Knowledge (XXG)

Poisson–Boltzmann equation

Source 📝

3376: 4714: 5113: 131: 329: 4396:. These expressions are useful for analyzing quantum transport in a mesoscopic system. In metal-insulator semiconductor tunneling junctions, the electrons can build up close to the interface between layers and as a result the quantum transport of the system will be affected by the electron-electron interactions. Certain transport properties such as 4408: 5157:
reduced surface potential. On the other hand, including the finite size of the ions causes the opposite effect. The Poisson–Boltzmann equation is most appropriate for approximating the electrostatic potential at the surface for aqueous solutions of univalent salts at concentrations smaller than 0.2 M and potentials not exceeding 50–80 mV.
4863: 3372:, where the decay is steeper than exponential decay. The following figure employs the linearized equation and the high potential graphing equation derived above. It is a potential-versus-distance graph for varying surface potentials of 50, 100, 150, and 200 mV. The equations employed in this figure assume an 80mM NaCl solution. 5149:
charges, where ions were assumed to interact with the average electrostatic field of all their neighbors rather than each neighbor individually. In addition, non-Coulombic interactions were not considered and certain interactions were unaccounted for, such as the overlap of ion hydration spheres in an aqueous system. The
3293: 148: 3758: 3401:
The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the
1211:
The geometry that most easily facilitates this is a planar surface. In the case of an infinitely extended planar surface, there are two dimensions in which the potential cannot change because of symmetry. Assuming these dimensions are the y and z dimensions, only the x dimension is left. Below is the
4718:
Applying the equation above to the MIS tunneling junction, electronic transport can be analyzed along the z-axis, which is referenced perpendicular to the plane of the layers. An n-type junction is chosen in this case with a bias V applied along the z-axis. The self-consistent average potential of
1835:
and that is generally the standard. Some boundary conditions that apply in low potential cases are that: at the surface, the potential must be equal to the surface potential and at large distances from the surface the potential approaches a zero value. This distance decay length is yielded by the
5148:
As with any approximate model, the Poisson–Boltzmann equation is an approximation rather than an exact representation. Several assumptions were made to approximate the potential of the diffuse layer. The finite size of the ions was considered negligible and ions were treated as individual point
3388:
The Poisson–Boltzmann equation can be applied in a variety of fields mainly as a modeling tool to make approximations for applications such as charged biomolecular interactions, dynamics of electrons in semiconductors or plasma, etc. Most applications of this equation are used as models to gain
5156:
Though the model faces certain limitations, it describes electric double layers very well. The errors resulting from the previously mentioned assumptions cancel each other for the most part. Accounting for non-Coulombic interactions increases the ion concentration at the surface and leads to a
4404:
can be known by solving for self-consistent Coulombic average potential from the electron-electron interactions, which is related to electronic distribution. Therefore, it is essential to analytically solve the Poisson–Boltzmann equation in order to obtain the analytical quantities in the MIS
666:
The equation for local ion density can be substituted into the Poisson equation under the assumptions that the work being done is only electric work, that our solution is composed of a 1:1 salt (e.g., NaCl), and that the concentration of salt is much higher than the concentration of ions. The
3367:
In low potential cases, the high potential equation may be used and will still yield accurate results. As the potential rises, the low potential, linear case overestimates the potential as a function of distance from the surface. This overestimation is visible at distances less than half the
1694:. The high-potential case becomes more complex so if applicable, use the low-potential equation. In the low-potential condition, the linearized version of the Poisson–Boltzmann equation (shown below) is valid, and it is commonly used as it is more simple and spans a wide variety of cases. 2742: 2970: 34:
describes the distribution of the electric potential in solution in the direction normal to a charged surface. This distribution is important to determine how the electrostatic interactions will affect the molecules in solution. The Poisson–Boltzmann equation is derived via
4405:
tunneling junctions. Applying the following analytical solution of the Poisson–Boltzmann equation (see section 2) to MIS tunneling junctions, the following expression can be formed to express electronic transport quantities such as electronic density and electric current
3857: 2225: 4709:{\displaystyle f_{1}f^{0}-f_{0}+{\frac {eE_{z}\tau _{0}}{m}}{\frac {\partial f_{0}}{\partial v_{z}}}\left(1-e^{\frac {-\tau }{\tau _{0}}}\right)-\int _{0}^{t}{\frac {e}{m}}e{^{\frac {t-\tau '}{\tau _{0}}}}\nabla \rho \times {\frac {\partial f_{0}}{\partial v}}dt'} 3413:
in an ionic solution with different number of bound ions at varying physiological ionic strengths. It is shown that electrostatic potential depends on the charge of the molecule, while the electrostatic free energy takes into account the net charge of the system.
5108:{\displaystyle \rho _{2}\approx {\frac {ne{\sqrt {\pi }}G(i\lambda _{D1})e^{{\frac {-t}{\tau _{0}}}-\lambda _{D1}z}}{3{\sqrt {3}}\varepsilon _{0}\varepsilon _{r}\lambda _{D1}}}\left(1-e^{1-{\sqrt {\frac {2ne^{2}t^{2}}{m\varepsilon _{0}\varepsilon _{r}}}}}\right)} 3049: 1523: 1952: 4356: 3550: 1405: 2234:
The high-potential case is referred to as the “full one-dimensional case”. In order to obtain the equation, the general solution to the Poisson–Boltzmann equation is used and the case of low potentials is dropped. The equation is solved with a
2473: 5128:
The electronic density and electric current can be found by manipulation to equation 16 above as functions of position z. These electronic transport quantities can be used to help understand various transport properties in the system.
4130: 127:-like qualities of the electric double layer. A simple planar case with a negatively charged surface can be seen in the figure below. As expected, the concentration of counter-ions is higher near the surface than in the bulk solution. 2517: 4856: 2751: 3542:
The electrostatic free energy can also be expressed by taking the process of the charging system. The following expression utilizes chemical potential of solute molecules and implements the Poisson-Boltzmann Equation with the
4028: 4275: 324:{\displaystyle \nabla ^{2}\psi ={\frac {\partial ^{2}\psi }{\partial x^{2}}}+{\frac {\partial ^{2}\psi }{\partial y^{2}}}+{\frac {\partial ^{2}\psi }{\partial z^{2}}}=-{\frac {\rho _{e}}{\varepsilon _{r}\varepsilon _{0}}},} 3514: 1170:
The Poisson–Boltzmann equation can take many forms throughout various scientific fields. In biophysics and certain surface chemistry applications, it is known simply as the Poisson–Boltzmann equation. It is also known in
535: 2089: 3932: 939: 3768: 1799: 840: 2125: 1646: 1158: 4388:
such as a mesoscopic system. This is done by solving the Poisson–Boltzmann equation analytically in the three-dimensional case. Solving this results in expressions of the distribution function for the
5153:
of the solvent was assumed to be constant, resulting in a rough approximation as polar molecules are prevented from freely moving when they encounter the strong electric field at the solid surface.
1187:. Only minor modifications are necessary to apply the Poisson–Boltzmann equation to various interfacial models, making it a highly useful tool in determining electrostatic potential at surfaces. 3358: 1412: 1743: 3022: 2287: 1871: 4283: 1998: 1217: 2746:
In order to obtain a more useful equation that facilitates graphing high potential distributions, take the natural logarithm of both sides and solve for the dimensionless potential, y.
2298: 1568: 1833: 4760: 1409:
Analytical solutions have also been found for axial and spherical cases in a particular study. The equation is in the form of a logarithm of a power series and it is as follows:
4368:, and membranes. This involves the equations being solved with simple boundary conditions such as constant surface potential. These approximations are useful in fields such as 630: 421: 388: 2002:
As salt concentration increases, the Debye length decreases due to the ions in solution screening the surface charge. A special instance of this equation is for the case of
2120:
is the salt concentration in mol/L. These equations all require 1:1 salt concentration cases, but if ions that have higher valence are present, the following case is used.
744: 2030: 1864: 705: 3288:{\displaystyle \psi ={\frac {2k_{B}T}{e}}\cdot \ln {\frac {e^{y_{0}/2}+1+(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}{e^{y_{0}/2}+1-(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}}} 5160:
In the limit of strong electrostatic interactions, a strong coupling theory is more applicable than the weak coupling assumed in deriving the Poisson-Boltzmann theory.
2293:
and the boundary conditions that at large distances from the surface, the dimensionless potential and its derivative are zero, the high potential equation is revealed.
570: 359: 3441:
The Poisson–Boltzmann equation can also be used to calculate the electrostatic free energy for hypothetically charging a sphere using the following charging integral:
2510: 3537: 1676: 3042: 2118: 599: 4035: 448: 3753:{\displaystyle \Delta G^{\text{el}}=\int _{V}\left(kT\sum _{i}c_{i}^{\infty }\left+p^{f}U-{\frac {-\varepsilon ({\boldsymbol {\nabla }}U)^{2}}{8\pi }}\right)dV} 656: 2037: 3433:
layers of the erythrocyte membrane. This information is useful for many reasons including the study of the mechanical stability of the erythrocyte membrane.
92:
Surface charge neutralized by a molecular layer of counter-ions; surface charge potential linearly dissipated from surface to counter-ions to satisfy charge
68:. Due to thermal motion of ions, the layer of counter-ions is a diffuse layer and is more extended than a single molecular layer, as previously proposed by 3444: 4768: 3379:
Potential versus distance for varying surface potentials of 50, 100, 150, and 200 mV. The equations employed in this figure assume an 80mM NaCl solution.
3939: 749: 4137: 3375: 955: 5920: 3417:
Another example of utilizing the Poisson–Boltzmann equation is the determination of an electric potential profile at points perpendicular to the
5773:
Zhang Li-Zhi; Wang Zheng-Chuan (2009). "Analytical Solution to the Boltzmann-Poisson Equation and Its Application to MIS Tunneling Junctions".
5279:
Fogolari, F.; Brigo, A.; Molinari, H. (2002). "The Poisson–Boltzmann Equation for Biomolecular Electrostatics: a Tool for Structural Biology".
4280:
Finally, by combining the last three term the following equation representing the outer space contribution to the free energy density integral
2737:{\displaystyle e^{y/2}={\frac {e^{y_{0}/2}+1+(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}{e^{y_{0}/2}+1-(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}}} 5597: 5362: 5260: 2965:{\displaystyle y=2\ln {\frac {e^{y_{0}/2}+1+(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}{e^{y_{0}/2}+1-(e^{y_{0}/2}-1)\cdot e^{-\mathrm {K} x}}}} 1801:; however, the results that the equations yields are valid for a wider range of potentials, from 50–80mV. Nevertheless, at room temperature, 114:
Finite ion size and hydration sphere considered; some ions are specifically adsorbed by the surface in the plane, known as the Stern layer
3866: 845: 3299: 1755: 4380:
An analytical solution to the Poisson–Boltzmann equation can be used to describe an electron-electron interaction in a metal-insulator
5683: 5250: 1958: 1573: 952:
Substituting these Boltzmann relations into the local electric charge density expression, the following expression can be obtained
2290: 3765:
The above expression can be rewritten into separate free energy terms based on different contributions to the total free energy
39:
assumptions. From the Poisson–Boltzmann equation many other equations have been derived with a number of different assumptions.
4722: 5492: 61: 1682:
of negative ions in the zero potential region). For the spherical case, L=2, the axial case, L=1, and the planar case, L=0.
5510:
D’Yachkov, L. G. (2005). "Analytical Solution of the Poisson–Boltzmann Equation in Cases of Spherical and Axial Symmetry".
3852:{\displaystyle \Delta G^{\text{el}}=\Delta G^{\text{ef}}+\Delta G^{\text{em}}+\Delta G^{\text{mob}}+\Delta G^{\text{solv}}} 2220:{\displaystyle \mathrm {K} ={\sqrt {{\frac {e^{2}}{\varepsilon \varepsilon _{0}k_{\mathrm {B} }T}}\sum c_{i}{Z_{i}}^{2}}}} 1196: 5930: 1697: 5925: 2977: 2242: 5553:
Tuinier, R. (2003). "Approximate Solutions to the Poisson–Boltzmann Equation in Spherical and Cylindrical Geometry".
64:, a charged solid comes into contact with an ionic solution, creating a layer of surface charges and counter-ions or 5169: 1162:
Finally the charge density can be substituted into the Poisson equation to produce the Poisson–Boltzmann equation.
65: 139: 5188:
Netz, R.R.; Orland, H. (2000-02-01). "Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions".
1530: 95:
Thermal motion, ion diffusion, adsorption onto the surface, solvent/surface interactions considered negligible
1804: 1176: 72:
in the Helmholtz model. The Stern Layer model goes a step further and takes into account the finite ion size.
746:
respectively. These work equations can be substituted into the Boltzmann equation, producing two expressions
5436:"The Application of a Dynamic Stern Layer Model to Electrophoretic Mobility Measurements of Latex Particles" 3406: 1690:
When using the Poisson–Boltzmann equation, it is important to determine if the specific case is low or high
1518:{\displaystyle {\frac {d^{2}\psi }{dr^{2}}}+{\frac {L}{r}}{\frac {d\psi }{dr}}=e^{\psi }-\delta e^{-\psi }} 2236: 5907:
and Robert M. Strain, 2009, University of Pennsylvania, Department of Mathematics, Philadelphia, PA, USA.
1947:{\displaystyle \mathrm {K} ={\sqrt {\frac {2c_{0}e^{2}}{\varepsilon \varepsilon _{0}k_{\mathrm {B} }T}}}} 1212:
Poisson–Boltzmann equation solved analytically in terms of a second order derivative with respect to x.
391: 57: 4351:{\displaystyle \Delta G^{\text{out}}=\Delta G^{\text{em}}+\Delta G^{\text{mob}}+\Delta G^{\text{solv}}} 1400:{\displaystyle {\frac {d^{2}\psi }{dx^{2}}}={\frac {c_{0}e}{\varepsilon \varepsilon _{0}}}\cdot \left} 606: 399: 366: 5835: 5782: 5740: 5633: 5562: 5519: 5488:"Recent Progress in Numerical Methods for the Poisson-Boltzmann Equation in Biophysical Applications" 5459: 5207: 438: 5382: 5624: 2468:{\displaystyle e^{-\mathrm {K} x}={\frac {(e^{y/2}-1)(e^{y_{0}/2}+1)}{(e^{y/2}+1)(e^{y_{0}/2}-1)}}} 1570:
and the lengths are measured in units of the Debye electron radius in the region of zero potential
710: 142:
of ions in the diffuse layer. The three-dimensional potential distribution can be described by the
5874:– A free, open-source Poisson-Boltzmann electrostatics and biomolecular solvation software package 2005: 1842: 674: 5851: 5825: 5798: 5535: 5304: 5231: 5197: 4401: 4389: 4385: 1691: 1200: 633: 442: 430: 53: 543: 337: 5709: 5659: 5593: 5358: 5296: 5256: 5223: 4369: 1180: 69: 36: 5487: 2480: 5843: 5816:
Moreira, A. G.; Netz, R. R. (2000). "Strong-coupling theory for counter-ion distributions".
5790: 5748: 5699: 5691: 5649: 5641: 5570: 5527: 5435: 5288: 5215: 4397: 4393: 4125:{\displaystyle \Delta G^{\text{mob}}=kT\int _{V}c_{i}\ln {\frac {c_{i}}{c_{i}^{\infty }}}dV} 3519: 1651: 1172: 143: 3027: 2096: 577: 130: 5904: 601:
is the work required to move an ion closer to the surface from an infinitely far distance,
17: 5839: 5786: 5744: 5637: 5566: 5523: 5211: 106:
Finite ion size ignored; uniformly-charged surface; non-Coulombic interactions ignored
5704: 5678: 5654: 5619: 5407: 3544: 3390: 2289:, which is not to be confused with the spatial coordinate symbol, y. Employing several 1679: 641: 5645: 5618:
Fogolari, Federico; Zuccato, Pierfrancesco; Esposito, Gennaro; Viglino, Paola (1999).
5574: 5914: 5877: 5802: 5794: 5539: 5235: 4381: 4365: 3418: 667:
electric work to bring a charged cation or charged anion to a surface with potential
5855: 5753: 5728: 5308: 4851:{\displaystyle \rho _{1}\approx {\frac {aE_{z}}{2\lambda _{D1}}}e^{-\lambda _{D1}z}} 5900: 5150: 5122: 3369: 1837: 4023:{\displaystyle \Delta G^{\text{em}}=\int _{V}{\frac {\sum _{i}c_{i}z_{i}qU}{2}}dV} 117:
Stern layer is thin compared to particle size; fluid velocity = 0 in Stern layer
5901:
Global classical solutions of the Boltzmann equation with long-range interactions
4360:
These equations can act as simple geometry models for biological systems such as
4270:{\displaystyle \Delta G^{\text{solv}}=kT\int _{V}\sum _{i}c_{i}^{\infty }\leftdV} 5847: 3422: 1184: 124: 27:
Equation used for physiological interfaces, polymer science, and semiconductors
3426: 5889: 5729:"Solutions of non-linear Poisson–Boltzmann equation for erythrocyte membrane" 5252:
Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation
5227: 5727:
Cruz, Frederico A. O.; Vilhena, Fernando S. D. S.; Cortez, Celia M. (2000).
5620:"Biomolecular Electrostatics with the Linearized Poisson–Boltzmann Equation" 5713: 5300: 530:{\displaystyle c_{i}=c_{i}^{0}\cdot e^{\frac {-W_{i}}{k_{\mathrm {B} }T}},} 52:
The Poisson–Boltzmann equation describes a model proposed independently by
5663: 5219: 5830: 5202: 4384:(MIS). This can be used to describe both time and position dependence of 4361: 3430: 5894: 2084:{\displaystyle \lambda _{D}={\frac {\mathrm {0.304nm} }{\sqrt {c_{0}}}}} 5883: 3405:
The linearized Poisson–Boltzmann equation can be used to calculate the
5897:
Adaptive Fast Multipole Poisson–Boltzmann Solver, free and open-source
5695: 5531: 3509:{\displaystyle \Delta G^{\text{el}}=\int ^{\tau }qU(\tau ')\,d\tau '} 659: 5292: 437:
The freedom of movement of ions in solution can be accounted for by
5871: 3927:{\displaystyle \Delta G^{\text{ef}}=\int _{V}{\frac {p^{f}U}{2}}dV} 3762:
Note that the free energy is independent of the charging pathway .
1203:; however, with certain geometries, it can be solved analytically. 934:{\displaystyle c^{+}=c_{0}\cdot e^{\frac {-e\psi (x,y,z)}{k_{B}T}}} 3374: 1794:{\displaystyle e\left\vert \psi \right\vert \ll k_{\mathrm {B} }T} 835:{\displaystyle c^{-}=c_{0}\cdot e^{\frac {e\psi (x,y,z)}{k_{B}T}}} 129: 103:
Thermal motion of ions accounted for; ions behave as point charges
2032:
water with a monovalent salt. The Debye length equation is then:
5434:
Department of Chemical Engineering, Carnegie Mellon University.
3410: 5886:
Matched Interface & Boundary based Poisson–Boltzmann solver
5677:
Gruziel, Magdalena; Grochowski, Pawel; Trylska, Joanna (2008).
3024:, substitute this for y in the previous equation and solve for 1641:{\displaystyle R_{eD}={\sqrt {\frac {kT}{4\pi e^{2}n_{e0}}}}} 1153:{\displaystyle \rho _{e}=e{(c^{+}-c^{-})}=c_{0}e\cdot \left.} 4866: 4771: 4725: 4411: 4286: 4140: 4038: 3942: 3869: 3771: 3553: 3522: 3447: 3302: 3052: 3030: 2980: 2754: 2520: 2483: 2301: 2245: 2128: 2099: 2040: 2008: 1961: 1874: 1845: 1807: 1758: 1700: 1654: 1576: 1533: 1415: 1220: 958: 848: 752: 713: 677: 644: 609: 580: 546: 451: 445:
is used to calculate the local ion density such that
402: 369: 340: 151: 3409:
and free energy of highly charged molecules such as
4032:Entropic free energy of mixing of mobile species = 5107: 4850: 4754: 4708: 4350: 4269: 4124: 4022: 3926: 3851: 3752: 3531: 3508: 3353:{\displaystyle y_{0}={\frac {e\psi _{0}}{k_{B}T}}} 3352: 3287: 3036: 3016: 2964: 2736: 2504: 2467: 2281: 2219: 2112: 2083: 2024: 1992: 1946: 1858: 1827: 1793: 1737: 1670: 1640: 1562: 1517: 1399: 1152: 933: 834: 738: 699: 650: 624: 593: 564: 529: 415: 382: 353: 323: 1738:{\displaystyle \psi =\psi _{0}e^{-\mathrm {K} x}} 1175:as Gouy-Chapman theory; in solution chemistry as 5590:Cell Physiology Sourcebook: A Molecular Approach 3017:{\displaystyle y\equiv {\frac {e\psi }{k_{B}T}}} 2282:{\displaystyle y\equiv {\frac {e\psi }{k_{B}T}}} 134:A simple planar case for the Gouy–Chapman model 5357:(2nd ed.). Weinheim, Germany: Wiley-VCH. 4392:and self-consistent average potential for the 1993:{\displaystyle \lambda _{D}=\mathrm {K} ^{-1}} 1185:Derjaguin–Landau–Verwey–Overbeek (DLVO) theory 138:The Poisson–Boltzmann equation describes the 8: 4134:Entropic free energy of mixing of solvent = 1195:Because the Poisson–Boltzmann equation is a 361:is the local electric charge density in C/m, 5880:– A Poisson–Boltzmann electrostatics solver 5376: 5374: 5348: 5346: 5344: 5342: 5340: 5338: 1199:of the second order, it is commonly solved 5336: 5334: 5332: 5330: 5328: 5326: 5324: 5322: 5320: 5318: 1563:{\displaystyle \psi ={\frac {e\Phi }{kT}}} 5829: 5752: 5703: 5653: 5201: 5088: 5078: 5063: 5053: 5039: 5032: 5005: 4995: 4985: 4974: 4955: 4940: 4926: 4925: 4909: 4889: 4880: 4871: 4865: 4834: 4826: 4810: 4795: 4785: 4776: 4770: 4746: 4733: 4724: 4678: 4668: 4614: 4592: 4588: 4575: 4569: 4564: 4543: 4529: 4505: 4490: 4480: 4468: 4458: 4448: 4439: 4426: 4416: 4410: 4342: 4326: 4310: 4294: 4285: 4229: 4219: 4192: 4187: 4177: 4167: 4148: 4139: 4108: 4103: 4093: 4087: 4075: 4065: 4046: 4037: 3996: 3986: 3976: 3969: 3963: 3950: 3941: 3903: 3896: 3890: 3877: 3868: 3843: 3827: 3811: 3795: 3779: 3770: 3722: 3710: 3698: 3686: 3647: 3637: 3610: 3605: 3595: 3574: 3561: 3552: 3521: 3494: 3468: 3455: 3446: 3338: 3326: 3316: 3307: 3301: 3272: 3268: 3242: 3236: 3231: 3205: 3199: 3194: 3178: 3174: 3148: 3142: 3137: 3111: 3105: 3100: 3093: 3069: 3059: 3051: 3029: 3002: 2987: 2979: 2949: 2945: 2919: 2913: 2908: 2882: 2876: 2871: 2855: 2851: 2825: 2819: 2814: 2788: 2782: 2777: 2770: 2753: 2721: 2717: 2691: 2685: 2680: 2654: 2648: 2643: 2627: 2623: 2597: 2591: 2586: 2560: 2554: 2549: 2542: 2529: 2525: 2519: 2492: 2488: 2482: 2443: 2437: 2432: 2406: 2402: 2374: 2368: 2363: 2337: 2333: 2323: 2310: 2306: 2300: 2267: 2252: 2244: 2209: 2202: 2197: 2190: 2170: 2169: 2159: 2145: 2139: 2137: 2129: 2127: 2104: 2098: 2072: 2056: 2054: 2045: 2039: 2013: 2007: 1981: 1976: 1966: 1960: 1930: 1929: 1919: 1904: 1894: 1883: 1875: 1873: 1850: 1844: 1828:{\displaystyle \psi \leq \mathrm {25mV} } 1814: 1806: 1781: 1780: 1757: 1725: 1721: 1711: 1699: 1659: 1653: 1625: 1615: 1593: 1581: 1575: 1540: 1532: 1506: 1490: 1463: 1453: 1441: 1423: 1416: 1414: 1378: 1377: 1350: 1329: 1328: 1304: 1283: 1265: 1258: 1246: 1228: 1221: 1219: 1129: 1093: 1073: 1034: 1013: 996: 983: 975: 963: 957: 918: 879: 866: 853: 847: 819: 783: 770: 757: 751: 718: 712: 682: 676: 643: 615: 614: 608: 585: 579: 556: 551: 545: 510: 509: 497: 487: 474: 469: 456: 450: 407: 401: 374: 368: 345: 339: 309: 299: 288: 282: 267: 249: 242: 230: 212: 205: 193: 175: 168: 156: 150: 5555:Journal of Colloid and Interface Science 4755:{\displaystyle \rho \rho _{1}+\rho _{2}} 74: 5429: 5427: 5180: 60:in 1910 and 1913, respectively. In the 5679:"The Poisson-Boltzmann model for tRNA" 5353:Butt, H.; Graf, L.; Kappl, M. (2006). 3044:. The following equation is rendered. 5768: 5766: 5764: 5613: 5611: 5609: 5401: 5399: 1686:Low-potential vs high-potential cases 572:is the ion concentration at the bulk, 7: 5481: 5479: 5274: 5272: 123:The Gouy–Chapman model explains the 5355:Physics and Chemistry of Interfaces 3425:. This takes into account both the 1752:Strictly, low potential means that 945:is the charge of an electron, 1.602 4686: 4671: 4624: 4498: 4483: 4335: 4319: 4303: 4287: 4193: 4141: 4109: 4039: 3943: 3870: 3836: 3820: 3804: 3788: 3772: 3611: 3554: 3539:is the final charge on the sphere 3448: 3273: 3179: 2950: 2856: 2722: 2628: 2311: 2171: 2130: 2063: 2060: 1977: 1931: 1876: 1821: 1818: 1782: 1726: 1546: 1527:It uses a dimensionless potential 1379: 1330: 616: 511: 423:is the permittivity of free space, 260: 246: 223: 209: 186: 172: 153: 25: 5872:Adaptive Poisson–Boltzmann Solver 5592:(3rd ed.). San Diego: Acad. 3711: 625:{\displaystyle k_{\mathrm {B} }} 416:{\displaystyle \varepsilon _{0}} 383:{\displaystyle \varepsilon _{r}} 5754:10.1590/S0103-97332000000200023 5486:Lu, B. Z.; et al. (2008). 5255:. Academic Press. p. 318. 5190:The European Physical Journal E 3936:Electrostatic mobile charges = 5921:Eponymous equations of physics 4918: 4899: 4719:the system can be found using 4662: 4659: 4642: 4630: 3863:Electrostatic fixed charges = 3719: 3707: 3491: 3480: 3258: 3224: 3164: 3130: 2935: 2901: 2841: 2807: 2707: 2673: 2613: 2579: 2459: 2425: 2422: 2395: 2390: 2356: 2353: 2326: 1368: 1362: 1319: 1313: 1120: 1102: 1064: 1046: 1002: 976: 909: 891: 810: 792: 1: 5646:10.1016/S0006-3495(99)77173-0 5575:10.1016/S0021-9797(02)00142-X 5381:New Mexico State University. 1748:Low-potential case conditions 739:{\displaystyle W^{-}=-e\psi } 5733:Brazilian Journal of Physics 2025:{\displaystyle 25^{\circ }C} 1859:{\displaystyle \lambda _{D}} 700:{\displaystyle W^{+}=e\psi } 390:is the dielectric constant ( 5249:Attard, Phil (2002-08-07). 3402:electrostatic free energy. 5947: 5795:10.1088/1674-1056/18/7/059 5408:"Chemistry 465 Lecture 10" 3397:Physiological applications 32:Poisson–Boltzmann equation 18:Poisson-Boltzmann equation 5848:10.1209/epl/i2000-00495-1 5512:Technical Physics Letters 5406:Simon Fraser University. 3437:Electrostatic free energy 2477:This equation solved for 565:{\displaystyle c_{i}^{0}} 354:{\displaystyle \rho _{e}} 140:electrochemical potential 81:Important characteristics 48:Background and derivation 2291:trigonometric identities 5890:CHARMM-GUI: PBEQ Solver 5588:Sperelakis, N. (2012). 5460:"Electric Double Layer" 5383:"Electric Double Layer" 3407:electrostatic potential 2505:{\displaystyle e^{y/2}} 5109: 4852: 4756: 4710: 4352: 4271: 4126: 4024: 3928: 3853: 3754: 3533: 3532:{\displaystyle \tau q} 3510: 3380: 3354: 3289: 3038: 3018: 2966: 2738: 2506: 2469: 2283: 2221: 2114: 2085: 2026: 1994: 1948: 1860: 1829: 1795: 1739: 1672: 1671:{\displaystyle n_{e0}} 1642: 1564: 1519: 1401: 1154: 935: 836: 740: 701: 671:can be represented by 658:is the temperature in 652: 626: 595: 566: 531: 417: 384: 355: 325: 135: 5493:Commun. Comput. Phys. 5220:10.1007/s101890050023 5110: 4853: 4757: 4711: 4353: 4272: 4127: 4025: 3929: 3854: 3755: 3534: 3511: 3378: 3355: 3290: 3039: 3037:{\displaystyle \psi } 3019: 2967: 2739: 2507: 2470: 2284: 2222: 2115: 2113:{\displaystyle c_{0}} 2086: 2027: 1995: 1949: 1861: 1830: 1796: 1740: 1673: 1643: 1565: 1520: 1402: 1155: 936: 837: 741: 702: 653: 627: 596: 594:{\displaystyle W_{i}} 567: 532: 418: 392:relative permittivity 385: 356: 326: 133: 58:David Leonard Chapman 4864: 4769: 4723: 4409: 4284: 4138: 4036: 3940: 3867: 3769: 3551: 3520: 3445: 3419:phospholipid bilayer 3384:General applications 3300: 3050: 3028: 2978: 2752: 2518: 2481: 2299: 2243: 2126: 2097: 2038: 2006: 1959: 1872: 1843: 1805: 1756: 1698: 1652: 1574: 1531: 1413: 1218: 1197:partial differential 1191:Solving analytically 956: 846: 750: 711: 675: 642: 607: 578: 544: 449: 439:Boltzmann statistics 400: 367: 338: 149: 5931:Colloidal chemistry 5840:2000EL.....52..705M 5818:Europhysics Letters 5787:2009ChPhB..18.2975Z 5745:2000BrJPh..30..403C 5638:1999BpJ....76....1F 5625:Biophysical Journal 5567:2003JCIS..258...45T 5524:2005TePhL..31..204D 5212:2000EPJE....1..203N 4574: 4386:dissipative systems 4197: 4113: 3615: 3389:further insight on 2230:High-potential case 1177:Debye–Huckel theory 561: 479: 5926:Molecular dynamics 5905:Philip T. Gressman 5105: 4848: 4752: 4706: 4560: 4402:electronic density 4390:Boltzmann equation 4348: 4267: 4183: 4182: 4122: 4099: 4020: 3981: 3924: 3849: 3750: 3601: 3600: 3529: 3506: 3381: 3350: 3285: 3034: 3014: 2962: 2734: 2502: 2465: 2279: 2217: 2110: 2081: 2022: 1990: 1944: 1856: 1825: 1791: 1735: 1668: 1638: 1560: 1515: 1397: 1150: 931: 832: 736: 697: 648: 634:Boltzmann constant 622: 591: 562: 547: 527: 465: 443:Boltzmann equation 431:electric potential 413: 380: 351: 321: 136: 62:Gouy-Chapman model 54:Louis Georges Gouy 5775:Chinese Physics B 5696:10.1002/jcc.20953 5690:(12): 1970–1981. 5599:978-0-12-387738-3 5532:10.1134/1.1894433 5364:978-3-527-40629-6 5262:978-0-12-066321-7 5096: 5095: 5015: 4979: 4946: 4894: 4820: 4693: 4620: 4583: 4549: 4512: 4478: 4376:Materials science 4370:colloid chemistry 4345: 4329: 4313: 4297: 4250: 4173: 4151: 4114: 4049: 4012: 3972: 3953: 3916: 3880: 3846: 3830: 3814: 3798: 3782: 3737: 3668: 3591: 3564: 3458: 3348: 3283: 3082: 3012: 2960: 2732: 2463: 2277: 2215: 2181: 2079: 2078: 1942: 1941: 1636: 1635: 1558: 1481: 1461: 1448: 1389: 1340: 1290: 1253: 1181:colloid chemistry 1139: 1083: 928: 829: 651:{\displaystyle T} 521: 394:) of the solvent, 316: 274: 237: 200: 121: 120: 70:Hermann Helmholtz 16:(Redirected from 5938: 5860: 5859: 5833: 5831:cond-mat/0009376 5813: 5807: 5806: 5781:(2): 2975–2980. 5770: 5759: 5758: 5756: 5724: 5718: 5717: 5707: 5684:J. Comput. Chem. 5674: 5668: 5667: 5657: 5615: 5604: 5603: 5585: 5579: 5578: 5550: 5544: 5543: 5507: 5501: 5500: 5483: 5474: 5473: 5471: 5470: 5456: 5450: 5449: 5447: 5445: 5440: 5431: 5422: 5421: 5419: 5417: 5412: 5403: 5394: 5393: 5391: 5389: 5378: 5369: 5368: 5350: 5313: 5312: 5281:J. Mol. Recognit 5276: 5267: 5266: 5246: 5240: 5239: 5205: 5203:cond-mat/9902085 5185: 5145: 5144: 5140: 5120: 5114: 5112: 5111: 5106: 5104: 5100: 5099: 5098: 5097: 5094: 5093: 5092: 5083: 5082: 5069: 5068: 5067: 5058: 5057: 5041: 5040: 5016: 5014: 5013: 5012: 5000: 4999: 4990: 4989: 4980: 4975: 4969: 4968: 4967: 4963: 4962: 4947: 4945: 4944: 4935: 4927: 4917: 4916: 4895: 4890: 4881: 4876: 4875: 4857: 4855: 4854: 4849: 4847: 4846: 4842: 4841: 4821: 4819: 4818: 4817: 4801: 4800: 4799: 4786: 4781: 4780: 4761: 4759: 4758: 4753: 4751: 4750: 4738: 4737: 4715: 4713: 4712: 4707: 4705: 4694: 4692: 4684: 4683: 4682: 4669: 4658: 4623: 4622: 4621: 4619: 4618: 4609: 4608: 4593: 4584: 4576: 4573: 4568: 4556: 4552: 4551: 4550: 4548: 4547: 4538: 4530: 4513: 4511: 4510: 4509: 4496: 4495: 4494: 4481: 4479: 4474: 4473: 4472: 4463: 4462: 4449: 4444: 4443: 4431: 4430: 4421: 4420: 4398:electric current 4394:Poisson equation 4357: 4355: 4354: 4349: 4347: 4346: 4343: 4331: 4330: 4327: 4315: 4314: 4311: 4299: 4298: 4295: 4276: 4274: 4273: 4268: 4260: 4256: 4255: 4251: 4249: 4241: 4234: 4233: 4220: 4196: 4191: 4181: 4172: 4171: 4153: 4152: 4149: 4131: 4129: 4128: 4123: 4115: 4112: 4107: 4098: 4097: 4088: 4080: 4079: 4070: 4069: 4051: 4050: 4047: 4029: 4027: 4026: 4021: 4013: 4008: 4001: 4000: 3991: 3990: 3980: 3970: 3968: 3967: 3955: 3954: 3951: 3933: 3931: 3930: 3925: 3917: 3912: 3908: 3907: 3897: 3895: 3894: 3882: 3881: 3878: 3858: 3856: 3855: 3850: 3848: 3847: 3844: 3832: 3831: 3828: 3816: 3815: 3812: 3800: 3799: 3796: 3784: 3783: 3780: 3759: 3757: 3756: 3751: 3743: 3739: 3738: 3736: 3728: 3727: 3726: 3714: 3699: 3691: 3690: 3678: 3674: 3673: 3669: 3667: 3659: 3652: 3651: 3638: 3614: 3609: 3599: 3579: 3578: 3566: 3565: 3562: 3538: 3536: 3535: 3530: 3515: 3513: 3512: 3507: 3505: 3490: 3473: 3472: 3460: 3459: 3456: 3359: 3357: 3356: 3351: 3349: 3347: 3343: 3342: 3332: 3331: 3330: 3317: 3312: 3311: 3294: 3292: 3291: 3286: 3284: 3282: 3281: 3280: 3276: 3251: 3250: 3246: 3241: 3240: 3214: 3213: 3209: 3204: 3203: 3188: 3187: 3186: 3182: 3157: 3156: 3152: 3147: 3146: 3120: 3119: 3115: 3110: 3109: 3094: 3083: 3078: 3074: 3073: 3060: 3043: 3041: 3040: 3035: 3023: 3021: 3020: 3015: 3013: 3011: 3007: 3006: 2996: 2988: 2971: 2969: 2968: 2963: 2961: 2959: 2958: 2957: 2953: 2928: 2927: 2923: 2918: 2917: 2891: 2890: 2886: 2881: 2880: 2865: 2864: 2863: 2859: 2834: 2833: 2829: 2824: 2823: 2797: 2796: 2792: 2787: 2786: 2771: 2743: 2741: 2740: 2735: 2733: 2731: 2730: 2729: 2725: 2700: 2699: 2695: 2690: 2689: 2663: 2662: 2658: 2653: 2652: 2637: 2636: 2635: 2631: 2606: 2605: 2601: 2596: 2595: 2569: 2568: 2564: 2559: 2558: 2543: 2538: 2537: 2533: 2512:is shown below. 2511: 2509: 2508: 2503: 2501: 2500: 2496: 2474: 2472: 2471: 2466: 2464: 2462: 2452: 2451: 2447: 2442: 2441: 2415: 2414: 2410: 2393: 2383: 2382: 2378: 2373: 2372: 2346: 2345: 2341: 2324: 2319: 2318: 2314: 2288: 2286: 2285: 2280: 2278: 2276: 2272: 2271: 2261: 2253: 2226: 2224: 2223: 2218: 2216: 2214: 2213: 2208: 2207: 2206: 2195: 2194: 2182: 2180: 2176: 2175: 2174: 2164: 2163: 2150: 2149: 2140: 2138: 2133: 2119: 2117: 2116: 2111: 2109: 2108: 2090: 2088: 2087: 2082: 2080: 2077: 2076: 2067: 2066: 2055: 2050: 2049: 2031: 2029: 2028: 2023: 2018: 2017: 1999: 1997: 1996: 1991: 1989: 1988: 1980: 1971: 1970: 1953: 1951: 1950: 1945: 1943: 1940: 1936: 1935: 1934: 1924: 1923: 1910: 1909: 1908: 1899: 1898: 1885: 1884: 1879: 1865: 1863: 1862: 1857: 1855: 1854: 1834: 1832: 1831: 1826: 1824: 1800: 1798: 1797: 1792: 1787: 1786: 1785: 1772: 1744: 1742: 1741: 1736: 1734: 1733: 1729: 1716: 1715: 1677: 1675: 1674: 1669: 1667: 1666: 1647: 1645: 1644: 1639: 1637: 1634: 1633: 1632: 1620: 1619: 1603: 1595: 1594: 1589: 1588: 1569: 1567: 1566: 1561: 1559: 1557: 1549: 1541: 1524: 1522: 1521: 1516: 1514: 1513: 1495: 1494: 1482: 1480: 1472: 1464: 1462: 1454: 1449: 1447: 1446: 1445: 1432: 1428: 1427: 1417: 1406: 1404: 1403: 1398: 1396: 1392: 1391: 1390: 1388: 1384: 1383: 1382: 1371: 1351: 1342: 1341: 1339: 1335: 1334: 1333: 1322: 1305: 1291: 1289: 1288: 1287: 1274: 1270: 1269: 1259: 1254: 1252: 1251: 1250: 1237: 1233: 1232: 1222: 1173:electrochemistry 1166:Related theories 1159: 1157: 1156: 1151: 1146: 1142: 1141: 1140: 1138: 1134: 1133: 1123: 1094: 1085: 1084: 1082: 1078: 1077: 1067: 1035: 1018: 1017: 1005: 1001: 1000: 988: 987: 968: 967: 948: 940: 938: 937: 932: 930: 929: 927: 923: 922: 912: 880: 871: 870: 858: 857: 841: 839: 838: 833: 831: 830: 828: 824: 823: 813: 784: 775: 774: 762: 761: 745: 743: 742: 737: 723: 722: 706: 704: 703: 698: 687: 686: 670: 657: 655: 654: 649: 631: 629: 628: 623: 621: 620: 619: 600: 598: 597: 592: 590: 589: 571: 569: 568: 563: 560: 555: 536: 534: 533: 528: 523: 522: 520: 516: 515: 514: 503: 502: 501: 488: 478: 473: 461: 460: 428: 422: 420: 419: 414: 412: 411: 389: 387: 386: 381: 379: 378: 360: 358: 357: 352: 350: 349: 330: 328: 327: 322: 317: 315: 314: 313: 304: 303: 293: 292: 283: 275: 273: 272: 271: 258: 254: 253: 243: 238: 236: 235: 234: 221: 217: 216: 206: 201: 199: 198: 197: 184: 180: 179: 169: 161: 160: 144:Poisson equation 75: 21: 5946: 5945: 5941: 5940: 5939: 5937: 5936: 5935: 5911: 5910: 5868: 5863: 5815: 5814: 5810: 5772: 5771: 5762: 5726: 5725: 5721: 5676: 5675: 5671: 5617: 5616: 5607: 5600: 5587: 5586: 5582: 5552: 5551: 5547: 5509: 5508: 5504: 5499:(5): 973–1009 . 5485: 5484: 5477: 5468: 5466: 5458: 5457: 5453: 5443: 5441: 5438: 5433: 5432: 5425: 5415: 5413: 5410: 5405: 5404: 5397: 5387: 5385: 5380: 5379: 5372: 5365: 5352: 5351: 5316: 5293:10.1002/jmr.577 5278: 5277: 5270: 5263: 5248: 5247: 5243: 5187: 5186: 5182: 5178: 5166: 5146: 5142: 5138: 5136: 5135: 5118: 5084: 5074: 5070: 5059: 5049: 5042: 5028: 5021: 5017: 5001: 4991: 4981: 4970: 4951: 4936: 4928: 4921: 4905: 4882: 4867: 4862: 4861: 4830: 4822: 4806: 4802: 4791: 4787: 4772: 4767: 4766: 4742: 4729: 4721: 4720: 4698: 4685: 4674: 4670: 4651: 4610: 4601: 4594: 4589: 4539: 4531: 4525: 4518: 4514: 4501: 4497: 4486: 4482: 4464: 4454: 4450: 4435: 4422: 4412: 4407: 4406: 4378: 4338: 4322: 4306: 4290: 4282: 4281: 4242: 4225: 4221: 4215: 4202: 4198: 4163: 4144: 4136: 4135: 4089: 4071: 4061: 4042: 4034: 4033: 3992: 3982: 3971: 3959: 3946: 3938: 3937: 3899: 3898: 3886: 3873: 3865: 3864: 3839: 3823: 3807: 3791: 3775: 3767: 3766: 3729: 3718: 3700: 3682: 3660: 3643: 3639: 3633: 3620: 3616: 3584: 3580: 3570: 3557: 3549: 3548: 3518: 3517: 3498: 3483: 3464: 3451: 3443: 3442: 3439: 3399: 3386: 3365: 3334: 3333: 3322: 3318: 3303: 3298: 3297: 3264: 3232: 3227: 3195: 3190: 3189: 3170: 3138: 3133: 3101: 3096: 3095: 3065: 3061: 3048: 3047: 3026: 3025: 2998: 2997: 2989: 2976: 2975: 2941: 2909: 2904: 2872: 2867: 2866: 2847: 2815: 2810: 2778: 2773: 2772: 2750: 2749: 2713: 2681: 2676: 2644: 2639: 2638: 2619: 2587: 2582: 2550: 2545: 2544: 2521: 2516: 2515: 2484: 2479: 2478: 2433: 2428: 2398: 2394: 2364: 2359: 2329: 2325: 2302: 2297: 2296: 2263: 2262: 2254: 2241: 2240: 2232: 2198: 2196: 2186: 2165: 2155: 2151: 2141: 2124: 2123: 2100: 2095: 2094: 2068: 2041: 2036: 2035: 2009: 2004: 2003: 1975: 1962: 1957: 1956: 1925: 1915: 1911: 1900: 1890: 1886: 1870: 1869: 1846: 1841: 1840: 1803: 1802: 1776: 1762: 1754: 1753: 1750: 1717: 1707: 1696: 1695: 1688: 1655: 1650: 1649: 1621: 1611: 1604: 1596: 1577: 1572: 1571: 1550: 1542: 1529: 1528: 1502: 1486: 1473: 1465: 1437: 1433: 1419: 1418: 1411: 1410: 1373: 1372: 1352: 1346: 1324: 1323: 1306: 1300: 1299: 1295: 1279: 1275: 1261: 1260: 1242: 1238: 1224: 1223: 1216: 1215: 1209: 1193: 1168: 1125: 1124: 1095: 1089: 1069: 1068: 1036: 1030: 1029: 1025: 1009: 992: 979: 959: 954: 953: 946: 914: 913: 881: 875: 862: 849: 844: 843: 815: 814: 785: 779: 766: 753: 748: 747: 714: 709: 708: 678: 673: 672: 668: 640: 639: 610: 605: 604: 581: 576: 575: 542: 541: 505: 504: 493: 489: 483: 452: 447: 446: 426: 403: 398: 397: 370: 365: 364: 341: 336: 335: 305: 295: 294: 284: 263: 259: 245: 244: 226: 222: 208: 207: 189: 185: 171: 170: 152: 147: 146: 50: 45: 28: 23: 22: 15: 12: 11: 5: 5944: 5942: 5934: 5933: 5928: 5923: 5913: 5912: 5909: 5908: 5898: 5892: 5887: 5881: 5875: 5867: 5866:External links 5864: 5862: 5861: 5824:(6): 705–711. 5808: 5760: 5739:(2): 403–409. 5719: 5669: 5605: 5598: 5580: 5545: 5518:(3): 204–207. 5502: 5475: 5451: 5423: 5395: 5370: 5363: 5314: 5287:(6): 379–385. 5268: 5261: 5241: 5196:(2): 203–214. 5179: 5177: 5174: 5173: 5172: 5165: 5162: 5134: 5131: 5121:is called the 5116: 5115: 5103: 5091: 5087: 5081: 5077: 5073: 5066: 5062: 5056: 5052: 5048: 5045: 5038: 5035: 5031: 5027: 5024: 5020: 5011: 5008: 5004: 4998: 4994: 4988: 4984: 4978: 4973: 4966: 4961: 4958: 4954: 4950: 4943: 4939: 4934: 4931: 4924: 4920: 4915: 4912: 4908: 4904: 4901: 4898: 4893: 4888: 4885: 4879: 4874: 4870: 4859: 4845: 4840: 4837: 4833: 4829: 4825: 4816: 4813: 4809: 4805: 4798: 4794: 4790: 4784: 4779: 4775: 4749: 4745: 4741: 4736: 4732: 4728: 4704: 4701: 4697: 4691: 4688: 4681: 4677: 4673: 4667: 4664: 4661: 4657: 4654: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4617: 4613: 4607: 4604: 4600: 4597: 4591: 4587: 4582: 4579: 4572: 4567: 4563: 4559: 4555: 4546: 4542: 4537: 4534: 4528: 4524: 4521: 4517: 4508: 4504: 4500: 4493: 4489: 4485: 4477: 4471: 4467: 4461: 4457: 4453: 4447: 4442: 4438: 4434: 4429: 4425: 4419: 4415: 4377: 4374: 4341: 4337: 4334: 4325: 4321: 4318: 4309: 4305: 4302: 4293: 4289: 4278: 4277: 4266: 4263: 4259: 4254: 4248: 4245: 4240: 4237: 4232: 4228: 4224: 4218: 4214: 4211: 4208: 4205: 4201: 4195: 4190: 4186: 4180: 4176: 4170: 4166: 4162: 4159: 4156: 4147: 4143: 4132: 4121: 4118: 4111: 4106: 4102: 4096: 4092: 4086: 4083: 4078: 4074: 4068: 4064: 4060: 4057: 4054: 4045: 4041: 4030: 4019: 4016: 4011: 4007: 4004: 3999: 3995: 3989: 3985: 3979: 3975: 3966: 3962: 3958: 3949: 3945: 3934: 3923: 3920: 3915: 3911: 3906: 3902: 3893: 3889: 3885: 3876: 3872: 3842: 3838: 3835: 3826: 3822: 3819: 3810: 3806: 3803: 3794: 3790: 3787: 3778: 3774: 3749: 3746: 3742: 3735: 3732: 3725: 3721: 3717: 3713: 3709: 3706: 3703: 3697: 3694: 3689: 3685: 3681: 3677: 3672: 3666: 3663: 3658: 3655: 3650: 3646: 3642: 3636: 3632: 3629: 3626: 3623: 3619: 3613: 3608: 3604: 3598: 3594: 3590: 3587: 3583: 3577: 3573: 3569: 3560: 3556: 3545:Euler-Lagrange 3528: 3525: 3504: 3501: 3497: 3493: 3489: 3486: 3482: 3479: 3476: 3471: 3467: 3463: 3454: 3450: 3438: 3435: 3398: 3395: 3391:electrostatics 3385: 3382: 3364: 3361: 3346: 3341: 3337: 3329: 3325: 3321: 3315: 3310: 3306: 3279: 3275: 3271: 3267: 3263: 3260: 3257: 3254: 3249: 3245: 3239: 3235: 3230: 3226: 3223: 3220: 3217: 3212: 3208: 3202: 3198: 3193: 3185: 3181: 3177: 3173: 3169: 3166: 3163: 3160: 3155: 3151: 3145: 3141: 3136: 3132: 3129: 3126: 3123: 3118: 3114: 3108: 3104: 3099: 3092: 3089: 3086: 3081: 3077: 3072: 3068: 3064: 3058: 3055: 3033: 3010: 3005: 3001: 2995: 2992: 2986: 2983: 2956: 2952: 2948: 2944: 2940: 2937: 2934: 2931: 2926: 2922: 2916: 2912: 2907: 2903: 2900: 2897: 2894: 2889: 2885: 2879: 2875: 2870: 2862: 2858: 2854: 2850: 2846: 2843: 2840: 2837: 2832: 2828: 2822: 2818: 2813: 2809: 2806: 2803: 2800: 2795: 2791: 2785: 2781: 2776: 2769: 2766: 2763: 2760: 2757: 2728: 2724: 2720: 2716: 2712: 2709: 2706: 2703: 2698: 2694: 2688: 2684: 2679: 2675: 2672: 2669: 2666: 2661: 2657: 2651: 2647: 2642: 2634: 2630: 2626: 2622: 2618: 2615: 2612: 2609: 2604: 2600: 2594: 2590: 2585: 2581: 2578: 2575: 2572: 2567: 2563: 2557: 2553: 2548: 2541: 2536: 2532: 2528: 2524: 2499: 2495: 2491: 2487: 2461: 2458: 2455: 2450: 2446: 2440: 2436: 2431: 2427: 2424: 2421: 2418: 2413: 2409: 2405: 2401: 2397: 2392: 2389: 2386: 2381: 2377: 2371: 2367: 2362: 2358: 2355: 2352: 2349: 2344: 2340: 2336: 2332: 2328: 2322: 2317: 2313: 2309: 2305: 2275: 2270: 2266: 2260: 2257: 2251: 2248: 2231: 2228: 2212: 2205: 2201: 2193: 2189: 2185: 2179: 2173: 2168: 2162: 2158: 2154: 2148: 2144: 2136: 2132: 2107: 2103: 2075: 2071: 2065: 2062: 2059: 2053: 2048: 2044: 2021: 2016: 2012: 1987: 1984: 1979: 1974: 1969: 1965: 1939: 1933: 1928: 1922: 1918: 1914: 1907: 1903: 1897: 1893: 1889: 1882: 1878: 1853: 1849: 1823: 1820: 1817: 1813: 1810: 1790: 1784: 1779: 1775: 1771: 1768: 1765: 1761: 1749: 1746: 1732: 1728: 1724: 1720: 1714: 1710: 1706: 1703: 1687: 1684: 1680:number density 1665: 1662: 1658: 1631: 1628: 1624: 1618: 1614: 1610: 1607: 1602: 1599: 1592: 1587: 1584: 1580: 1556: 1553: 1548: 1545: 1539: 1536: 1512: 1509: 1505: 1501: 1498: 1493: 1489: 1485: 1479: 1476: 1471: 1468: 1460: 1457: 1452: 1444: 1440: 1436: 1431: 1426: 1422: 1395: 1387: 1381: 1376: 1370: 1367: 1364: 1361: 1358: 1355: 1349: 1345: 1338: 1332: 1327: 1321: 1318: 1315: 1312: 1309: 1303: 1298: 1294: 1286: 1282: 1278: 1273: 1268: 1264: 1257: 1249: 1245: 1241: 1236: 1231: 1227: 1208: 1205: 1192: 1189: 1167: 1164: 1149: 1145: 1137: 1132: 1128: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1092: 1088: 1081: 1076: 1072: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1033: 1028: 1024: 1021: 1016: 1012: 1008: 1004: 999: 995: 991: 986: 982: 978: 974: 971: 966: 962: 926: 921: 917: 911: 908: 905: 902: 899: 896: 893: 890: 887: 884: 878: 874: 869: 865: 861: 856: 852: 827: 822: 818: 812: 809: 806: 803: 800: 797: 794: 791: 788: 782: 778: 773: 769: 765: 760: 756: 735: 732: 729: 726: 721: 717: 696: 693: 690: 685: 681: 664: 663: 647: 637: 618: 613: 602: 588: 584: 573: 559: 554: 550: 526: 519: 513: 508: 500: 496: 492: 486: 482: 477: 472: 468: 464: 459: 455: 435: 434: 424: 410: 406: 395: 377: 373: 362: 348: 344: 320: 312: 308: 302: 298: 291: 287: 281: 278: 270: 266: 262: 257: 252: 248: 241: 233: 229: 225: 220: 215: 211: 204: 196: 192: 188: 183: 178: 174: 167: 164: 159: 155: 119: 118: 115: 112: 108: 107: 104: 101: 97: 96: 93: 90: 86: 85: 82: 79: 49: 46: 44: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5943: 5932: 5929: 5927: 5924: 5922: 5919: 5918: 5916: 5906: 5902: 5899: 5896: 5893: 5891: 5888: 5885: 5882: 5879: 5876: 5873: 5870: 5869: 5865: 5857: 5853: 5849: 5845: 5841: 5837: 5832: 5827: 5823: 5819: 5812: 5809: 5804: 5800: 5796: 5792: 5788: 5784: 5780: 5776: 5769: 5767: 5765: 5761: 5755: 5750: 5746: 5742: 5738: 5734: 5730: 5723: 5720: 5715: 5711: 5706: 5701: 5697: 5693: 5689: 5686: 5685: 5680: 5673: 5670: 5665: 5661: 5656: 5651: 5647: 5643: 5639: 5635: 5631: 5627: 5626: 5621: 5614: 5612: 5610: 5606: 5601: 5595: 5591: 5584: 5581: 5576: 5572: 5568: 5564: 5560: 5556: 5549: 5546: 5541: 5537: 5533: 5529: 5525: 5521: 5517: 5513: 5506: 5503: 5498: 5495: 5494: 5489: 5482: 5480: 5476: 5465: 5461: 5455: 5452: 5437: 5430: 5428: 5424: 5409: 5402: 5400: 5396: 5384: 5377: 5375: 5371: 5366: 5360: 5356: 5349: 5347: 5345: 5343: 5341: 5339: 5337: 5335: 5333: 5331: 5329: 5327: 5325: 5323: 5321: 5319: 5315: 5310: 5306: 5302: 5298: 5294: 5290: 5286: 5282: 5275: 5273: 5269: 5264: 5258: 5254: 5253: 5245: 5242: 5237: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5204: 5199: 5195: 5191: 5184: 5181: 5175: 5171: 5168: 5167: 5163: 5161: 5158: 5154: 5152: 5141: 5132: 5130: 5126: 5124: 5101: 5089: 5085: 5079: 5075: 5071: 5064: 5060: 5054: 5050: 5046: 5043: 5036: 5033: 5029: 5025: 5022: 5018: 5009: 5006: 5002: 4996: 4992: 4986: 4982: 4976: 4971: 4964: 4959: 4956: 4952: 4948: 4941: 4937: 4932: 4929: 4922: 4913: 4910: 4906: 4902: 4896: 4891: 4886: 4883: 4877: 4872: 4868: 4860: 4843: 4838: 4835: 4831: 4827: 4823: 4814: 4811: 4807: 4803: 4796: 4792: 4788: 4782: 4777: 4773: 4765: 4764: 4763: 4747: 4743: 4739: 4734: 4730: 4726: 4716: 4702: 4699: 4695: 4689: 4679: 4675: 4665: 4655: 4652: 4648: 4645: 4639: 4636: 4633: 4627: 4615: 4611: 4605: 4602: 4598: 4595: 4590: 4585: 4580: 4577: 4570: 4565: 4561: 4557: 4553: 4544: 4540: 4535: 4532: 4526: 4522: 4519: 4515: 4506: 4502: 4491: 4487: 4475: 4469: 4465: 4459: 4455: 4451: 4445: 4440: 4436: 4432: 4427: 4423: 4417: 4413: 4403: 4399: 4395: 4391: 4387: 4383: 4382:semiconductor 4375: 4373: 4371: 4367: 4366:nucleic acids 4363: 4358: 4339: 4332: 4323: 4316: 4307: 4300: 4291: 4264: 4261: 4257: 4252: 4246: 4243: 4238: 4235: 4230: 4226: 4222: 4216: 4212: 4209: 4206: 4203: 4199: 4188: 4184: 4178: 4174: 4168: 4164: 4160: 4157: 4154: 4145: 4133: 4119: 4116: 4104: 4100: 4094: 4090: 4084: 4081: 4076: 4072: 4066: 4062: 4058: 4055: 4052: 4043: 4031: 4017: 4014: 4009: 4005: 4002: 3997: 3993: 3987: 3983: 3977: 3973: 3964: 3960: 3956: 3947: 3935: 3921: 3918: 3913: 3909: 3904: 3900: 3891: 3887: 3883: 3874: 3862: 3861: 3860: 3840: 3833: 3824: 3817: 3808: 3801: 3792: 3785: 3776: 3763: 3760: 3747: 3744: 3740: 3733: 3730: 3723: 3715: 3704: 3701: 3695: 3692: 3687: 3683: 3679: 3675: 3670: 3664: 3661: 3656: 3653: 3648: 3644: 3640: 3634: 3630: 3627: 3624: 3621: 3617: 3606: 3602: 3596: 3592: 3588: 3585: 3581: 3575: 3571: 3567: 3558: 3546: 3540: 3526: 3523: 3502: 3499: 3495: 3487: 3484: 3477: 3474: 3469: 3465: 3461: 3452: 3436: 3434: 3432: 3428: 3424: 3420: 3415: 3412: 3408: 3403: 3396: 3394: 3392: 3383: 3377: 3373: 3371: 3362: 3360: 3344: 3339: 3335: 3327: 3323: 3319: 3313: 3308: 3304: 3295: 3277: 3269: 3265: 3261: 3255: 3252: 3247: 3243: 3237: 3233: 3228: 3221: 3218: 3215: 3210: 3206: 3200: 3196: 3191: 3183: 3175: 3171: 3167: 3161: 3158: 3153: 3149: 3143: 3139: 3134: 3127: 3124: 3121: 3116: 3112: 3106: 3102: 3097: 3090: 3087: 3084: 3079: 3075: 3070: 3066: 3062: 3056: 3053: 3045: 3031: 3008: 3003: 2999: 2993: 2990: 2984: 2981: 2974:Knowing that 2972: 2954: 2946: 2942: 2938: 2932: 2929: 2924: 2920: 2914: 2910: 2905: 2898: 2895: 2892: 2887: 2883: 2877: 2873: 2868: 2860: 2852: 2848: 2844: 2838: 2835: 2830: 2826: 2820: 2816: 2811: 2804: 2801: 2798: 2793: 2789: 2783: 2779: 2774: 2767: 2764: 2761: 2758: 2755: 2747: 2744: 2726: 2718: 2714: 2710: 2704: 2701: 2696: 2692: 2686: 2682: 2677: 2670: 2667: 2664: 2659: 2655: 2649: 2645: 2640: 2632: 2624: 2620: 2616: 2610: 2607: 2602: 2598: 2592: 2588: 2583: 2576: 2573: 2570: 2565: 2561: 2555: 2551: 2546: 2539: 2534: 2530: 2526: 2522: 2513: 2497: 2493: 2489: 2485: 2475: 2456: 2453: 2448: 2444: 2438: 2434: 2429: 2419: 2416: 2411: 2407: 2403: 2399: 2387: 2384: 2379: 2375: 2369: 2365: 2360: 2350: 2347: 2342: 2338: 2334: 2330: 2320: 2315: 2307: 2303: 2294: 2292: 2273: 2268: 2264: 2258: 2255: 2249: 2246: 2238: 2237:dimensionless 2229: 2227: 2210: 2203: 2199: 2191: 2187: 2183: 2177: 2166: 2160: 2156: 2152: 2146: 2142: 2134: 2121: 2105: 2101: 2091: 2073: 2069: 2057: 2051: 2046: 2042: 2033: 2019: 2014: 2010: 2000: 1985: 1982: 1972: 1967: 1963: 1954: 1937: 1926: 1920: 1916: 1912: 1905: 1901: 1895: 1891: 1887: 1880: 1867: 1851: 1847: 1839: 1815: 1811: 1808: 1788: 1777: 1773: 1769: 1766: 1763: 1759: 1747: 1745: 1730: 1722: 1718: 1712: 1708: 1704: 1701: 1693: 1685: 1683: 1681: 1663: 1660: 1656: 1629: 1626: 1622: 1616: 1612: 1608: 1605: 1600: 1597: 1590: 1585: 1582: 1578: 1554: 1551: 1543: 1537: 1534: 1525: 1510: 1507: 1503: 1499: 1496: 1491: 1487: 1483: 1477: 1474: 1469: 1466: 1458: 1455: 1450: 1442: 1438: 1434: 1429: 1424: 1420: 1407: 1393: 1385: 1374: 1365: 1359: 1356: 1353: 1347: 1343: 1336: 1325: 1316: 1310: 1307: 1301: 1296: 1292: 1284: 1280: 1276: 1271: 1266: 1262: 1255: 1247: 1243: 1239: 1234: 1229: 1225: 1213: 1206: 1204: 1202: 1198: 1190: 1188: 1186: 1182: 1178: 1174: 1165: 1163: 1160: 1147: 1143: 1135: 1130: 1126: 1117: 1114: 1111: 1108: 1105: 1099: 1096: 1090: 1086: 1079: 1074: 1070: 1061: 1058: 1055: 1052: 1049: 1043: 1040: 1037: 1031: 1026: 1022: 1019: 1014: 1010: 1006: 997: 993: 989: 984: 980: 972: 969: 964: 960: 950: 949:10 coulombs. 944: 924: 919: 915: 906: 903: 900: 897: 894: 888: 885: 882: 876: 872: 867: 863: 859: 854: 850: 825: 820: 816: 807: 804: 801: 798: 795: 789: 786: 780: 776: 771: 767: 763: 758: 754: 733: 730: 727: 724: 719: 715: 694: 691: 688: 683: 679: 661: 645: 638: 635: 611: 603: 586: 582: 574: 557: 552: 548: 540: 539: 538: 524: 517: 506: 498: 494: 490: 484: 480: 475: 470: 466: 462: 457: 453: 444: 440: 432: 425: 408: 404: 396: 393: 375: 371: 363: 346: 342: 334: 333: 332: 318: 310: 306: 300: 296: 289: 285: 279: 276: 268: 264: 255: 250: 239: 231: 227: 218: 213: 202: 194: 190: 181: 176: 165: 162: 157: 145: 141: 132: 128: 126: 116: 113: 110: 109: 105: 102: 99: 98: 94: 91: 88: 87: 83: 80: 77: 76: 73: 71: 67: 63: 59: 55: 47: 42: 40: 38: 33: 19: 5821: 5817: 5811: 5778: 5774: 5736: 5732: 5722: 5687: 5682: 5672: 5629: 5623: 5589: 5583: 5561:(1): 45–49. 5558: 5554: 5548: 5515: 5511: 5505: 5496: 5491: 5467:. Retrieved 5464:web.nmsu.edu 5463: 5454: 5442:. Retrieved 5414:. Retrieved 5386:. Retrieved 5354: 5284: 5280: 5251: 5244: 5193: 5189: 5183: 5170:Double layer 5159: 5155: 5151:permittivity 5147: 5133:Limitations 5127: 5123:Debye length 5117: 4717: 4379: 4359: 4279: 3764: 3761: 3547:functional: 3541: 3440: 3416: 3404: 3400: 3387: 3370:Debye length 3366: 3296: 3046: 2973: 2748: 2745: 2514: 2476: 2295: 2233: 2122: 2092: 2034: 2001: 1955: 1868: 1838:Debye length 1751: 1689: 1678:denotes the 1526: 1408: 1214: 1210: 1194: 1169: 1161: 951: 942: 665: 436: 137: 122: 100:Gouy-Chapman 84:Assumptions 66:double layer 51: 31: 29: 5632:(1): 1–16. 3423:erythrocyte 1201:numerically 125:capacitance 5915:Categories 5469:2018-06-01 5176:References 3427:glycocalyx 3363:Conditions 2239:parameter 1866:equation. 1207:Geometries 37:mean-field 5803:250813154 5540:120529487 5236:119468015 5228:1292-8941 5086:ε 5076:ε 5037:− 5026:− 5003:λ 4993:ε 4983:ε 4953:λ 4949:− 4938:τ 4930:− 4907:λ 4892:π 4878:≈ 4869:ρ 4832:λ 4828:− 4808:λ 4783:≈ 4774:ρ 4744:ρ 4731:ρ 4727:ρ 4687:∂ 4672:∂ 4666:× 4649:− 4637:− 4628:ρ 4625:∇ 4612:τ 4603:τ 4599:− 4562:∫ 4558:− 4541:τ 4536:τ 4533:− 4523:− 4499:∂ 4484:∂ 4466:τ 4433:− 4336:Δ 4320:Δ 4304:Δ 4288:Δ 4223:− 4213:⁡ 4207:− 4194:∞ 4175:∑ 4165:∫ 4142:Δ 4110:∞ 4085:⁡ 4063:∫ 4040:Δ 3974:∑ 3961:∫ 3944:Δ 3888:∫ 3871:Δ 3837:Δ 3821:Δ 3805:Δ 3789:Δ 3773:Δ 3734:π 3712:∇ 3705:ε 3702:− 3696:− 3641:− 3631:⁡ 3625:− 3612:∞ 3593:∑ 3572:∫ 3555:Δ 3524:τ 3500:τ 3485:τ 3470:τ 3466:∫ 3449:Δ 3324:ψ 3270:− 3262:⋅ 3253:− 3222:− 3176:− 3168:⋅ 3159:− 3091:⁡ 3085:⋅ 3054:ψ 3032:ψ 2994:ψ 2985:≡ 2947:− 2939:⋅ 2930:− 2899:− 2853:− 2845:⋅ 2836:− 2768:⁡ 2719:− 2711:⋅ 2702:− 2671:− 2625:− 2617:⋅ 2608:− 2454:− 2348:− 2308:− 2259:ψ 2250:≡ 2184:∑ 2157:ε 2153:ε 2043:λ 2015:∘ 1983:− 1964:λ 1917:ε 1913:ε 1848:λ 1812:≤ 1809:ψ 1774:≪ 1767:ψ 1723:− 1709:ψ 1702:ψ 1692:potential 1609:π 1547:Φ 1535:ψ 1511:ψ 1508:− 1500:δ 1497:− 1492:ψ 1470:ψ 1430:ψ 1360:ψ 1354:− 1344:− 1311:ψ 1293:⋅ 1281:ε 1277:ε 1235:ψ 1100:ψ 1087:− 1044:ψ 1038:− 1023:⋅ 998:− 990:− 961:ρ 889:ψ 883:− 873:⋅ 790:ψ 777:⋅ 759:− 734:ψ 728:− 720:− 695:ψ 491:− 481:⋅ 405:ε 372:ε 343:ρ 307:ε 297:ε 286:ρ 280:− 261:∂ 256:ψ 247:∂ 224:∂ 219:ψ 210:∂ 187:∂ 182:ψ 173:∂ 163:ψ 154:∇ 89:Helmholtz 5856:18058376 5714:18432617 5309:17184352 5301:12501158 5164:See also 4703:′ 4656:′ 4606:′ 4362:proteins 3503:′ 3488:′ 3431:spectrin 941:, where 5836:Bibcode 5783:Bibcode 5741:Bibcode 5705:2599918 5664:9876118 5655:1302495 5634:Bibcode 5563:Bibcode 5520:Bibcode 5444:June 1, 5416:June 1, 5388:June 1, 5208:Bibcode 1648:(where 660:kelvins 632:is the 429:is the 43:Origins 5895:AFMPB 5884:MIBPB 5854:  5801:  5712:  5702:  5662:  5652:  5596:  5538:  5361:  5307:  5299:  5259:  5234:  5226:  5137:": --> 4762:where 3859:where 3516:where 3421:of an 2093:where 537:where 441:. The 331:where 78:Theory 5852:S2CID 5826:arXiv 5799:S2CID 5536:S2CID 5439:(PDF) 5411:(PDF) 5305:S2CID 5232:S2CID 5198:arXiv 2058:0.304 1179:; in 111:Stern 5710:PMID 5660:PMID 5594:ISBN 5446:2014 5418:2014 5390:2014 5359:ISBN 5297:PMID 5257:ISBN 5224:ISSN 5139:edit 4400:and 4344:solv 4150:solv 3845:solv 3429:and 3411:tRNA 842:and 707:and 56:and 30:The 5878:Zap 5844:doi 5791:doi 5749:doi 5700:PMC 5692:doi 5650:PMC 5642:doi 5571:doi 5559:258 5528:doi 5289:doi 5216:doi 4858:and 4328:mob 4296:out 4210:exp 4048:mob 3829:mob 3628:exp 1183:as 5917:: 5903:, 5850:. 5842:. 5834:. 5822:52 5820:. 5797:. 5789:. 5779:18 5777:. 5763:^ 5747:. 5737:30 5735:. 5731:. 5708:. 5698:. 5688:29 5681:. 5658:. 5648:. 5640:. 5630:76 5628:. 5622:. 5608:^ 5569:. 5557:. 5534:. 5526:. 5516:31 5514:. 5490:. 5478:^ 5462:. 5426:^ 5398:^ 5373:^ 5317:^ 5303:. 5295:. 5285:15 5283:. 5271:^ 5230:. 5222:. 5214:. 5206:. 5192:. 5125:. 4372:. 4364:, 4312:em 4082:ln 3952:em 3879:ef 3813:em 3797:ef 3781:el 3563:el 3457:el 3393:. 3088:ln 2765:ln 2011:25 1816:25 5858:. 5846:: 5838:: 5828:: 5805:. 5793:: 5785:: 5757:. 5751:: 5743:: 5716:. 5694:: 5666:. 5644:: 5636:: 5602:. 5577:. 5573:: 5565:: 5542:. 5530:: 5522:: 5497:3 5472:. 5448:. 5420:. 5392:. 5367:. 5311:. 5291:: 5265:. 5238:. 5218:: 5210:: 5200:: 5194:1 5143:] 5119:λ 5102:) 5090:r 5080:0 5072:m 5065:2 5061:t 5055:2 5051:e 5047:n 5044:2 5034:1 5030:e 5023:1 5019:( 5010:1 5007:D 4997:r 4987:0 4977:3 4972:3 4965:z 4960:1 4957:D 4942:0 4933:t 4923:e 4919:) 4914:1 4911:D 4903:i 4900:( 4897:G 4887:e 4884:n 4873:2 4844:z 4839:1 4836:D 4824:e 4815:1 4812:D 4804:2 4797:z 4793:E 4789:a 4778:1 4748:2 4740:+ 4735:1 4700:t 4696:d 4690:v 4680:0 4676:f 4663:] 4660:) 4653:t 4646:t 4643:( 4640:v 4634:r 4631:[ 4616:0 4596:t 4586:e 4581:m 4578:e 4571:t 4566:0 4554:) 4545:0 4527:e 4520:1 4516:( 4507:z 4503:v 4492:0 4488:f 4476:m 4470:0 4460:z 4456:E 4452:e 4446:+ 4441:0 4437:f 4428:0 4424:f 4418:1 4414:f 4340:G 4333:+ 4324:G 4317:+ 4308:G 4301:= 4292:G 4265:V 4262:d 4258:] 4253:) 4247:T 4244:k 4239:U 4236:q 4231:i 4227:z 4217:( 4204:1 4200:[ 4189:i 4185:c 4179:i 4169:V 4161:T 4158:k 4155:= 4146:G 4120:V 4117:d 4105:i 4101:c 4095:i 4091:c 4077:i 4073:c 4067:V 4059:T 4056:k 4053:= 4044:G 4018:V 4015:d 4010:2 4006:U 4003:q 3998:i 3994:z 3988:i 3984:c 3978:i 3965:V 3957:= 3948:G 3922:V 3919:d 3914:2 3910:U 3905:f 3901:p 3892:V 3884:= 3875:G 3841:G 3834:+ 3825:G 3818:+ 3809:G 3802:+ 3793:G 3786:= 3777:G 3748:V 3745:d 3741:) 3731:8 3724:2 3720:) 3716:U 3708:( 3693:U 3688:f 3684:p 3680:+ 3676:] 3671:) 3665:T 3662:k 3657:U 3654:q 3649:i 3645:z 3635:( 3622:1 3618:[ 3607:i 3603:c 3597:i 3589:T 3586:k 3582:( 3576:V 3568:= 3559:G 3527:q 3496:d 3492:) 3481:( 3478:U 3475:q 3462:= 3453:G 3345:T 3340:B 3336:k 3328:0 3320:e 3314:= 3309:0 3305:y 3278:x 3274:K 3266:e 3259:) 3256:1 3248:2 3244:/ 3238:0 3234:y 3229:e 3225:( 3219:1 3216:+ 3211:2 3207:/ 3201:0 3197:y 3192:e 3184:x 3180:K 3172:e 3165:) 3162:1 3154:2 3150:/ 3144:0 3140:y 3135:e 3131:( 3128:+ 3125:1 3122:+ 3117:2 3113:/ 3107:0 3103:y 3098:e 3080:e 3076:T 3071:B 3067:k 3063:2 3057:= 3009:T 3004:B 3000:k 2991:e 2982:y 2955:x 2951:K 2943:e 2936:) 2933:1 2925:2 2921:/ 2915:0 2911:y 2906:e 2902:( 2896:1 2893:+ 2888:2 2884:/ 2878:0 2874:y 2869:e 2861:x 2857:K 2849:e 2842:) 2839:1 2831:2 2827:/ 2821:0 2817:y 2812:e 2808:( 2805:+ 2802:1 2799:+ 2794:2 2790:/ 2784:0 2780:y 2775:e 2762:2 2759:= 2756:y 2727:x 2723:K 2715:e 2708:) 2705:1 2697:2 2693:/ 2687:0 2683:y 2678:e 2674:( 2668:1 2665:+ 2660:2 2656:/ 2650:0 2646:y 2641:e 2633:x 2629:K 2621:e 2614:) 2611:1 2603:2 2599:/ 2593:0 2589:y 2584:e 2580:( 2577:+ 2574:1 2571:+ 2566:2 2562:/ 2556:0 2552:y 2547:e 2540:= 2535:2 2531:/ 2527:y 2523:e 2498:2 2494:/ 2490:y 2486:e 2460:) 2457:1 2449:2 2445:/ 2439:0 2435:y 2430:e 2426:( 2423:) 2420:1 2417:+ 2412:2 2408:/ 2404:y 2400:e 2396:( 2391:) 2388:1 2385:+ 2380:2 2376:/ 2370:0 2366:y 2361:e 2357:( 2354:) 2351:1 2343:2 2339:/ 2335:y 2331:e 2327:( 2321:= 2316:x 2312:K 2304:e 2274:T 2269:B 2265:k 2256:e 2247:y 2211:2 2204:i 2200:Z 2192:i 2188:c 2178:T 2172:B 2167:k 2161:0 2147:2 2143:e 2135:= 2131:K 2106:0 2102:c 2074:0 2070:c 2064:m 2061:n 2052:= 2047:D 2020:C 1986:1 1978:K 1973:= 1968:D 1938:T 1932:B 1927:k 1921:0 1906:2 1902:e 1896:0 1892:c 1888:2 1881:= 1877:K 1852:D 1822:V 1819:m 1789:T 1783:B 1778:k 1770:| 1764:| 1760:e 1731:x 1727:K 1719:e 1713:0 1705:= 1664:0 1661:e 1657:n 1630:0 1627:e 1623:n 1617:2 1613:e 1606:4 1601:T 1598:k 1591:= 1586:D 1583:e 1579:R 1555:T 1552:k 1544:e 1538:= 1504:e 1488:e 1484:= 1478:r 1475:d 1467:d 1459:r 1456:L 1451:+ 1443:2 1439:r 1435:d 1425:2 1421:d 1394:] 1386:T 1380:B 1375:k 1369:) 1366:x 1363:( 1357:e 1348:e 1337:T 1331:B 1326:k 1320:) 1317:x 1314:( 1308:e 1302:e 1297:[ 1285:0 1272:e 1267:0 1263:c 1256:= 1248:2 1244:x 1240:d 1230:2 1226:d 1148:. 1144:] 1136:T 1131:B 1127:k 1121:) 1118:z 1115:, 1112:y 1109:, 1106:x 1103:( 1097:e 1091:e 1080:T 1075:B 1071:k 1065:) 1062:z 1059:, 1056:y 1053:, 1050:x 1047:( 1041:e 1032:e 1027:[ 1020:e 1015:0 1011:c 1007:= 1003:) 994:c 985:+ 981:c 977:( 973:e 970:= 965:e 947:× 943:e 925:T 920:B 916:k 910:) 907:z 904:, 901:y 898:, 895:x 892:( 886:e 877:e 868:0 864:c 860:= 855:+ 851:c 826:T 821:B 817:k 811:) 808:z 805:, 802:y 799:, 796:x 793:( 787:e 781:e 772:0 768:c 764:= 755:c 731:e 725:= 716:W 692:e 689:= 684:+ 680:W 669:ψ 662:. 646:T 636:, 617:B 612:k 587:i 583:W 558:0 553:i 549:c 525:, 518:T 512:B 507:k 499:i 495:W 485:e 476:0 471:i 467:c 463:= 458:i 454:c 433:. 427:ψ 409:0 376:r 347:e 319:, 311:0 301:r 290:e 277:= 269:2 265:z 251:2 240:+ 232:2 228:y 214:2 203:+ 195:2 191:x 177:2 166:= 158:2 20:)

Index

Poisson-Boltzmann equation
mean-field
Louis Georges Gouy
David Leonard Chapman
Gouy-Chapman model
double layer
Hermann Helmholtz
capacitance

electrochemical potential
Poisson equation
relative permittivity
electric potential
Boltzmann statistics
Boltzmann equation
Boltzmann constant
kelvins
electrochemistry
Debye–Huckel theory
colloid chemistry
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory
partial differential
numerically
number density
potential
Debye length
dimensionless
trigonometric identities
Debye length

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.