 149:bacteriorhodopsin 72:organic materials 50:that can utilize 16:(Redirected from 777: 744: 743: 741: 739: 716: 710: 709: 691: 667: 661: 660: 659:(11): 1466–1474. 642: 631: 630: 612: 602: 593:(4): 1440–1446. 578: 569: 568: 512: 506: 505: 495: 477: 445: 439: 438: 397:(1–3): 373–386. 381:Olson, John M.; 378: 346:Gigantoproductus 201:Paleoproterozoic 21: 18:Photoautotrophic 785: 784: 780: 779: 778: 776: 775: 774: 760:Trophic ecology 750: 749: 748: 747: 737: 735: 733: 718: 717: 713: 669: 668: 664: 652:Current Science 644: 643: 634: 587:New Phytologist 580: 579: 572: 514: 513: 509: 447: 446: 442: 380: 379: 370: 365: 296: 261:Gemmatimonadota 249:Acidobacteriota 233: 177: 44:Photoautotrophs 30: 23: 22: 15: 12: 11: 5: 783: 781: 773: 772: 770:Photosynthesis 767: 762: 752: 751: 746: 745: 731: 711: 682:(5): 809–818. 662: 632: 570: 507: 440: 367: 366: 364: 361: 324:photosynthesis 295: 292: 268:photosynthesis 241:Pseudomonadota 232: 229: 189:photosynthesis 176: 173: 142:membrane-bound 84:photosynthesis 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 782: 771: 768: 766: 763: 761: 758: 757: 755: 734: 732:9780262354189 728: 724: 723: 715: 712: 707: 703: 699: 695: 690: 685: 681: 677: 673: 666: 663: 658: 654: 653: 648: 641: 639: 637: 633: 628: 624: 620: 616: 611: 610:10044/1/74260 606: 601: 596: 592: 588: 584: 577: 575: 571: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 518: 511: 508: 503: 499: 494: 489: 485: 481: 476: 471: 467: 463: 459: 455: 451: 444: 441: 436: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 377: 375: 373: 369: 362: 360: 358: 357: 352: 348: 347: 342: 337: 336:cyanobacteria 333: 332:endosymbiosis 329: 325: 321: 317: 313: 309: 308:stramenopiles 305: 301: 293: 291: 289: 285: 281: 277: 273: 269: 264: 262: 258: 254: 250: 246: 245:Chloroflexota 242: 238: 237:Cyanobacteria 230: 228: 226: 222: 218: 214: 213:symbiogenesis 210: 206: 202: 198: 194: 190: 186: 182: 181:cyanobacteria 174: 172: 170: 166: 162: 158: 154: 150: 146: 143: 139: 136: 132: 128: 124: 121: 117: 114: 110: 107: 103: 99: 97: 96:cyanobacteria 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 38: 34: 27: 19: 736:. Retrieved 721: 714: 679: 675: 665: 656: 650: 590: 586: 524: 520: 510: 457: 453: 443: 394: 390: 354: 344: 328:chloroplasts 316:chlorophytes 312:cryptophytes 297: 280:photosystems 265: 234: 225:complex life 178: 123:chloroplasts 120:endosymbiont 106:photopigment 100: 52:light energy 43: 42: 26: 341:brachiopods 320:land plants 304:haptophytes 253:Chlorobiota 161:haloarchaea 135:cytoplasmic 127:prokaryotic 118:) in their 109:chlorophyll 70:to produce 754:Categories 363:References 227:on Earth. 221:eukaryotes 197:Neoarchean 167:) perform 138:thylakoids 116:derivative 102:Eukaryotic 80:autotrophy 76:metabolism 738:23 August 698:1537-1719 619:0028-646X 549:0028-0836 484:0027-8424 419:0166-8595 300:red algae 257:Bacillota 217:evolution 157:byproduct 113:porphyrin 62:(such as 48:organisms 706:14963099 627:31598981 557:24553238 502:31405980 427:16328834 385:(2004). 356:Tridacna 351:bivalves 215:and the 125:, while 60:elements 56:sunlight 565:4443958 529:Bibcode 493:6717284 462:Bibcode 435:1720483 399:Bibcode 145:retinal 66:) from 729:  704:  696:  625:  617:  563:  555:  547:  521:Nature 500:  490:  482:  433:  425:  417:  349:) and 318:, and 278:-like 274:- and 153:oxygen 88:plants 78:(i.e. 64:carbon 561:S2CID 431:S2CID 334:with 155:as a 92:algae 54:from 740:2022 727:ISBN 702:PMID 694:ISSN 623:PMID 615:ISSN 553:PMID 545:ISSN 498:PMID 480:ISSN 423:PMID 415:ISSN 276:PSII 163:and 94:and 58:and 46:are 684:doi 605:hdl 595:doi 591:225 537:doi 525:506 488:PMC 470:doi 458:116 407:doi 272:PSI 219:of 111:(a 756:: 700:. 692:. 680:21 678:. 674:. 657:96 655:. 649:. 635:^ 621:. 613:. 603:. 589:. 585:. 573:^ 559:. 551:. 543:. 535:. 523:. 519:. 496:. 486:. 478:. 468:. 456:. 452:. 429:. 421:. 413:. 405:. 395:80 393:. 389:. 371:^ 314:, 310:, 306:, 302:, 259:, 255:, 251:, 247:, 243:, 239:, 171:. 98:. 90:, 742:. 708:. 686:: 629:. 607:: 597:: 567:. 539:: 531:: 504:. 472:: 464:: 437:. 409:: 401:: 353:( 343:( 199:- 20:)

Index

Photoautotrophic

Winogradsky column
organisms
light energy
sunlight
elements
carbon
inorganic compounds
organic materials
metabolism
autotrophy
photosynthesis
plants
algae
cyanobacteria
Eukaryotic
photopigment
chlorophyll
porphyrin
derivative
endosymbiont
chloroplasts
prokaryotic
bacteriochlorophylls
cytoplasmic
thylakoids
membrane-bound
retinal
bacteriorhodopsin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.