Knowledge

Homology sphere

Source đź“ť

1168:
showed that there is no such homology sphere with the given property, and therefore, there are 5-manifolds not homeomorphic to simplicial complexes. In particular, the example originally given by Galewski and Stern is not triangulable.
396:). More intuitively, this means that the Poincaré homology sphere is the space of all geometrically distinguishable positions of an icosahedron (with fixed center and diameter) in Euclidean 3-space. One can also pass instead to the 996: 170: 839: 563:. In 2008, astronomers found the best orientation on the sky for the model and confirmed some of the predictions of the model, using three years of observations by the WMAP spacecraft. Data analysis from the 1222:; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Phillipe (2003-10-09). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". 342:
and has order 120. Since the fundamental group of the 3-sphere is trivial, this shows that there exist 3-manifolds with the same homology groups as the 3-sphere that are not homeomorphic to it.
583:
More generally, surgery on a link gives a homology sphere whenever the matrix given by intersection numbers (off the diagonal) and framings (on the diagonal) has determinant +1 or −1.
232: 1087: 450: 1285:
Roukema, Boudewijn; Buliński, Zbigniew; Szaniewska, Agnieszka; Gaudin, Nicolas E. (2008). "A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data".
708: 479: 1534: 285: 85: 518: 649:
of two oriented homology 3-spheres is a homology 3-sphere. A homology 3-sphere that cannot be written as a connected sum of two homology 3-spheres is called
1152:
Galewski and Stern showed that all compact topological manifolds (without boundary) of dimension at least 5 are homeomorphic to simplicial complexes
876: 93: 322:
The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere, first constructed by
544: 722: 1595: 1183: 658: 657:, and every homology 3-sphere can be written as a connected sum of prime homology 3-spheres in an essentially unique way. (See 354:. Each face of the dodecahedron is identified with its opposite face, using the minimal clockwise twist to line up the faces. 1431: 1219: 1178: 1640: 540: 560: 1625: 370: 355: 181: 1607: 1584:, Encyclopaedia of Mathematical Sciences, vol 140. Low-Dimensional Topology, I. Springer-Verlag, Berlin, 2002. 1057: 1645: 1130: 1024:′s, not 2, 3, 5, then this is an acyclic homology 3-sphere with infinite fundamental group that has a 1016:
is at most 2 this is just the usual 3-sphere; otherwise they are distinct non-trivial homology spheres. If the
482: 339: 359: 411: 667: 1474: 1110: 556: 552: 486: 363: 455: 1650: 1304: 1243: 1122: 1096:
is an integer valued invariant of homology 3-spheres, whose reduction mod 2 is the Rokhlin invariant.
377: 327: 1621: 1615: 1215: 711: 610:= 0 (in other words, the intersection of a small 3-sphere around 0 with this complex surface) is a 564: 548: 1569: 1553: 1491: 1456: 1364: 1320: 1294: 1267: 1233: 1142: 611: 31: 1608:
A 16-Vertex Triangulation of the Poincaré Homology 3-Sphere and Non-PL Spheres with Few Vertices
1517:. Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 113–146, 358:
each pair of opposite faces together using this identification yields a closed 3-manifold. (See
1611: 1591: 1259: 1165: 1157: 1118: 1051: 1025: 389: 335: 323: 296: 1202: 257: 64: 1655: 1543: 1483: 1440: 1374: 1312: 1308: 1251: 1224: 1093: 615: 304: 292: 1588: 1565: 1503: 1452: 1411: 1145:
that is a topological manifold but not a PL manifold. (It is not a PL manifold because the
496: 17: 1585: 1561: 1525: 1499: 1469: 1448: 1407: 1395: 1146: 397: 247: 1247: 1518: 1403: 1153: 1008:′s, and the homology sphere does not depend (up to isomorphism) on the choice of 381: 50: 1548: 1529: 1634: 1460: 1161: 646: 300: 1573: 1510: 1353:"Pin(2)-equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture" 1324: 1271: 528: 524: 405: 351: 251: 1400:
Geometric Topology (Proceedings Georgia Topology Conference, Athens Georgia, 1977)
1316: 1020:′s are 2, 3, and 5 this gives the PoincarĂ© sphere. If there are at least 3 598:
are pairwise relatively prime positive integers then the link of the singularity
1472:(1980). "Classification of simplicial triangulations of topological manifolds". 1138: 385: 401: 408:
to the 3-sphere. In this case, the Poincaré homology sphere is isomorphic to
1398:(1979). "A universal 5-manifold with respect to simplicial triangulations". 490: 1263: 1109:
is a homology 3-sphere not homeomorphic to the standard 3-sphere, then the
567:
suggests that there is no observable non-trivial topology to the universe.
539:
In 2003, lack of structure on the largest scales (above 60 degrees) in the
527:. The Poincaré homology sphere results from +1 surgery on the right-handed 1238: 331: 43: 1255: 991:{\displaystyle b+b_{1}/a_{1}+\cdots +b_{r}/a_{r}=1/(a_{1}\cdots a_{r}).} 165:{\displaystyle H_{0}(X,\mathbb {Z} )=H_{n}(X,\mathbb {Z} )=\mathbb {Z} } 1557: 1495: 1444: 369:
Alternatively, the Poincaré homology sphere can be constructed as the
1029: 58: 1487: 1379: 1352: 834:{\displaystyle \{b,(o_{1},0);(a_{1},b_{1}),\dots ,(a_{r},b_{r})\}\,} 710:
are integers all at least 2 such that any two are coprime. Then the
314:
is defined similarly but using homology with rational coefficients.
1338: 27:
Topological manifold whose homology coincides with that of a sphere
1369: 1299: 373: 362:
for a similar construction, using more "twist", that results in a
1339:
Planck 2015 results. XVIII. Background geometry & topology
1164:ÎŁ#ÎŁ of ÎŁ with itself bounds a smooth acyclic 4-manifold. 630:). It is homeomorphic to the standard 3-sphere if one of 1530:"Smooth homology spheres and their fundamental groups" 1060: 879: 725: 670: 499: 458: 414: 260: 184: 96: 67: 1141:. In other words, this gives an example of a finite 580:
with framing +1 or −1 gives a homology sphere.
400:
of SO(3) which can be realized as the group of unit
847:over the sphere with exceptional fibers of degrees 1129:is homeomorphic to the standard 5-sphere, but its 1081: 990: 833: 702: 512: 473: 444: 350:A simple construction of this space begins with a 279: 226: 164: 79: 1535:Transactions of the American Mathematical Society 330:, it is the only homology 3-sphere (besides the 1626:The best picture of Poincare's homology sphere 1515:Eight faces of the PoincarĂ© homology 3-sphere 8: 1357:Journal of the American Mathematical Society 827: 726: 642:is 1, and ÎŁ(2, 3, 5) is the PoincarĂ© sphere. 221: 215: 1429:Dror, Emmanuel (1973). "Homology spheres". 227:{\displaystyle H_{i}(X,\mathbb {Z} )=\{0\}} 1082:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 1547: 1378: 1368: 1298: 1237: 1075: 1074: 1066: 1062: 1061: 1059: 976: 963: 951: 939: 930: 924: 905: 896: 890: 878: 830: 818: 805: 780: 767: 742: 724: 694: 675: 669: 504: 498: 460: 459: 457: 431: 430: 425: 419: 413: 338:. Its fundamental group is known as the 265: 259: 205: 204: 189: 183: 158: 157: 147: 146: 131: 117: 116: 101: 95: 66: 1089:-valued invariant of homology 3-spheres. 1195: 1149:of a point is not always a 4-sphere.) 614:that is a homology 3-sphere, called a 445:{\displaystyle S^{3}/{\widetilde {I}}} 1004:(There is always a way to choose the 547:spacecraft led to the suggestion, by 7: 1156:there is a homology 3 sphere ÎŁ with 388:and dodecahedron, isomorphic to the 703:{\displaystyle a_{1},\ldots ,a_{r}} 1133:(induced by some triangulation of 1028:modeled on the universal cover of 576:Surgery on a knot in the 3-sphere 25: 1549:10.1090/S0002-9947-1969-0253347-3 1203:"Is the universe a dodecahedron?" 1117:is an example of a 4-dimensional 1582:Invariants of Homology 3-Spheres 1184:Moore space (algebraic topology) 863:is a homology sphere, where the 659:Prime decomposition (3-manifold) 543:as observed for one year by the 474:{\displaystyle {\widetilde {I}}} 982: 956: 824: 798: 786: 760: 754: 735: 209: 195: 151: 137: 121: 107: 1: 1432:Israel Journal of Mathematics 1351:Manolescu, Ciprian (2016). 1125:. The double suspension of 541:cosmic microwave background 250:, with one non-zero higher 18:PoincarĂ© dodecahedral space 1672: 1341:", (2015) ArXiv 1502.01593 1317:10.1051/0004-6361:20078777 1287:Astronomy and Astrophysics 1205:, article at PhysicsWorld. 571:Constructions and examples 287:. It does not follow that 555:and colleagues, that the 1521:, New York-London, 1979. 483:binary icosahedral group 340:binary icosahedral group 318:PoincarĂ© homology sphere 312:rational homology sphere 1337:Planck Collaboration, " 1309:2008A&A...482..747L 1179:Eilenberg–MacLane space 523:Another approach is by 280:{\displaystyle b_{n}=1} 80:{\displaystyle n\geq 1} 1513:, Martin Scharlemann, 1083: 992: 835: 704: 514: 475: 446: 380:(i.e., the rotational 334:itself) with a finite 281: 228: 166: 81: 1475:Annals of Mathematics 1084: 993: 836: 705: 557:shape of the universe 553:Observatoire de Paris 515: 513:{\displaystyle S^{3}} 476: 447: 364:hyperbolic 3-manifold 282: 229: 167: 82: 1406:. pp. 345–350. 1216:Luminet, Jean-Pierre 1123:topological manifold 1058: 877: 867:s are chosen so that 723: 668: 497: 456: 412: 328:spherical 3-manifold 258: 182: 94: 65: 1402:. New York-London: 1256:10.1038/nature01944 1248:2003Natur.425..593L 712:Seifert fiber space 549:Jean-Pierre Luminet 360:Seifert–Weber space 61:, for some integer 1641:Topological spaces 1580:Nikolai Saveliev, 1445:10.1007/BF02764597 1143:simplicial complex 1079: 988: 831: 700: 612:Brieskorn manifold 510: 471: 442: 376:/I where I is the 277: 224: 162: 77: 32:algebraic topology 1468:Galewski, David; 1394:Galewski, David; 1232:(6958): 593–595. 1166:Ciprian Manolescu 1158:Rokhlin invariant 1119:homology manifold 1052:Rokhlin invariant 1026:Thurston geometry 565:Planck spacecraft 468: 439: 390:alternating group 378:icosahedral group 336:fundamental group 297:fundamental group 16:(Redirected from 1663: 1577: 1551: 1526:Kervaire, Michel 1507: 1464: 1423:Selected reading 1416: 1415: 1391: 1385: 1384: 1382: 1372: 1348: 1342: 1335: 1329: 1328: 1302: 1282: 1276: 1275: 1241: 1239:astro-ph/0310253 1212: 1206: 1200: 1160:1 such that the 1094:Casson invariant 1088: 1086: 1085: 1080: 1078: 1070: 1065: 997: 995: 994: 989: 981: 980: 968: 967: 955: 944: 943: 934: 929: 928: 910: 909: 900: 895: 894: 840: 838: 837: 832: 823: 822: 810: 809: 785: 784: 772: 771: 747: 746: 709: 707: 706: 701: 699: 698: 680: 679: 519: 517: 516: 511: 509: 508: 480: 478: 477: 472: 470: 469: 461: 451: 449: 448: 443: 441: 440: 432: 429: 424: 423: 305:Hurewicz theorem 295:, only that its 293:simply connected 286: 284: 283: 278: 270: 269: 233: 231: 230: 225: 208: 194: 193: 171: 169: 168: 163: 161: 150: 136: 135: 120: 106: 105: 86: 84: 83: 78: 21: 1671: 1670: 1666: 1665: 1664: 1662: 1661: 1660: 1646:Homology theory 1631: 1630: 1604: 1524: 1488:10.2307/1971215 1467: 1428: 1425: 1420: 1419: 1393: 1392: 1388: 1380:10.1090/jams829 1350: 1349: 1345: 1336: 1332: 1284: 1283: 1279: 1214: 1213: 1209: 1201: 1197: 1192: 1175: 1103: 1056: 1055: 1047: 1033: 972: 959: 935: 920: 901: 886: 875: 874: 862: 853: 814: 801: 776: 763: 738: 721: 720: 690: 671: 666: 665: 573: 561:PoincarĂ© sphere 537: 500: 495: 494: 454: 453: 415: 410: 409: 398:universal cover 395: 384:of the regular 348: 320: 261: 256: 255: 248:connected space 185: 180: 179: 127: 97: 92: 91: 63: 62: 51:homology groups 36:homology sphere 28: 23: 22: 15: 12: 11: 5: 1669: 1667: 1659: 1658: 1653: 1648: 1643: 1633: 1632: 1629: 1628: 1618: 1612:Anders Björner 1603: 1602:External links 1600: 1599: 1598: 1578: 1522: 1519:Academic Press 1508: 1465: 1439:(2): 115–129. 1424: 1421: 1418: 1417: 1404:Academic Press 1386: 1343: 1330: 1293:(3): 747–753. 1277: 1207: 1194: 1193: 1191: 1188: 1187: 1186: 1181: 1174: 1171: 1154:if and only if 1121:that is not a 1102: 1099: 1098: 1097: 1090: 1077: 1073: 1069: 1064: 1046: 1043: 1042: 1041: 1031: 1012:′s.) If 1001: 1000: 999: 998: 987: 984: 979: 975: 971: 966: 962: 958: 954: 950: 947: 942: 938: 933: 927: 923: 919: 916: 913: 908: 904: 899: 893: 889: 885: 882: 869: 868: 858: 851: 844: 843: 842: 841: 829: 826: 821: 817: 813: 808: 804: 800: 797: 794: 791: 788: 783: 779: 775: 770: 766: 762: 759: 756: 753: 750: 745: 741: 737: 734: 731: 728: 715: 714: 697: 693: 689: 686: 683: 678: 674: 662: 643: 584: 581: 572: 569: 536: 533: 507: 503: 485:, the perfect 467: 464: 438: 435: 428: 422: 418: 393: 382:symmetry group 371:quotient space 347: 344: 324:Henri PoincarĂ© 319: 316: 276: 273: 268: 264: 240: 239: 234:for all other 223: 220: 217: 214: 211: 207: 203: 200: 197: 192: 188: 173: 172: 160: 156: 153: 149: 145: 142: 139: 134: 130: 126: 123: 119: 115: 112: 109: 104: 100: 76: 73: 70: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1668: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1636: 1627: 1623: 1622:David Gillman 1619: 1617: 1616:Frank H. Lutz 1613: 1609: 1606: 1605: 1601: 1597: 1596:3-540-43796-7 1593: 1590: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1550: 1545: 1541: 1537: 1536: 1531: 1527: 1523: 1520: 1516: 1512: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1476: 1471: 1470:Stern, Ronald 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1433: 1427: 1426: 1422: 1413: 1409: 1405: 1401: 1397: 1396:Stern, Ronald 1390: 1387: 1381: 1376: 1371: 1366: 1362: 1358: 1354: 1347: 1344: 1340: 1334: 1331: 1326: 1322: 1318: 1314: 1310: 1306: 1301: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1240: 1235: 1231: 1227: 1226: 1221: 1217: 1211: 1208: 1204: 1199: 1196: 1189: 1185: 1182: 1180: 1177: 1176: 1172: 1170: 1167: 1163: 1162:connected sum 1159: 1155: 1150: 1148: 1144: 1140: 1136: 1132: 1131:triangulation 1128: 1124: 1120: 1116: 1112: 1108: 1100: 1095: 1091: 1071: 1067: 1053: 1049: 1048: 1044: 1039: 1037: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 1002: 985: 977: 973: 969: 964: 960: 952: 948: 945: 940: 936: 931: 925: 921: 917: 914: 911: 906: 902: 897: 891: 887: 883: 880: 873: 872: 871: 870: 866: 861: 857: 850: 846: 845: 819: 815: 811: 806: 802: 795: 792: 789: 781: 777: 773: 768: 764: 757: 751: 748: 743: 739: 732: 729: 719: 718: 717: 716: 713: 695: 691: 687: 684: 681: 676: 672: 664:Suppose that 663: 660: 656: 652: 648: 647:connected sum 644: 641: 637: 633: 629: 625: 621: 617: 613: 609: 605: 601: 597: 593: 589: 585: 582: 579: 575: 574: 570: 568: 566: 562: 558: 554: 550: 546: 542: 534: 532: 530: 526: 521: 505: 501: 492: 488: 484: 465: 462: 436: 433: 426: 420: 416: 407: 403: 399: 391: 387: 383: 379: 375: 372: 367: 365: 361: 357: 353: 345: 343: 341: 337: 333: 329: 325: 317: 315: 313: 308: 306: 302: 298: 294: 290: 274: 271: 266: 262: 253: 249: 245: 237: 218: 212: 201: 198: 190: 186: 178: 177: 176: 154: 143: 140: 132: 128: 124: 113: 110: 102: 98: 90: 89: 88: 74: 71: 68: 60: 56: 52: 48: 45: 41: 37: 33: 19: 1581: 1539: 1533: 1514: 1511:Robion Kirby 1479: 1473: 1436: 1430: 1399: 1389: 1360: 1356: 1346: 1333: 1290: 1286: 1280: 1229: 1223: 1210: 1198: 1151: 1134: 1126: 1114: 1106: 1104: 1101:Applications 1035: 1021: 1017: 1013: 1009: 1005: 864: 859: 855: 848: 654: 650: 639: 635: 631: 627: 623: 619: 607: 603: 599: 595: 591: 587: 577: 538: 529:trefoil knot 525:Dehn surgery 522: 487:double cover 406:homeomorphic 368: 352:dodecahedron 349: 346:Construction 321: 311: 309: 288: 252:Betti number 243: 241: 235: 174: 54: 46: 39: 35: 29: 1651:3-manifolds 1620:Lecture by 1482:(1): 1–34. 1363:: 147–176. 1220:Weeks, Jeff 1139:PL manifold 1137:) is not a 651:irreducible 618:3-sphere ÎŁ( 402:quaternions 386:icosahedron 326:. Being a 254:, namely, 87:. That is, 49:having the 1635:Categories 1190:References 1111:suspension 1045:Invariants 242:Therefore 1542:: 67–72. 1461:189796498 1370:1303.2354 1300:0801.0006 970:⋯ 915:⋯ 793:… 685:… 616:Brieskorn 535:Cosmology 466:~ 437:~ 72:≥ 1574:54063849 1528:(1969). 1264:14534579 1173:See also 491:embedded 332:3-sphere 44:manifold 1656:Spheres 1589:1941324 1566:0253347 1558:1995269 1504:0558395 1496:1971215 1453:0328926 1412:0537740 1325:1616362 1305:Bibcode 1272:4380713 1244:Bibcode 854:, ..., 551:of the 481:is the 404:and is 301:perfect 1594:  1572:  1564:  1556:  1502:  1494:  1459:  1451:  1410:  1323:  1270:  1262:  1225:Nature 638:, and 594:, and 452:where 356:Gluing 59:sphere 53:of an 38:is an 1570:S2CID 1554:JSTOR 1492:JSTOR 1457:S2CID 1365:arXiv 1321:S2CID 1295:arXiv 1268:S2CID 1234:arXiv 1054:is a 655:prime 559:is a 489:of I 374:SO(3) 303:(see 246:is a 1614:and 1592:ISBN 1260:PMID 1147:link 1092:The 1050:The 645:The 545:WMAP 175:and 34:, a 1624:on 1610:by 1544:doi 1540:144 1484:doi 1480:111 1441:doi 1375:doi 1313:doi 1291:482 1252:doi 1230:425 1113:of 1105:If 653:or 586:If 493:in 366:.) 307:). 299:is 291:is 30:In 1637:: 1586:MR 1568:. 1562:MR 1560:. 1552:. 1538:. 1532:. 1500:MR 1498:. 1490:. 1478:. 1455:. 1449:MR 1447:. 1437:15 1435:. 1408:MR 1373:. 1361:29 1359:. 1355:. 1319:. 1311:. 1303:. 1289:. 1266:. 1258:. 1250:. 1242:. 1228:. 1218:; 1030:SL 865:b' 661:.) 634:, 626:, 622:, 606:+ 602:+ 590:, 531:. 520:. 310:A 1576:. 1546:: 1506:. 1486:: 1463:. 1443:: 1414:. 1383:. 1377:: 1367:: 1327:. 1315:: 1307:: 1297:: 1274:. 1254:: 1246:: 1236:: 1135:A 1127:A 1115:A 1107:A 1076:Z 1072:2 1068:/ 1063:Z 1040:. 1038:) 1036:R 1034:( 1032:2 1022:a 1018:a 1014:r 1010:b 1006:b 986:. 983:) 978:r 974:a 965:1 961:a 957:( 953:/ 949:1 946:= 941:r 937:a 932:/ 926:r 922:b 918:+ 912:+ 907:1 903:a 898:/ 892:1 888:b 884:+ 881:b 860:r 856:a 852:1 849:a 828:} 825:) 820:r 816:b 812:, 807:r 803:a 799:( 796:, 790:, 787:) 782:1 778:b 774:, 769:1 765:a 761:( 758:; 755:) 752:0 749:, 744:1 740:o 736:( 733:, 730:b 727:{ 696:r 692:a 688:, 682:, 677:1 673:a 640:r 636:q 632:p 628:r 624:q 620:p 608:z 604:y 600:x 596:r 592:q 588:p 578:S 506:3 502:S 463:I 434:I 427:/ 421:3 417:S 394:5 392:A 289:X 275:1 272:= 267:n 263:b 244:X 238:. 236:i 222:} 219:0 216:{ 213:= 210:) 206:Z 202:, 199:X 196:( 191:i 187:H 159:Z 155:= 152:) 148:Z 144:, 141:X 138:( 133:n 129:H 125:= 122:) 118:Z 114:, 111:X 108:( 103:0 99:H 75:1 69:n 57:- 55:n 47:X 42:- 40:n 20:)

Index

Poincaré dodecahedral space
algebraic topology
manifold
homology groups
sphere
connected space
Betti number
simply connected
fundamental group
perfect
Hurewicz theorem
Henri Poincaré
spherical 3-manifold
3-sphere
fundamental group
binary icosahedral group
dodecahedron
Gluing
Seifert–Weber space
hyperbolic 3-manifold
quotient space
SO(3)
icosahedral group
symmetry group
icosahedron
alternating group
universal cover
quaternions
homeomorphic
binary icosahedral group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑