Knowledge (XXG)

Point diffraction interferometer

Source πŸ“

192: 83:
was associated with lowered signal to noise ratio. These problems are largely overcome in the phase-shifting point diffraction interferometer designs, in which a grating or beamsplitter creates multiple, identical copies of the beam that is incident on an opaque mask. The test beam passes through a somewhat large hole or aperture in the membrane, without losses due to absorption; the reference beam is focused onto the pinhole for highest transmission. In the grating-based instance, phase-shifting is accomplished by translating the grating perpendicular to the rulings, while multiple images are recorded. The continued developments in phase shifting PDI have achieved accuracy orders of magnitude greater than standard Fizeau based systems.
148: 101: 209:
reference optics makes the method suitable to visualise absolute surface form of optical systems. Therefore, a PDI is uniquely suitable to verify the reference optics of other interferometers. It is also immensely useful in analysing optical assemblies used in Laser based systems. Characterising optics for UV lithography. Quality control of precision optics. Verifying the actual resolution of an optical assembly. Measuring the wavefront map produced by X-ray optics. PS-PDI can also be used to verify rated resolution of space optics before deployment.
71: 43:, which separates out an unaberrated beam and interferes this with the test beam, a common-path interferometer generates its own reference beam. In PDI systems, the test and reference beams travel the same or almost the same path. This design makes the PDI extremely useful when environmental isolation is not possible or a reduction in the number of precision optics is required. The reference beam is created from a portion of the test beam by diffraction from a small pinhole in a semitransparent coating. The principle of a PDI is shown in Figure 1. 109:
could accurately measure the optical surface with variations of 1 nm. The phase shifting was obtained by moving the test part with a piezo electric translation stage. An unwanted side effect of moving the test part is that the defocus also moves distorting the fringes. Another downsides of Sommargren's approach is that it produces low contrast fringes and an attempt to regulate the contrast also modifies the measured wavefront.
160:
Two-beam PDI provides a major advantage over other schemes by availing two independently steerable beams. Here, the test beam and reference beam are perpendicular to each other, where the intensity of reference can be regulated. Similarly, an arbitrary and stable phase shifts can be obtained relative
78:
PDI systems are valuable tool to measure absolute surface characteristics of an optical or reflective instruments non destructively. The common path design eliminates any need of having a reference optics, which are known to overlap the absolute surface form of a test object with its own surface form
393:
Voznesenskiy, Nikolay; Voznesenskaia, Mariia; Petrova, Natalia; Abels, Artur (2012-12-18). Mazuray, Laurent; Wartmann, Rolf; Wood, Andrew P; de la Fuente, Marta C; Tissot, Jean-Luc M; Raynor, Jeffrey M; Kidger, Tina E; David, Stuart; BenΓ­tez, Pablo; Smith, Daniel G; Wyrowski, Frank; Erdmann, Andreas
208:
have been used to detect optical or polished surface forms but new advances in precision manufacturing has allowed industrial point diffraction interferometry possible. PDI is especially suited for high resolution, high accuracy measurements in laboratory conditions to noisy factory floors. Lack of
117:
In this type of point diffraction interferometer the point source is a single mode fiber. The end face is narrowed down to resemble a cone and is covered with metallic film to reduce the light spill. Fibre is arranged so that they generate spherical waves for both testing and referencing. End of an
82:
The main criticisms of the original design are (1) that the required low-transmission reduces the efficiency, and (2) when the beam becomes too aberrated, the intensity on-axis is reduced, and less light is available for the reference beam, leading to a loss of fringe contrast. Lowered transmission
108:
Gary Sommargren proposed a point diffraction interferometer design which directly followed from the basic design where parts of the diffracted wavefront was used for testing and the remaining part for detection as shown in Figure 3. This design was a major upgrade to existing systems. The scheme
161:
to the test beam keeping the test part static. The scheme as shown in Figure 4 is easy to manufacture and provides user-friendly measuring conditions similar to Fizeau type interferometers. At the same time renders following additional benefits:
786:
Chkhalo, Nikolay I.; Kluenkov, Evgeniy B.; Pestov, Aleksey E.; Raskin, Denis G.; Salashchenko, Nikolay N.; Toropov, Mikhail N. (2008-01-01). "Manufacturing and investigation of objective lens for ultrahigh resolution lithography facilities".
606:
Otaki, Katsura; Bonneau, Florian; Ichihara, Yutaka (1999-01-01). "Absolute measurement of a spherical surface using a point diffraction interferometer". Optical Engineering for Sensing and Nanotechnology (ICOSN '99).
58:) then passes through the hole and interferes with the rest of beam. The transmission and the hole size are selected to balance the intensities of the test and reference beams. The device is similar in operation to 86:
Phase-shifting versions have been created to increase measurement resolution and efficiency. These include a diffraction grating interferometer by Kwon and the Phase-Shifting Point Diffraction Interferometer.
74:
Figure 2: Fizeau interferometer requires a reference optics. It is very important that the reference optics(flat) be near perfect because it heavily influence the measured surface form of a test object.
79:
errors. This is a major disadvantage of a double path systems, such as Fizeau interferometers, as shown in Figure 2. Similarly the common path design is resistant to ambient disturbances.
142: 563:
Naulleau, Patrick (1999). "Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy".
151:
Figure 4: Two-beam phase-shifting point diffraction interferometer, where the reference beam can be independently regulated for phase shifting and contrast regulation
184:
The device is self-referencing, therefore it can be used in environments with a lot of vibrations or when no reference beam is available, such as in many
144:. Although optical fibre based PDIs provide some advancement over the single pinhole based system, they are difficult to manufacture and align. 204:
Interferometry has been used for various quantitative characterisation of optical systems indicating their overall performance. Traditionally,
147: 50:. Incident light is focused onto a semi-transparent mask (about 0.1% transmission). In the centre of the mask is a hole about the size of the 195:
Absolute surface form obtained by phase-shifting interferometry using an industrial point diffraction interferometer manufactured by Difrotec
191: 100: 20: 23:
Figure 1: Basic layout of a PDI system, where the reference beam is generated by a pinhole etched onto a semitransparent film
36: 700:
Rhee, Hyug-Gyo; Kim, Seung-Woo (2002-10-01). "Absolute distance measurement by two-point-diffraction interferometry".
856: 54:, and the beam is focused onto this hole with a Fourier-transforming lens. The zeroth order (the low frequencies in 32: 70: 59: 872: 329:
Neal, Robert M.; Wyant, James C. (2006-05-20). "Polarization phase-shifting point-diffraction interferometer".
40: 752: 395: 121: 640: 423: 205: 796: 709: 612: 572: 529: 486: 338: 308: 265: 753:"Concept, realization and performance of a two-beam phase-shifting point diffraction interferometer" 256:
Smartt, R. N.; W. H. Steel (1975). "Theory and application of Point-Diffraction interferometers".
812: 768: 628: 411: 281: 733: 725: 588: 545: 502: 372: 364: 759:. Vol. 8788. International Society for Optics and Photonics. pp. 878805–878805–13. 396:"Alignment of phase-shifting interferograms in the two-beam point diffraction interferometer" 804: 760: 717: 620: 580: 537: 494: 403: 354: 346: 273: 104:
Figure 3: Phase-shifting point diffraction interferometer design proposed by Gary Sommargren
751:
Voznesenskiy, Nikolay; Voznesenskaia, Mariia; Petrova, Natalia; Abels, Artur (2013-05-13).
653: 436: 237:
Linnik, W. P. (1933). "A Simple Interferometer for the Investigation of Optical Systems".
185: 800: 713: 616: 576: 533: 490: 342: 312: 269: 218: 47: 866: 772: 632: 415: 285: 55: 816: 118:
optical fibre is known to generate spherical waves with an accuracy greater than
19: 729: 520:
Medecki, Hector (1996). "A Phase-Shifting Point Diffraction Interferometer".
368: 831:"Difrotec D7 is a high accuracy industrial point diffraction interferometer" 51: 737: 667: 592: 549: 506: 376: 277: 174:
High accuracy of surface form testing (wavefront RMS error 0.125 nm).
721: 584: 541: 477:
Kwon, Osuk (February 1984). "Multichannel phase-shifted interferometer".
350: 498: 359: 764: 808: 624: 407: 299:
Smartt, R. N.; Strong, J. (1972). "Point-Diffraction Interferometer".
755:. In Lehmann, Peter H; Osten, Wolfgang; Albertazzi, Armando (eds.). 402:. International Society for Optics and Photonics: 85500R–85500R–8. 190: 146: 69: 857:
Making sure the space camera is up for the job before deployment
859:: A case study by the Interferometer manufacturer Difrotec OÜ. 453: 830: 757:
Optical Measurement Systems for Industrial Inspection VIII
124: 136: 690:G. E. Sommargren, U.S. Patent No. 554840 1996 . 8: 358: 301:Journal of the Optical Society of America 123: 99: 18: 229: 171:Clear fringe patterns of high contrast. 165:Absolute surface form of the test part. 649: 638: 432: 421: 177:Simple RMS repeatability 0.05 nm. 96:Phase-shifting PDI with single pinhole 29:point diffraction interferometer (PDI) 7: 448: 446: 388: 386: 324: 322: 180:Can measure depolarising test parts. 168:High numerical aperture (NA = 0.55). 137:{\displaystyle \lambda \diagup 2000} 258:Japanese Journal of Applied Physics 91:Types of phase-shifting PDI systems 37:amplitude-splitting interferometer 16:Type of common-path interferometer 14: 188:and short-wavelength scenarios. 113:PDI systems using optical fibres 789:Micro- and Nanoelectronics 2007 398:. Optical Systems Design 2012. 1: 156:Two-beam phase-shifting PDI 46:The device is similar to a 889: 66:Development in PDI systems 33:common-path interferometer 60:phase-contrast microscopy 41:Michelson interferometer 648:Cite journal requires 431:Cite journal requires 278:10.7567/jjaps.14s1.351 206:Fizeau interferometers 196: 152: 138: 105: 75: 24: 239:C. R. Acad. Sci. URSS 194: 150: 139: 103: 73: 22: 791:. SPIE Proceedings. 722:10.1364/AO.41.005921 585:10.1364/ao.38.007252 542:10.1364/OL.21.001526 454:"Product β€” Difrotec" 351:10.1364/AO.45.003463 122: 801:2008SPIE.7025E..05C 795:: 702505–702505–6. 714:2002ApOpt..41.5921R 617:1999SPIE.3740..602O 577:1999ApOpt..38.7252N 534:1996OptL...21.1526M 499:10.1364/ol.9.000059 491:1984OptL....9...59K 343:2006ApOpt..45.3463N 313:1974JOSA...62..737S 270:1975JJAPS..14..351S 200:Applications of PDI 765:10.1117/12.2020618 197: 153: 134: 106: 76: 25: 809:10.1117/12.802351 708:(28): 5921–5928. 625:10.1117/12.347755 571:(35): 7252–7263. 528:(19): 1526–1528. 408:10.1117/12.980910 337:(15): 3463–3476. 880: 845: 844: 842: 841: 835:www.difrotec.com 827: 821: 820: 783: 777: 776: 748: 742: 741: 697: 691: 688: 682: 681: 679: 678: 668:"Interferometer" 664: 658: 657: 651: 646: 644: 636: 603: 597: 596: 560: 554: 553: 517: 511: 510: 474: 468: 467: 465: 464: 450: 441: 440: 434: 429: 427: 419: 390: 381: 380: 362: 326: 317: 316: 296: 290: 289: 253: 247: 246: 234: 143: 141: 140: 135: 888: 887: 883: 882: 881: 879: 878: 877: 873:Interferometers 863: 862: 853: 848: 839: 837: 829: 828: 824: 785: 784: 780: 750: 749: 745: 699: 698: 694: 689: 685: 676: 674: 666: 665: 661: 647: 637: 605: 604: 600: 562: 561: 557: 519: 518: 514: 476: 475: 471: 462: 460: 452: 451: 444: 430: 420: 392: 391: 384: 328: 327: 320: 298: 297: 293: 264:(S1): 351–356. 255: 254: 250: 236: 235: 231: 227: 215: 202: 186:adaptive optics 158: 120: 119: 115: 98: 93: 68: 17: 12: 11: 5: 886: 884: 876: 875: 865: 864: 861: 860: 852: 851:External links 849: 847: 846: 822: 778: 743: 702:Applied Optics 692: 683: 659: 650:|journal= 598: 565:Applied Optics 555: 522:Optics Letters 512: 479:Optics Letters 469: 442: 433:|journal= 382: 331:Applied Optics 318: 291: 248: 228: 226: 223: 222: 221: 219:Interferometry 214: 211: 201: 198: 182: 181: 178: 175: 172: 169: 166: 157: 154: 133: 130: 127: 114: 111: 97: 94: 92: 89: 67: 64: 48:spatial filter 15: 13: 10: 9: 6: 4: 3: 2: 885: 874: 871: 870: 868: 858: 855: 854: 850: 836: 832: 826: 823: 818: 814: 810: 806: 802: 798: 794: 790: 782: 779: 774: 770: 766: 762: 758: 754: 747: 744: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 696: 693: 687: 684: 673: 669: 663: 660: 655: 642: 634: 630: 626: 622: 618: 614: 610: 602: 599: 594: 590: 586: 582: 578: 574: 570: 566: 559: 556: 551: 547: 543: 539: 535: 531: 527: 523: 516: 513: 508: 504: 500: 496: 492: 488: 484: 480: 473: 470: 459: 455: 449: 447: 443: 438: 425: 417: 413: 409: 405: 401: 397: 389: 387: 383: 378: 374: 370: 366: 361: 356: 352: 348: 344: 340: 336: 332: 325: 323: 319: 314: 310: 306: 302: 295: 292: 287: 283: 279: 275: 271: 267: 263: 259: 252: 249: 244: 240: 233: 230: 224: 220: 217: 216: 212: 210: 207: 199: 193: 189: 187: 179: 176: 173: 170: 167: 164: 163: 162: 155: 149: 145: 131: 128: 125: 112: 110: 102: 95: 90: 88: 84: 80: 72: 65: 63: 61: 57: 56:Fourier space 53: 49: 44: 42: 38: 34: 31:is a type of 30: 21: 838:. Retrieved 834: 825: 792: 788: 781: 756: 746: 705: 701: 695: 686: 675:. Retrieved 672:str.llnl.gov 671: 662: 641:cite journal 608: 601: 568: 564: 558: 525: 521: 515: 485:(2): 59–61. 482: 478: 472: 461:. Retrieved 458:difrotec.com 457: 424:cite journal 399: 360:10150/280372 334: 330: 304: 300: 294: 261: 257: 251: 242: 238: 232: 203: 183: 159: 116: 107: 85: 81: 77: 45: 39:, such as a 35:. Unlike an 28: 26: 611:: 602–605. 840:2017-04-28 677:2017-03-20 463:2017-03-20 225:References 773:109782639 730:1539-4522 633:119631152 416:123535031 369:1539-4522 286:121804757 129:╱ 126:λ 52:Airy disc 867:Category 817:55343344 738:12371550 593:18324274 550:19881713 507:19718235 394:(eds.). 377:16708090 213:See also 797:Bibcode 710:Bibcode 613:Bibcode 573:Bibcode 530:Bibcode 487:Bibcode 339:Bibcode 309:Bibcode 307:: 737. 266:Bibcode 815:  771:  736:  728:  631:  591:  548:  505:  414:  375:  367:  284:  245:: 210. 813:S2CID 769:S2CID 629:S2CID 412:S2CID 282:S2CID 793:7025 734:PMID 726:ISSN 654:help 609:3740 589:PMID 546:PMID 503:PMID 437:help 400:8550 373:PMID 365:ISSN 132:2000 805:doi 761:doi 718:doi 621:doi 581:doi 538:doi 495:doi 404:doi 355:hdl 347:doi 274:doi 869:: 833:. 811:. 803:. 767:. 732:. 724:. 716:. 706:41 704:. 670:. 645:: 643:}} 639:{{ 627:. 619:. 587:. 579:. 569:38 567:. 544:. 536:. 526:21 524:. 501:. 493:. 481:. 456:. 445:^ 428:: 426:}} 422:{{ 410:. 385:^ 371:. 363:. 353:. 345:. 335:45 333:. 321:^ 305:62 303:. 280:. 272:. 262:14 260:. 241:. 62:. 27:A 843:. 819:. 807:: 799:: 775:. 763:: 740:. 720:: 712:: 680:. 656:) 652:( 635:. 623:: 615:: 595:. 583:: 575:: 552:. 540:: 532:: 509:. 497:: 489:: 483:9 466:. 439:) 435:( 418:. 406:: 379:. 357:: 349:: 341:: 315:. 311:: 288:. 276:: 268:: 243:5

Index


common-path interferometer
amplitude-splitting interferometer
Michelson interferometer
spatial filter
Airy disc
Fourier space
phase-contrast microscopy


Phase Shifting Point Diffraction Interferometer
adaptive optics
Absolute surface form obtained by phase-shifting interferometry using an industrial point diffraction interferometer manufactured by Difrotec.
Fizeau interferometers
Interferometry
Bibcode
1975JJAPS..14..351S
doi
10.7567/jjaps.14s1.351
S2CID
121804757
Bibcode
1974JOSA...62..737S


Bibcode
2006ApOpt..45.3463N
doi
10.1364/AO.45.003463
hdl

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑