Knowledge

Ecophysiology

Source 📝

977: 963: 949: 289: 610:
moisture as it is exposed to dry air. On the other hand, a moderately high wind allows the plant to cool its leaves more easily when exposed to full sunlight. Plants are not entirely passive in their interaction with wind. Plants can make their leaves less vulnerable to changes in wind speed, by coating their leaves in fine hairs (
645:
damaged or uprooted by wind. This has been a major selective pressure acting over terrestrial plants. Nowadays, it is one of the major threatening for agriculture and forestry even in temperate zones. It is worse for agriculture in hurricane-prone regions, such as the banana-growing Windward Islands in the Caribbean.
491: 535:
have shown that photosynthetic efficiency does indeed increase. Plant growth rates also increase, by an average of 17% for above-ground tissue and 30% for below-ground tissue. However, detrimental impacts of global warming, such as increased instances of heat and drought stress, mean that the overall
397:
Waterlogging reduces the supply of oxygen to the roots and can kill a plant within days. Plants cannot avoid waterlogging, but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged. Species that are tolerant of waterlogging develop
627:
results in shorter, stockier plants with strengthened stems, as well as to an improved anchorage. It was once believed that this occurs mostly in very windy areas. But it has been found that it happens even in areas with moderate winds, so that wind-induced signal were found to be a major ecological
402:
to allow the diffusion of oxygen from the shoot to the root. Roots that are not killed outright may also switch to less oxygen-hungry forms of cellular respiration. Species that are frequently submerged have evolved more elaborate mechanisms that maintain root oxygen levels, such as the aerial roots
125:
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one
644:
Wind can damage most of the organs of the plants. Leaf abrasion (due to the rubbing of leaves and branches or to the effect of airborne particles such as sand) and leaf of branch breakage are rather common phenomena, that plants have to accommodate. In the more extreme cases, plants can be mortally
609:
and in effect insulates the leaf from the environment, providing an atmosphere rich in moisture and less prone to convective heating or cooling. As wind speed increases, the leaf environment becomes more closely linked to the surrounding environment. It may become difficult for the plant to retain
519:. This would be expected to increase the efficiency of photosynthesis and possibly increase the overall rate of plant growth. This possibility has attracted considerable interest in recent years, as an increased rate of plant growth could absorb some of the excess CO 327:
plants found in the uplands of New Zealand are said to resemble 'vegetable sheep' as they form tight cushion-like clumps to insulate the most vulnerable plant parts and shield them from cooling winds. The same principle has been applied in agriculture by using
300:. Plants can reduce light absorption using reflective leaf hairs, scales, and waxes. These features are so common in warm dry regions that these habitats can be seen to form a 'silvery landscape' as the light scatters off the canopies. Some species, such as 931:
diagram, which formed the basis for much of Rahn's future work. Rahn's research into applications of this diagram led to the development of aerospace medicine and advancements in hyperbaric breathing and high-altitude respiration. Rahn later joined the
622:
Plants can sense the wind through the deformation of its tissues. This signal leads to inhibits the elongation and stimulates the radial expansion of their shoots, while increasing the development of their root system. This syndrome of responses known as
346:
Too much or too little water can damage plants. If there is too little water then tissues will dehydrate and the plant may die. If the soil becomes waterlogged then the soil will become anoxic (low in oxygen), which can kill the roots of the plant.
536:
effect is likely to be a reduction in plant productivity. Reduced plant productivity would be expected to accelerate the rate of global warming. Overall, these observations point to the importance of avoiding further increases in atmospheric CO
276:
and become a gel in cold conditions or to become leaky in hot conditions. This can affect the movement of compounds across the membrane. To prevent these changes, plants can change the composition of their membranes. In cold conditions, more
631:
Trees have a particularly well-developed capacity to reinforce their trunks when exposed to wind. From the practical side, this realisation prompted arboriculturalists in the UK in the 1960s to move away from the practice of staking young
936:
in 1956 as the Lawrence D. Bell Professor and Chairman of the Department of Physiology. As Chairman, Rahn surrounded himself with outstanding faculty and made the University an international research center in environmental physiology.
182:
has a positive slope representing the efficiency of light use, and is called quantum efficiency; the x-intercept is the light intensity at which biochemical assimilation (gross assimilation) balances leaf respiration so that the net
495: 2415:. Definitions and Opinions by: G. A. Bartholomew, A. F. Bennett, W. D. Billings, B. F. Chabot, D. M. Gates, B. Heinrich, R. B. Huey, D. H. Janzen, J. R. King, P. A. McClure, B. K. McNab, P. C. Miller, P. S. Nobel, B. R. Strain. 206:
Excess light occurs at the top of canopies and on open ground when cloud cover is low and the sun's zenith angle is low, typically this occurs in the tropics and at high altitudes. Excess light incident on a leaf can result in
493: 410:
However, for many terminally overwatered houseplants, the initial symptoms of waterlogging can resemble those due to drought. This is particularly true for flood-sensitive plants that show drooping of their leaves due to
781:
In both types of temperature-related stress, it is important to remain well-hydrated. Hydration reduces cardiovascular strain, enhances the ability of energy processes to occur, and reduces feelings of exhaustion.
614:) to break up the airflow and increase the boundary layer. In fact, leaf and canopy dimensions are often finely controlled to manipulate the boundary layer depending on the prevailing environmental conditions. 178:). The shape is typically described by a non-rectangular hyperbola. Three quantities of the light response curve are particularly useful in characterising a plant's response to light intensities. The inclined 494: 652:
occurs in natural systems, the only solution is to ensure that there is an adequate stock of seeds or seedlings to quickly take the place of the mature plants that have been lost- although, in many cases, a
390:. As well as closing their stomata, most plants can also respond to drought by altering their water potential (osmotic adjustment) and increasing root growth. Plants that are adapted to dry environments ( 198:
As with most abiotic factors, light intensity (irradiance) can be both suboptimal and excessive. Suboptimal light (shade) typically occurs at the base of a plant canopy or in an understory environment.
369:). In irrigated fields, the fact that plants close their stomata in response to drying of the roots can be exploited to 'trick' plants into using less water without reducing yields (see 145:
that aid in acclimating to changing conditions. It is hypothesized that this large number of genes can be partly explained by plant species' need to live in a wider range of conditions.
1507:"What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2" 215:. Plants adapted to high light environments have a range of adaptations to avoid or dissipate the excess light energy, as well as mechanisms that reduce the amount of injury caused. 1549:
Climate Change 2007: Impacts, Adaptation and Vulnerability : Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change
832: 365:
In very dry soil, plants close their stomata to reduce transpiration and prevent water loss. The closing of the stomata is often mediated by chemical signals from the root (i.e.,
605:
Wind influences the way leaves regulate moisture, heat, and carbon dioxide. When no wind is present, a layer of still air builds up around each leaf. This is known as the
191:; and a horizontal asymptote representing the maximum assimilation rate. Sometimes after reaching the maximum assimilation declines for processes collectively known as 492: 2465: 2373: 504: 354:
of the root cells. When soil water content is low, plants can alter their water potential to maintain a flow of water into the roots and up to the leaves (
2007: 1475: 137:
are unable to move away and therefore must endure the adverse conditions or perish (animals go places, plants grow places). Plants are therefore
1060: 2358: 2333: 2310: 2291: 2272: 2253: 2228: 1557: 1245: 1219: 1080: 166:
is the food of plants, i.e. the form of energy that plants use to build themselves and reproduce. The organs harvesting light in plants are
2367:
Spicer, J. I., and K. J. Gaston. 1999. Physiological diversity and its ecological implications. Blackwell Science, Oxford, U.K. x + 241 pp.
1261:
Farrell, A. D.; Gilliland, T. J. (2011). "Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland".
733:, and detects changes in surrounding blood to make decisions of whether to stimulate internal heat production or to stimulate evaporation. 1449: 2166: 767:, circulatory adaptations (that provide an efficient transfer of heat to the epidermis), and increased blood flow to the extremities. 311: 2458: 532: 1006: 907:(1912–1990) was an early leader in the field of environmental physiology. Starting out in the field of zoology with a Ph.D. from 836: 203:
plants have a range of adaptations to help them survive the altered quantity and quality of light typical of shade environments.
1338: 2733: 2421: 355: 1341:. Plant Physiology Online, A Companion to Plant Physiology, Fifth Edition by Lincoln Taiz and Eduardo Zeiger. Archived from 296:
Plants can avoid overheating by minimising the amount of sunlight absorbed and by enhancing the cooling effects of wind and
1825:
Jaffe, M. J. (1 June 1973). "Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation".
1397: 288: 2855: 677:. Environmental effects on human physiology are numerous; one of the most carefully studied effects is the alterations in 116: 2875: 2451: 472: 80: 1673: 241: 1745:"Wind effects on juvenile trees: a review with special reference to toppling of radiata pine growing in New Zealand" 2865: 1700:
Gardiner, Barry; Berry, Peter; Moulia, Bruno (2016). "Review: Wind impacts on plant growth, mechanics and damage".
1049:: "I proposed long ago to call this special part of biology œcology (the science of home-relations) or bionomy." " 2870: 670: 570:) and of energy (heat) between the plant and the atmosphere by renewing the air at the contact with the leaves ( 394:) have a range of more specialized mechanisms to maintain water and/or protect tissues when desiccation occurs. 358:). This remarkable mechanism allows plants to lift water as high as 120 m by harnessing the gradient created by 133:
are able to escape unfavourable and changing environmental factors such as heat, cold, drought or floods, while
218:
Light intensity is also an important component in determining the temperature of plant organs (energy budget).
188: 120: 2027:
Płoszczyca, Kamila; Czuba, Miłosz; Chalimoniuk, Małgorzata; Gajda, Robert; Baranowski, Marcin (15 June 2021).
1151:"Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency" 2029:"Red Blood Cell 2,3-Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists" 774:
protects itself against damage by warming the incoming air to 80-90 degrees Fahrenheit before it reaches the
2880: 2766: 2533: 996: 912: 908: 799: 370: 261: 126:
another), and how their collective effect on plant growth and gas exchange can be understood on this basis.
96: 2885: 2776: 2175: 991: 898: 852: 541: 377: 92: 2088: 1021: 933: 886: 736:
There are two main types of stresses that can be experienced due to extreme environmental temperatures:
654: 649: 593: 138: 729:
The hypothalamus plays an important role in thermoregulation. It connects to thermal receptors in the
2771: 2698: 2495: 2120: 1932: 1893: 1834: 1709: 1629: 1582: 1270: 894: 282: 2180: 2108: 2860: 2817: 2807: 2753: 2500: 709:
To achieve this, the body alters three main things to achieve a constant, normal body temperature:
624: 578: 2802: 2708: 2673: 2574: 2552: 2474: 2406: 2398: 1866: 1655: 982: 795: 771: 476: 464: 257: 249: 154: 2350: 2344: 2245: 2239: 447:
gain and water loss is central to plant productivity. The trade-off is all the more critical as
304:, can move their leaves throughout the day so that they are always orientated to avoid the sun ( 174:. The response of photosynthesis to light is called light response curve of net photosynthesis ( 1103: 373:). The use of this technique was largely developed by Dr Peter Dry and colleagues in Australia 260:
increases. Metabolic imbalances associated with temperature extremes result in the build-up of
2781: 2723: 2718: 2586: 2562: 2557: 2390: 2354: 2329: 2306: 2287: 2268: 2249: 2224: 2203: 2195: 2138: 2068: 2050: 1989: 1981: 1909: 1858: 1850: 1807: 1766: 1725: 1647: 1598: 1553: 1547: 1528: 1379: 1319: 1241: 1215: 1190: 1172: 1121: 1076: 748: 682: 778:. This means that not even the most frigid of temperatures can damage the respiratory tract. 2678: 2650: 2382: 2185: 2128: 2058: 2040: 1971: 1940: 1901: 1842: 1797: 1756: 1717: 1637: 1590: 1518: 1369: 1309: 1278: 1180: 1162: 1129: 1111: 1068: 1011: 976: 714: 678: 553: 306: 245: 212: 897:(1915–2007) was also an important contributor to this specific scientific field as well as 2829: 2812: 2786: 2743: 2738: 2713: 2683: 2012: 1298:"Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato" 1016: 916: 893:
from 1947 to 1989, and almost 1,200 individuals can trace their academic lineages to him.
864: 794:
also pose serious physiological challenges on the body. Some of these effects are reduced
752: 694: 383: 351: 341: 208: 192: 2008:"We mustn't abandon the Windward Islands' farmers | Renwick Rose and Nick Mathiason" 350:
The ability of plants to access water depends on the structure of their roots and on the
332:
to insulate the growing points of crops in cool climates in order to boost plant growth.
2124: 1936: 1897: 1838: 1713: 1633: 1586: 1274: 1134: 2640: 2635: 2628: 2596: 2490: 2217: 2063: 2028: 1185: 1150: 1072: 968: 954: 889:(1919–2006) was a founder of animal physiological ecology. He served on the faculty at 844: 606: 585: 557: 524: 431:
is vital for plant growth, as it is the substrate for photosynthesis. Plants take in CO
200: 171: 158: 2109:"History of Ecological Sciences, Part 64: History of Physiological Ecology of Animals" 1905: 1573:
Long, S. P.; Ort, D. R. (2010). "More than taking the heat: Crops and global change".
1424: 1296:
Orsák, Matyáš; Kotíková, Zora; Hnilička, František; Lachman, Jaromír (25 April 2023).
2849: 2693: 2655: 2623: 2615: 2601: 2591: 2510: 2322: 2092: 1976: 1959: 1944: 1802: 1785: 1523: 1506: 1342: 1282: 791: 512: 366: 359: 329: 297: 269: 236:. These protect them from the damaging effects of ice formation and falling rates of 100: 34: 17: 2435: 2410: 1870: 1659: 2834: 2728: 2703: 2645: 2523: 2518: 1721: 1026: 904: 633: 577:
It is sensed as a signal driving a wind-acclimation syndrome by the plant known as
516: 318: 273: 272:
are also affected by changes in temperature and can cause the membrane to lose its
227: 1374: 1357: 1235: 1209: 2761: 2482: 1743:
Moore, J. R.; Tombleson, J. D.; Turner, J. A.; van der Colff, M. (1 July 2008).
1401: 871: 760: 741: 737: 720: 698: 265: 1116: 962: 657:
stage will be needed before the ecosystem can be restored to its former state.
382:
If drought continues, the plant tissues will dehydrate, resulting in a loss of
2547: 2542: 2045: 1761: 1744: 1594: 944: 875: 860: 848: 840: 756: 674: 581:, leading to modified growth and development and eventually to wind hardening. 571: 399: 391: 292:
Infrared image showing the importance of transpiration in keeping leaves cool.
278: 88: 2394: 2199: 2142: 2054: 1985: 1854: 1770: 1323: 1176: 1125: 588:
can damage the plant (leaf abrasion, wind ruptures in branches and stems and
2665: 2219:
Vertebrate ecophysiology: an introduction to its principles and applications
1642: 1617: 1358:"Hormonal changes induced by partial rootzone drying of irrigated grapevine" 1314: 611: 589: 179: 2207: 2190: 2161: 2072: 1993: 1913: 1862: 1811: 1729: 1651: 1602: 1532: 1383: 1297: 1194: 770:
There is one part of the body fully equipped to deal with cold stress. The
27:
Study of adaptation of an organism's physiology to environmental conditions
1476:"Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants" 2824: 1167: 870:
Environmental factors can play a huge role in the human body's fight for
764: 436: 412: 404: 253: 175: 84: 2402: 2265:
Physiological ecology: how animals process energy, nutrients, and toxins
1337:
George Koch; Stephen Sillett; Gregg Jennings; Stephen Davis (May 2006).
763:. Cold stress is physiologically combated by shivering, accumulation of 1846: 1001: 775: 448: 387: 323: 317:
Plants can avoid the full impact of low temperatures by altering their
233: 77: 2443: 2133: 1786:"Leaves in the lowest and highest winds: temperature, force and shape" 2386: 2371:
Tracy, C. R.; J. S. Turner (1982). "What is physiological ecology?".
2328:. Ithaca and London: Comstock Publishing Associates. xxvii + 576 pp. 730: 686: 459:
in the leaf. Some plants overcome this difficulty by concentrating CO
237: 130: 2223:. Cambridge, U.K.: Cambridge University Press. p. xi + 287 pp. 1149:
Yang, Jingli; Song, Jinnan; Jeong, Byoung Ryong (23 February 2022).
1450:"Crassulacean Acid Metabolism - an overview | ScienceDirect Topics" 1102:
Zhang, Man; Ming, Yu; Wang, Hong-Bin; Jin, Hong-Lei (13 May 2024).
232:
In response to extremes of temperature, plants can produce various
2611: 2578: 2267:. Princeton, NJ: Princeton University Press. p. xv + 741 pp. 2085: 790:
Extreme temperatures are not the only obstacles that humans face.
690: 489: 287: 163: 134: 64: 170:
and the process through which light is converted into biomass is
2324:
The physiological ecology of vertebrates: a view from energetics
1960:"Plant growth forms: an ecological and evolutionary perspective" 890: 167: 142: 2447: 443:
enters the stomata, moisture escapes. This trade-off between CO
1061:"Radiation-Use Efficiency Under Different Climatic Conditions" 1674:"How Climate Change Will Affect Plants – State of the Planet" 847:
synthesis, enhanced circulation, and increased levels of the
57: 47: 37: 455:, is efficient only when there is a high concentration of CO 2346:
Physiological ecology of animals: an evolutionary approach
248:
at high temperatures. As temperatures fall, production of
1616:
Lobell, D. B.; Schlenker, W.; Costa-Roberts, J. (2011).
527:. Extensive experiments growing plants under elevated CO 566:
It affects the exchanges of mass (water evaporation, CO
281:
are placed in the membrane and in hot conditions, more
91:
to environmental conditions. It is closely related to
1618:"Climate Trends and Global Crop Production Since 1980" 1339:"How Water Climbs to the Top of a 112 Meter-Tall Tree" 1065:
Changing Climate and Resource Use Efficiency in Plants
747:
Heat stress is physiologically combated in four ways:
2349:. Oxford: Blackwell Scientific Publications. p.  802: 921:
A Graphical Analysis of the Respiratory Gas Exchange
2795: 2752: 2664: 2610: 2573: 2532: 2509: 2481: 1398:"The Impact of Flooding Stress on Plants and Crops" 1104:"Strategies for adaptation to high light in plants" 2321: 2216: 826: 2244:. Cambridge: Cambridge University Press. p.  2162:"The academic genealogy of George A. Bartholomew" 2113:The Bulletin of the Ecological Society of America 1884:Ennos, A (1997). "Wind as an ecological factor". 874:. However, humans have found ways to adapt, both 562:Wind has three very different effects on plants. 310:). Knowledge of these mechanisms has been key to 1927:Grace, J. (1988). "3. Plant response to wind". 256:increases. As temperatures rise, production of 240:catalysis at low temperatures, and from enzyme 911:(1933), Rahn began teaching physiology at the 2459: 2374:Bulletin of the Ecological Society of America 915:in 1941. It is there that he partnered with 439:pores on their leaves. At the same time as CO 8: 2263:Karasov, W. H.; C. Martinez del Rio (2007). 1211:Nature's Palette: The Science of Plant Color 923:in 1955. This paper included the landmark O 701:must remain at consistent, balanced levels. 398:specialised roots near the soil surface and 1552:. Cambridge University Press. p. 214. 1155:International Journal of Molecular Sciences 2466: 2452: 2444: 1958:Rowe, Nick; Speck, Thomas (1 April 2005). 2189: 2179: 2132: 2062: 2044: 1975: 1929:Agriculture, Ecosystems & Environment 1801: 1760: 1641: 1522: 1373: 1313: 1184: 1166: 1133: 1115: 816: 810: 809: 807: 801: 685:. This is necessary because in order for 487:whenever photosynthesis is taking place. 483:and must open their stomata to take in CO 1356:Stoll, M.; Loveys, B.; Dry, P. (2000). 1038: 2102: 2100: 1505:Ainsworth, E. A.; Long, S. P. (2004). 827:{\displaystyle P_{{\mathrm {O} }_{2}}} 1695: 1693: 1691: 1429:A Guide to the Mangroves of Singapore 1423:Ng, Peter K.L.; Sivasothi, N (2001). 499:Plant Productivity in a Warming World 187:exchange of the leaf is zero, called 7: 107:is sometimes employed as a synonym. 2167:Integrative and Comparative Biology 673:can have major influences on human 2241:Evolutionary physiological ecology 2107:Egerton, Frank N. (October 2019). 1425:"How plants cope in the mangroves" 1073:10.1016/B978-0-12-816209-5.00002-7 811: 312:breeding for heat stress tolerance 25: 1886:Trends in Ecology & Evolution 855:, which promotes off-loading of O 533:Free-Air Concentration Enrichment 2215:Bradshaw, Sidney Donald (2003). 2160:Bennett, A. F.; C. Lowe (2005). 1977:10.1111/j.1469-8137.2004.01309.x 1803:10.1111/j.1469-8137.2009.02854.x 1575:Current Opinion in Plant Biology 1524:10.1111/j.1469-8137.2004.01224.x 1283:10.1111/j.1365-2494.2010.00778.x 1007:Phylogenetic comparative methods 975: 961: 947: 837:acid-base content in body fluids 141:and have an impressive array of 83:that studies the response of an 2343:Sibly, R. M.; P. Calow (1986). 1214:. University of Chicago Press. 451:, the enzyme used to capture CO 356:Soil plant atmosphere continuum 1722:10.1016/j.plantsci.2016.01.006 1362:Journal of Experimental Botany 693:to flow, and for various body 228:Plant adaptations to wildfires 1: 2286:. New York: Springer-Verlag. 1906:10.1016/s0169-5347(96)10066-5 1067:, Elsevier, pp. 51–109, 1059:Bhattacharya, Amitav (2019), 636:to offer artificial support. 475:. However, most species used 117:Plant perception (physiology) 1945:10.1016/0167-8809(88)90008-4 473:Crassulacean acid metabolism 264:, which can be countered by 2303:Physiological plant ecology 2284:Plant physiological ecology 1546:Martin Lewis Parry (2007). 1302:Plant, Soil and Environment 725:The rate of heat production 681:in the body due to outside 601:Exchange of mass and energy 2902: 2305:(4th ed.). Springer. 1480:Nature Education Knowledge 1375:10.1093/jexbot/51.350.1627 1117:10.1007/s42994-024-00164-6 592:and toppling in trees and 551: 463:within their leaves using 375: 339: 225: 152: 114: 58: 48: 38: 2436:Resources in your library 2046:10.3389/fphys.2021.670977 1595:10.1016/j.pbi.2010.04.008 835:, the rebalancing of the 1486:(10). www.nature.com. 21 1474:Taub, Daniel R. (2010). 1263:Grass and Forage Science 314:in agricultural plants. 189:light compensation point 121:Plant stress measurement 70:environmental physiology 56:, "nature, origin"; and 2767:Ecological anthropology 2033:Frontiers in Physiology 1762:10.1093/forestry/cpn023 1643:10.1126/science.1204531 997:Evolutionary physiology 913:University of Rochester 909:University of Rochester 523:and reduce the rate of 415:(rather than wilting). 371:partial rootzone drying 279:unsaturated fatty acids 262:reactive oxygen species 97:evolutionary physiology 2777:Ecological engineering 992:Comparative physiology 899:comparative physiology 853:2,3 diphosphoglycerate 828: 542:runaway climate change 515:and the combustion of 500: 378:Nominative determinism 302:Macroptilium purpureum 293: 139:phenotypically plastic 93:comparative physiology 2320:McNab, B. K. (2002). 1454:www.sciencedirect.com 1345:on 14 September 2013. 1315:10.17221/415/2022-pse 1022:Theodore Garland, Jr. 934:University at Buffalo 887:George A. Bartholomew 829: 713:Heat transfer to the 503:The concentration of 498: 376:Further information: 291: 283:saturated fatty acids 115:Further information: 74:physiological ecology 18:Physiological ecology 2856:Subfields of ecology 2772:Ecological economics 2699:Evolutionary ecology 2666:Ecological phenomena 2496:Quantitative ecology 2301:Larcher, W. (2001). 2282:Lambers, H. (1998). 2191:10.1093/icb/45.2.231 1168:10.3390/ijms23052448 895:Knut Schmidt-Nielsen 800: 540:rather than risking 2876:Ecology terminology 2818:Restoration ecology 2808:Glossary of ecology 2754:Interdisciplinarity 2501:Theoretical ecology 2475:Branches of ecology 2125:2019BuESA.100E1616E 2016:. 23 December 2010. 1937:1988AgEE...22...71G 1898:1997TEcoE..12..108E 1839:1973Plant.114..143J 1714:2016PlnSc.245...94G 1634:2011Sci...333..616L 1587:2010COPB...13..240L 1275:2011GForS..66..214F 1047:The Wonders of Life 625:thigmomorphogenesis 579:thigmomorphogenesis 386:that is visible as 258:heat shock proteins 250:antifreeze proteins 2803:History of ecology 2709:Functional ecology 2674:Behavioral ecology 2553:Population ecology 2238:Calow, P. (1987). 1847:10.1007/bf00387472 1784:Vogel, S. (2009). 1368:(350): 1627–1634. 1240:. Springer. 2005. 1208:David Lee (2010). 983:Environment portal 824: 772:respiratory system 648:When this type of 501: 294: 155:Photomorphogenesis 2866:Animal physiology 2843: 2842: 2782:Political ecology 2724:Molecular ecology 2719:Landscape ecology 2587:Microbial ecology 2563:Ecosystem ecology 2558:Community ecology 2422:Library resources 2360:978-0-632-01494-1 2335:978-0-8014-3913-1 2312:978-3-540-43516-7 2293:978-0-387-98326-4 2274:978-0-691-07453-5 2255:978-0-521-32058-0 2230:978-0-521-81797-4 2134:10.1002/bes2.1616 1676:. 27 January 2022 1628:(6042): 616–620. 1559:978-0-521-88010-7 1247:978-3-540-20833-4 1221:978-0-226-47105-1 1082:978-0-12-816209-5 511:is rising due to 509:in the atmosphere 496: 362:from the leaves. 46:, "house(hold)"; 16:(Redirected from 2893: 2871:Plant physiology 2679:Chemical ecology 2651:Tropical ecology 2468: 2461: 2454: 2445: 2414: 2387:10.2307/20166334 2364: 2339: 2327: 2316: 2297: 2278: 2259: 2234: 2222: 2211: 2193: 2183: 2147: 2146: 2136: 2104: 2095: 2083: 2077: 2076: 2066: 2048: 2024: 2018: 2017: 2004: 1998: 1997: 1979: 1955: 1949: 1948: 1931:. 22–23: 71–88. 1924: 1918: 1917: 1881: 1875: 1874: 1822: 1816: 1815: 1805: 1781: 1775: 1774: 1764: 1740: 1734: 1733: 1697: 1686: 1685: 1683: 1681: 1670: 1664: 1663: 1645: 1613: 1607: 1606: 1570: 1564: 1563: 1543: 1537: 1536: 1526: 1502: 1496: 1495: 1493: 1491: 1471: 1465: 1464: 1462: 1460: 1446: 1440: 1439: 1437: 1435: 1420: 1414: 1413: 1411: 1409: 1400:. Archived from 1394: 1388: 1387: 1377: 1353: 1347: 1346: 1334: 1328: 1327: 1317: 1293: 1287: 1286: 1258: 1252: 1251: 1232: 1226: 1225: 1205: 1199: 1198: 1188: 1170: 1146: 1140: 1139: 1137: 1119: 1099: 1093: 1092: 1091: 1089: 1056: 1050: 1043: 1012:Plant physiology 985: 980: 979: 971: 966: 965: 957: 952: 951: 950: 833: 831: 830: 825: 823: 822: 821: 820: 815: 814: 705:Thermoregulation 679:thermoregulation 554:wind pollination 497: 307:paraheliotropism 274:fluid properties 246:photorespiration 213:photodestruction 61: 60: 51: 50: 41: 40: 21: 2901: 2900: 2896: 2895: 2894: 2892: 2891: 2890: 2846: 2845: 2844: 2839: 2830:Natural history 2813:Applied ecology 2791: 2787:Systems ecology 2748: 2744:Thermal ecology 2739:Spatial ecology 2714:Genetic ecology 2684:Disease ecology 2660: 2616:biogeographical 2606: 2569: 2528: 2505: 2477: 2472: 2442: 2441: 2440: 2430: 2429: 2425: 2418: 2370: 2361: 2342: 2336: 2319: 2313: 2300: 2294: 2281: 2275: 2262: 2256: 2237: 2231: 2214: 2181:10.1.1.589.3158 2159: 2155: 2153:Further reading 2150: 2106: 2105: 2098: 2091:7 July 2012 at 2084: 2080: 2026: 2025: 2021: 2013:TheGuardian.com 2006: 2005: 2001: 1964:New Phytologist 1957: 1956: 1952: 1926: 1925: 1921: 1883: 1882: 1878: 1824: 1823: 1819: 1790:New Phytologist 1783: 1782: 1778: 1742: 1741: 1737: 1699: 1698: 1689: 1679: 1677: 1672: 1671: 1667: 1615: 1614: 1610: 1572: 1571: 1567: 1560: 1545: 1544: 1540: 1511:New Phytologist 1504: 1503: 1499: 1489: 1487: 1473: 1472: 1468: 1458: 1456: 1448: 1447: 1443: 1433: 1431: 1422: 1421: 1417: 1407: 1405: 1396: 1395: 1391: 1355: 1354: 1350: 1336: 1335: 1331: 1295: 1294: 1290: 1260: 1259: 1255: 1248: 1234: 1233: 1229: 1222: 1207: 1206: 1202: 1148: 1147: 1143: 1101: 1100: 1096: 1087: 1085: 1083: 1058: 1057: 1053: 1045:Ernst Haeckel, 1044: 1040: 1036: 1031: 1017:Raymond B. Huey 981: 974: 967: 960: 953: 948: 946: 943: 930: 926: 917:Wallace O. Fenn 884: 876:physiologically 865:hypoxic tissues 858: 808: 803: 798: 797: 788: 707: 671:The environment 668: 663: 642: 620: 603: 569: 560: 550: 539: 530: 522: 508: 490: 486: 481:carbon fixation 480: 469:carbon fixation 468: 462: 458: 454: 446: 442: 434: 430: 425: 422: 384:turgor pressure 380: 352:water potential 344: 342:Moisture stress 338: 321:. For example, 230: 224: 209:photoinhibition 193:photoinhibition 186: 161: 151: 129:In many cases, 123: 113: 28: 23: 22: 15: 12: 11: 5: 2899: 2897: 2889: 2888: 2883: 2881:Animal ecology 2878: 2873: 2868: 2863: 2858: 2848: 2847: 2841: 2840: 2838: 2837: 2832: 2827: 2822: 2821: 2820: 2810: 2805: 2799: 2797: 2793: 2792: 2790: 2789: 2784: 2779: 2774: 2769: 2764: 2758: 2756: 2750: 2749: 2747: 2746: 2741: 2736: 2734:Social ecology 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2670: 2668: 2662: 2661: 2659: 2658: 2653: 2648: 2643: 2641:Forest ecology 2638: 2636:Desert ecology 2633: 2632: 2631: 2629:Arctic ecology 2620: 2618: 2608: 2607: 2605: 2604: 2599: 2597:Insect ecology 2594: 2589: 2583: 2581: 2571: 2570: 2568: 2567: 2566: 2565: 2560: 2555: 2545: 2539: 2537: 2530: 2529: 2527: 2526: 2521: 2515: 2513: 2507: 2506: 2504: 2503: 2498: 2493: 2487: 2485: 2479: 2478: 2473: 2471: 2470: 2463: 2456: 2448: 2439: 2438: 2432: 2431: 2420: 2419: 2417: 2416: 2381:(4): 340–347. 2368: 2365: 2359: 2340: 2334: 2317: 2311: 2298: 2292: 2279: 2273: 2260: 2254: 2235: 2229: 2212: 2174:(2): 231–233. 2156: 2154: 2151: 2149: 2148: 2096: 2078: 2019: 1999: 1950: 1919: 1892:(3): 108–111. 1876: 1833:(2): 143–157. 1817: 1776: 1755:(3): 377–387. 1735: 1687: 1665: 1608: 1565: 1558: 1538: 1517:(2): 351–371. 1497: 1466: 1441: 1415: 1389: 1348: 1329: 1308:(4): 152–160. 1288: 1253: 1246: 1227: 1220: 1200: 1141: 1094: 1081: 1051: 1037: 1035: 1032: 1030: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 988: 987: 986: 972: 969:Biology portal 958: 955:Ecology portal 942: 939: 928: 924: 883: 880: 878:and tangibly. 856: 819: 813: 806: 792:High altitudes 787: 784: 727: 726: 723: 717: 706: 703: 667: 664: 662: 659: 641: 638: 619: 616: 607:boundary layer 602: 599: 598: 597: 582: 575: 567: 558:seed dispersal 549: 546: 537: 528: 525:global warming 520: 506: 484: 478: 466: 460: 456: 452: 444: 440: 432: 428: 424: 420: 417: 337: 334: 285:are inserted. 270:Cell membranes 244:and increased 223: 220: 201:Shade tolerant 184: 172:photosynthesis 159:Photoperiodism 150: 147: 112: 109: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2898: 2887: 2886:Plant ecology 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2853: 2851: 2836: 2833: 2831: 2828: 2826: 2823: 2819: 2816: 2815: 2814: 2811: 2809: 2806: 2804: 2801: 2800: 2798: 2794: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2759: 2757: 2755: 2751: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2694:Ecotoxicology 2692: 2690: 2689:Ecophysiology 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2671: 2669: 2667: 2663: 2657: 2656:Urban ecology 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2630: 2627: 2626: 2625: 2624:Polar ecology 2622: 2621: 2619: 2617: 2613: 2609: 2603: 2602:Human ecology 2600: 2598: 2595: 2593: 2592:Plant ecology 2590: 2588: 2585: 2584: 2582: 2580: 2576: 2572: 2564: 2561: 2559: 2556: 2554: 2551: 2550: 2549: 2546: 2544: 2541: 2540: 2538: 2535: 2531: 2525: 2522: 2520: 2517: 2516: 2514: 2512: 2511:Spatial scale 2508: 2502: 2499: 2497: 2494: 2492: 2491:Field ecology 2489: 2488: 2486: 2484: 2480: 2476: 2469: 2464: 2462: 2457: 2455: 2450: 2449: 2446: 2437: 2434: 2433: 2428: 2427:Ecophysiology 2423: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2375: 2369: 2366: 2362: 2356: 2352: 2348: 2347: 2341: 2337: 2331: 2326: 2325: 2318: 2314: 2308: 2304: 2299: 2295: 2289: 2285: 2280: 2276: 2270: 2266: 2261: 2257: 2251: 2247: 2243: 2242: 2236: 2232: 2226: 2221: 2220: 2213: 2209: 2205: 2201: 2197: 2192: 2187: 2182: 2177: 2173: 2169: 2168: 2163: 2158: 2157: 2152: 2144: 2140: 2135: 2130: 2126: 2122: 2118: 2114: 2110: 2103: 2101: 2097: 2094: 2093:archive.today 2090: 2087: 2082: 2079: 2074: 2070: 2065: 2060: 2056: 2052: 2047: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2014: 2009: 2003: 2000: 1995: 1991: 1987: 1983: 1978: 1973: 1969: 1965: 1961: 1954: 1951: 1946: 1942: 1938: 1934: 1930: 1923: 1920: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1818: 1813: 1809: 1804: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1768: 1763: 1758: 1754: 1750: 1746: 1739: 1736: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1702:Plant Science 1696: 1694: 1692: 1688: 1675: 1669: 1666: 1661: 1657: 1653: 1649: 1644: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1609: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1566: 1561: 1555: 1551: 1550: 1542: 1539: 1534: 1530: 1525: 1520: 1516: 1512: 1508: 1501: 1498: 1485: 1481: 1477: 1470: 1467: 1455: 1451: 1445: 1442: 1430: 1426: 1419: 1416: 1404:on 3 May 2013 1403: 1399: 1393: 1390: 1385: 1381: 1376: 1371: 1367: 1363: 1359: 1352: 1349: 1344: 1340: 1333: 1330: 1325: 1321: 1316: 1311: 1307: 1303: 1299: 1292: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1254: 1249: 1243: 1239: 1238: 1237:Plant Ecology 1231: 1228: 1223: 1217: 1213: 1212: 1204: 1201: 1196: 1192: 1187: 1182: 1178: 1174: 1169: 1164: 1160: 1156: 1152: 1145: 1142: 1136: 1131: 1127: 1123: 1118: 1113: 1109: 1105: 1098: 1095: 1084: 1078: 1074: 1070: 1066: 1062: 1055: 1052: 1048: 1042: 1039: 1033: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 989: 984: 978: 973: 970: 964: 959: 956: 945: 940: 938: 935: 922: 918: 914: 910: 906: 902: 900: 896: 892: 888: 881: 879: 877: 873: 868: 866: 862: 854: 850: 846: 842: 838: 834: 817: 804: 793: 785: 783: 779: 777: 773: 768: 766: 762: 758: 754: 750: 745: 743: 739: 734: 732: 724: 722: 718: 716: 712: 711: 710: 704: 702: 700: 696: 692: 689:to function, 688: 684: 680: 676: 672: 665: 660: 658: 656: 651: 646: 639: 637: 635: 634:amenity trees 629: 626: 617: 615: 613: 608: 600: 595: 591: 587: 583: 580: 576: 573: 565: 564: 563: 559: 555: 547: 545: 543: 534: 526: 518: 514: 513:deforestation 510: 488: 482: 474: 470: 450: 438: 423:concentration 418: 416: 414: 408: 406: 401: 395: 393: 389: 385: 379: 374: 372: 368: 367:abscisic acid 363: 361: 360:transpiration 357: 353: 348: 343: 335: 333: 331: 330:plastic mulch 326: 325: 320: 315: 313: 309: 308: 303: 299: 298:transpiration 290: 286: 284: 280: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 229: 221: 219: 216: 214: 210: 204: 202: 196: 194: 190: 181: 177: 173: 169: 165: 160: 156: 148: 146: 144: 140: 136: 132: 127: 122: 118: 110: 108: 106: 102: 101:Ernst Haeckel 98: 94: 90: 86: 82: 79: 75: 71: 67: 66: 55: 45: 36: 32: 31:Ecophysiology 19: 2835:Biogeography 2729:Paleoecology 2704:Fire ecology 2688: 2646:Soil ecology 2534:Organisation 2524:Macroecology 2519:Microecology 2426: 2378: 2372: 2345: 2323: 2302: 2283: 2264: 2240: 2218: 2171: 2165: 2116: 2112: 2086:BartGen Tree 2081: 2036: 2032: 2022: 2011: 2002: 1970:(1): 61–72. 1967: 1963: 1953: 1928: 1922: 1889: 1885: 1879: 1830: 1826: 1820: 1796:(1): 13–26. 1793: 1789: 1779: 1752: 1748: 1738: 1705: 1701: 1678:. Retrieved 1668: 1625: 1621: 1611: 1581:(3): 241–8. 1578: 1574: 1568: 1548: 1541: 1514: 1510: 1500: 1488:. Retrieved 1483: 1479: 1469: 1457:. Retrieved 1453: 1444: 1432:. Retrieved 1428: 1418: 1406:. Retrieved 1402:the original 1392: 1365: 1361: 1351: 1343:the original 1332: 1305: 1301: 1291: 1266: 1262: 1256: 1236: 1230: 1210: 1203: 1158: 1154: 1144: 1107: 1097: 1086:, retrieved 1064: 1054: 1046: 1041: 1027:Tyrone Hayes 920: 905:Hermann Rahn 903: 885: 869: 843:, increased 839:, increased 789: 780: 769: 746: 735: 728: 719:The rate of 708: 697:to operate, 669: 655:successional 647: 643: 630: 621: 604: 561: 517:fossil fuels 502: 426: 409: 396: 381: 364: 349: 345: 322: 319:microclimate 316: 305: 301: 295: 242:denaturation 231: 217: 205: 197: 162: 128: 124: 104: 73: 69: 63: 53: 43: 30: 29: 2762:Agroecology 2483:Methodology 1680:2 September 1459:1 September 1161:(5): 2448. 1088:1 September 919:to publish 872:homeostasis 761:evaporation 742:cold stress 738:heat stress 721:evaporation 699:temperature 650:disturbance 640:Wind damage 618:Acclimation 266:antioxidant 222:Temperature 103:'s coinage 2861:Physiology 2850:Categories 2548:Synecology 2543:Autecology 2039:: 670977. 1708:: 94–118. 1490:8 February 1269:(2): 214. 1034:References 882:Scientists 861:hemoglobin 851:byproduct 849:glycolysis 841:hemoglobin 757:convection 753:conduction 675:physiology 596:in crops). 590:windthrows 586:drag force 572:convection 552:See also: 400:aerenchyma 392:Xerophytes 340:See also: 226:See also: 153:See also: 89:physiology 81:discipline 78:biological 2395:0012-9623 2200:1540-7063 2176:CiteSeerX 2143:0012-9623 2055:1664-042X 1986:1469-8137 1855:0032-0935 1771:0015-752X 1324:1214-1178 1177:1422-0067 1126:2662-1738 796:arterial 749:radiation 715:epidermis 612:trichomes 407:forests. 268:systems. 254:dehydrins 180:asymptote 2825:Ecosophy 2575:Taxonomy 2536:or scope 2411:86354445 2403:20166334 2208:21676766 2089:Archived 2073:34211402 1994:15760351 1914:21237994 1871:25308919 1863:24458719 1812:19413689 1749:Forestry 1730:26940495 1660:19177121 1652:21551030 1603:20494611 1533:15720649 1434:19 April 1408:29 April 1384:11006312 1195:35269590 1135:11399379 1108:Abiotech 941:See also 786:Altitude 765:body fat 683:stresses 628:factor. 437:stomatal 435:through 413:epinasty 405:mangrove 403:seen in 234:proteins 176:PI curve 85:organism 2121:Bibcode 2064:8239298 1933:Bibcode 1894:Bibcode 1835:Bibcode 1710:Bibcode 1630:Bibcode 1622:Science 1583:Bibcode 1271:Bibcode 1186:8910434 1002:Ecology 863:in the 776:bronchi 687:enzymes 661:Animals 594:lodging 449:Rubisco 388:wilting 324:Raoulia 131:animals 105:bionomy 2424:about 2409:  2401:  2393:  2357:  2351:179 pp 2332:  2309:  2290:  2271:  2252:  2246:239 pp 2227:  2206:  2198:  2178:  2141:  2071:  2061:  2053:  1992:  1984:  1912:  1869:  1861:  1853:  1827:Planta 1810:  1769:  1728:  1658:  1650:  1601:  1556:  1531:  1382:  1322:  1244:  1218:  1193:  1183:  1175:  1132:  1124:  1079:  759:, and 731:dermis 695:organs 666:Humans 531:using 238:enzyme 168:leaves 135:plants 111:Plants 65:-logia 59:-λογία 54:physis 33:(from 2796:Other 2612:Biome 2579:taxon 2407:S2CID 2399:JSTOR 2119:(4). 1867:S2CID 1656:S2CID 691:blood 336:Water 164:Light 149:Light 143:genes 76:is a 49:φύσις 44:oikos 39:οἶκος 35:Greek 2391:ISSN 2355:ISBN 2330:ISBN 2307:ISBN 2288:ISBN 2269:ISBN 2250:ISBN 2225:ISBN 2204:PMID 2196:ISSN 2139:ISSN 2069:PMID 2051:ISSN 1990:PMID 1982:ISSN 1910:PMID 1859:PMID 1851:ISSN 1808:PMID 1767:ISSN 1726:PMID 1682:2024 1648:PMID 1599:PMID 1554:ISBN 1529:PMID 1492:2023 1461:2024 1436:2019 1410:2013 1380:PMID 1320:ISSN 1242:ISBN 1216:ISBN 1191:PMID 1173:ISSN 1122:ISSN 1090:2024 1077:ISBN 891:UCLA 740:and 584:Its 556:and 548:Wind 252:and 211:and 157:and 119:and 95:and 2614:or 2577:or 2383:doi 2186:doi 2129:doi 2117:100 2059:PMC 2041:doi 1972:doi 1968:166 1941:doi 1902:doi 1843:doi 1831:114 1798:doi 1794:183 1757:doi 1718:doi 1706:245 1638:doi 1626:333 1591:doi 1519:doi 1515:165 1370:doi 1310:doi 1279:doi 1181:PMC 1163:doi 1130:PMC 1112:doi 1069:doi 927:-CO 859:by 845:RBC 471:or 87:'s 72:or 68:), 2852:: 2405:. 2397:. 2389:. 2379:63 2377:. 2353:. 2248:. 2202:. 2194:. 2184:. 2172:45 2170:. 2164:. 2137:. 2127:. 2115:. 2111:. 2099:^ 2067:. 2057:. 2049:. 2037:12 2035:. 2031:. 2010:. 1988:. 1980:. 1966:. 1962:. 1939:. 1908:. 1900:. 1890:12 1888:. 1865:. 1857:. 1849:. 1841:. 1829:. 1806:. 1792:. 1788:. 1765:. 1753:81 1751:. 1747:. 1724:. 1716:. 1704:. 1690:^ 1654:. 1646:. 1636:. 1624:. 1620:. 1597:. 1589:. 1579:13 1577:. 1527:. 1513:. 1509:. 1482:. 1478:. 1452:. 1427:. 1378:. 1366:51 1364:. 1360:. 1318:. 1306:69 1304:. 1300:. 1277:. 1267:66 1265:. 1189:. 1179:. 1171:. 1159:23 1157:. 1153:. 1128:. 1120:. 1110:. 1106:. 1075:, 1063:, 901:. 867:. 755:, 751:, 744:. 574:). 544:. 505:CO 427:CO 419:CO 195:. 183:CO 99:. 62:, 52:, 42:, 2467:e 2460:t 2453:v 2413:. 2385:: 2363:. 2338:. 2315:. 2296:. 2277:. 2258:. 2233:. 2210:. 2188:: 2145:. 2131:: 2123:: 2075:. 2043:: 1996:. 1974:: 1947:. 1943:: 1935:: 1916:. 1904:: 1896:: 1873:. 1845:: 1837:: 1814:. 1800:: 1773:. 1759:: 1732:. 1720:: 1712:: 1684:. 1662:. 1640:: 1632:: 1605:. 1593:: 1585:: 1562:. 1535:. 1521:: 1494:. 1484:3 1463:. 1438:. 1412:. 1386:. 1372:: 1326:. 1312:: 1285:. 1281:: 1273:: 1250:. 1224:. 1197:. 1165:: 1138:. 1114:: 1071:: 929:2 925:2 857:2 818:2 812:O 805:P 568:2 538:2 529:2 521:2 507:2 485:2 479:3 477:C 467:4 465:C 461:2 457:2 453:2 445:2 441:2 433:2 429:2 421:2 185:2 20:)

Index

Physiological ecology
Greek
-logia
biological
discipline
organism
physiology
comparative physiology
evolutionary physiology
Ernst Haeckel
Plant perception (physiology)
Plant stress measurement
animals
plants
phenotypically plastic
genes
Photomorphogenesis
Photoperiodism
Light
leaves
photosynthesis
PI curve
asymptote
light compensation point
photoinhibition
Shade tolerant
photoinhibition
photodestruction
Plant adaptations to wildfires
proteins

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.