Knowledge

Poloidal–toroidal decomposition

Source 📝

719: 500: 361: 787: 271: 473: 714:{\displaystyle \mathbf {F} (x,y,z)=\nabla \times g(x,y,z){\hat {\mathbf {z} }}+\nabla \times (\nabla \times h(x,y,z){\hat {\mathbf {z} }})+b_{x}(z){\hat {\mathbf {x} }}+b_{y}(z){\hat {\mathbf {y} }},} 165: 419: 110: 294: 727: 220: 478:
The poloidal–toroidal decomposition is unique if it is required that the average of the scalar fields Ψ and Φ vanishes on every sphere of radius
803: 430: 371: 993: 918:
Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow. Applications to the boussinesq-equations
930:, Lantz, S. R. and Fan, Y.; The Astrophysical Journal Supplement Series, Volume 121, Issue 1, Mar. 1999, pp. 247–264. 132: 494:, but a mean-field flow has to be included in this case. For example, every solenoidal vector field can be written as 388: 370:
is symmetric in that the curl of a toroidal field is poloidal, and the curl of a poloidal field is toroidal, known as
914:, Chandrasekhar, Subrahmanyan; International Series of Monographs on Physics, Oxford: Clarendon, 1961, p. 622. 78: 1026: 37: 29: 798: 491: 175: 33: 960: 924:, pp. 291–305; Lecture Notes in Mathematics, Springer Berlin/ Heidelberg, Vol. 1530/ 1992. 367: 981: 45: 211: 1004: 829:. International Series of Monographs on Physics. Oxford: Clarendon. See discussion on page 622. 356:{\displaystyle \mathbf {P} =\nabla \times (\nabla \times (\mathbf {r} \Phi (\mathbf {r} )))\,.} 989: 968: 945: 57: 41: 17: 964: 928:
Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones
938: 934: 1020: 951:
Backus, George (1986), "Poloidal and toroidal fields in geomagnetic field modeling",
927: 909: 824: 942: 191: 63: 782:{\displaystyle {\hat {\mathbf {x} }},{\hat {\mathbf {y} }},{\hat {\mathbf {z} }}} 21: 70: 972: 266:{\displaystyle \mathbf {T} =\nabla \times (\mathbf {r} \Psi (\mathbf {r} ))} 933:
Plane poloidal-toroidal decomposition of doubly periodic vector fields:
917: 865: 863: 382:
A toroidal vector field is tangential to spheres around the origin,
424:
while the curl of a poloidal field is tangential to those spheres
468:{\displaystyle \mathbf {r} \cdot (\nabla \times \mathbf {P} )=0.} 276:
and the poloidal field is derived from another scalar field Φ(
922:
The Navier–Stokes Equations II — Theory and Numerical Methods
850: 848: 789:
denote the unit vectors in the coordinate directions.
160:{\displaystyle \mathbf {F} =\mathbf {T} +\mathbf {P} } 881: 869: 730: 503: 433: 391: 297: 223: 135: 81: 781: 713: 467: 413: 355: 265: 159: 104: 490:A poloidal–toroidal decomposition also exists in 414:{\displaystyle \mathbf {r} \cdot \mathbf {T} =0} 119:can be expressed as the sum of a toroidal field 8: 105:{\displaystyle \nabla \cdot \mathbf {F} =0,} 768: 766: 765: 751: 749: 748: 734: 732: 731: 729: 697: 695: 694: 679: 661: 659: 658: 643: 622: 620: 619: 566: 564: 563: 504: 502: 451: 434: 432: 400: 392: 390: 349: 335: 324: 298: 296: 252: 241: 224: 222: 190:). The toroidal field is obtained from a 152: 144: 136: 134: 88: 80: 911:Hydrodynamic and hydromagnetic stability 826:Hydrodynamic and hydromagnetic stability 815: 854: 839: 920:, Schmitt, B. J. and von Wahl, W; in 893: 7: 882:Backus, Parker & Constable 1996 870:Backus, Parker & Constable 1996 823:Subrahmanyan Chandrasekhar (1961). 589: 580: 533: 445: 329: 315: 306: 246: 232: 82: 14: 980:Backus, George; Parker, Robert; 769: 752: 735: 698: 662: 623: 567: 505: 452: 435: 401: 393: 336: 325: 299: 253: 242: 225: 153: 145: 137: 89: 26:poloidal–toroidal decomposition 988:, Cambridge University Press, 935:Part 1. Fields with divergence 804:Chandrasekhar–Kendall function 773: 756: 739: 702: 691: 685: 666: 655: 649: 633: 627: 616: 598: 586: 571: 560: 542: 527: 509: 456: 442: 372:Chandrasekhar–Kendall function 346: 343: 340: 332: 321: 312: 260: 257: 249: 238: 20:, a topic in pure and applied 1: 288:), as a twice-iterated curl, 28:is a restricted form of the 986:Foundations of Geomagnetism 1043: 123:and poloidal vector field 55: 32:. It is often used in the 939:Part 2. Stokes equations 62:For a three-dimensional 38:solenoidal vector fields 973:10.1029/RG024i001p00075 486:Cartesian decomposition 30:Helmholtz decomposition 783: 715: 469: 415: 357: 267: 174:is a radial vector in 161: 106: 1003:Jones, Chris (2008), 953:Reviews of Geophysics 799:Toroidal and poloidal 784: 716: 492:Cartesian coordinates 470: 416: 358: 268: 176:spherical coordinates 162: 107: 56:Further information: 46:incompressible fluids 34:spherical coordinates 982:Constable, Catherine 728: 501: 431: 389: 295: 221: 210:), as the following 133: 79: 965:1986RvGeo..24...75B 779: 711: 465: 411: 353: 263: 157: 102: 776: 759: 742: 705: 669: 630: 574: 1034: 1012: 1011: 998: 975: 941:. G. D. McBain. 897: 891: 885: 879: 873: 867: 858: 852: 843: 837: 831: 830: 820: 788: 786: 785: 780: 778: 777: 772: 767: 761: 760: 755: 750: 744: 743: 738: 733: 720: 718: 717: 712: 707: 706: 701: 696: 684: 683: 671: 670: 665: 660: 648: 647: 632: 631: 626: 621: 576: 575: 570: 565: 508: 474: 472: 471: 466: 455: 438: 420: 418: 417: 412: 404: 396: 362: 360: 359: 354: 339: 328: 302: 272: 270: 269: 264: 256: 245: 228: 166: 164: 163: 158: 156: 148: 140: 111: 109: 108: 103: 92: 1042: 1041: 1037: 1036: 1035: 1033: 1032: 1031: 1027:Vector calculus 1017: 1016: 1009: 1002: 996: 979: 950: 906: 901: 900: 892: 888: 880: 876: 868: 861: 853: 846: 838: 834: 822: 821: 817: 812: 795: 726: 725: 675: 639: 499: 498: 488: 429: 428: 387: 386: 380: 293: 292: 219: 218: 131: 130: 77: 76: 60: 58:Vector operator 54: 42:magnetic fields 40:, for example, 18:vector calculus 12: 11: 5: 1040: 1038: 1030: 1029: 1019: 1018: 1015: 1014: 1000: 994: 977: 948: 931: 925: 915: 905: 902: 899: 898: 886: 884:, p. 179. 874: 872:, p. 178. 859: 844: 832: 814: 813: 811: 808: 807: 806: 801: 794: 791: 775: 771: 764: 758: 754: 747: 741: 737: 722: 721: 710: 704: 700: 693: 690: 687: 682: 678: 674: 668: 664: 657: 654: 651: 646: 642: 638: 635: 629: 625: 618: 615: 612: 609: 606: 603: 600: 597: 594: 591: 588: 585: 582: 579: 573: 569: 562: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 526: 523: 520: 517: 514: 511: 507: 487: 484: 476: 475: 464: 461: 458: 454: 450: 447: 444: 441: 437: 422: 421: 410: 407: 403: 399: 395: 379: 376: 364: 363: 352: 348: 345: 342: 338: 334: 331: 327: 323: 320: 317: 314: 311: 308: 305: 301: 274: 273: 262: 259: 255: 251: 248: 244: 240: 237: 234: 231: 227: 168: 167: 155: 151: 147: 143: 139: 113: 112: 101: 98: 95: 91: 87: 84: 53: 50: 13: 10: 9: 6: 4: 3: 2: 1039: 1028: 1025: 1024: 1022: 1008: 1007: 1006:Dynamo Theory 1001: 997: 995:0-521-41006-1 991: 987: 983: 978: 974: 970: 966: 962: 958: 954: 949: 947: 944: 940: 936: 932: 929: 926: 923: 919: 916: 913: 912: 908: 907: 903: 896:, p. 17. 895: 890: 887: 883: 878: 875: 871: 866: 864: 860: 857:, p. 88. 856: 851: 849: 845: 842:, p. 87. 841: 836: 833: 828: 827: 819: 816: 809: 805: 802: 800: 797: 796: 792: 790: 762: 745: 708: 688: 680: 676: 672: 652: 644: 640: 636: 613: 610: 607: 604: 601: 595: 592: 583: 577: 557: 554: 551: 548: 545: 539: 536: 530: 524: 521: 518: 515: 512: 497: 496: 495: 493: 485: 483: 481: 462: 459: 448: 439: 427: 426: 425: 408: 405: 397: 385: 384: 383: 377: 375: 373: 369: 368:decomposition 350: 318: 309: 303: 291: 290: 289: 287: 283: 279: 235: 229: 217: 216: 215: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 149: 141: 129: 128: 127: 126: 122: 118: 99: 96: 93: 85: 75: 74: 73: 72: 68: 65: 59: 51: 49: 47: 43: 39: 35: 31: 27: 23: 19: 1005: 985: 956: 952: 921: 910: 889: 877: 835: 825: 818: 723: 489: 479: 477: 423: 381: 365: 285: 281: 277: 275: 207: 203: 199: 195: 192:scalar field 187: 183: 179: 171: 169: 124: 120: 116: 114: 66: 64:vector field 61: 36:analysis of 25: 15: 855:Backus 1986 840:Backus 1986 22:mathematics 959:: 75–109, 943:ANZIAM J. 904:References 894:Jones 2008 71:divergence 69:with zero 52:Definition 946:47 (2005) 774:^ 757:^ 740:^ 703:^ 667:^ 628:^ 593:× 590:∇ 584:× 581:∇ 572:^ 537:× 534:∇ 449:× 446:∇ 440:⋅ 398:⋅ 330:Φ 319:× 316:∇ 310:× 307:∇ 247:Ψ 236:× 233:∇ 86:⋅ 83:∇ 1021:Category 984:(1996), 793:See also 378:Geometry 961:Bibcode 992:  724:where 170:where 1010:(PDF) 810:Notes 366:This 115:this 990:ISBN 937:and 212:curl 44:and 24:, a 969:doi 16:In 1023:: 967:, 957:24 955:, 862:^ 847:^ 482:. 463:0. 374:. 284:, 280:, 214:, 206:, 202:, 194:, 186:, 182:, 48:. 1013:. 999:. 976:. 971:: 963:: 770:z 763:, 753:y 746:, 736:x 709:, 699:y 692:) 689:z 686:( 681:y 677:b 673:+ 663:x 656:) 653:z 650:( 645:x 641:b 637:+ 634:) 624:z 617:) 614:z 611:, 608:y 605:, 602:x 599:( 596:h 587:( 578:+ 568:z 561:) 558:z 555:, 552:y 549:, 546:x 543:( 540:g 531:= 528:) 525:z 522:, 519:y 516:, 513:x 510:( 506:F 480:r 460:= 457:) 453:P 443:( 436:r 409:0 406:= 402:T 394:r 351:. 347:) 344:) 341:) 337:r 333:( 326:r 322:( 313:( 304:= 300:P 286:φ 282:θ 278:r 261:) 258:) 254:r 250:( 243:r 239:( 230:= 226:T 208:φ 204:θ 200:r 198:( 196:Ψ 188:φ 184:θ 180:r 178:( 172:r 154:P 150:+ 146:T 142:= 138:F 125:P 121:T 117:F 100:, 97:0 94:= 90:F 67:F

Index

vector calculus
mathematics
Helmholtz decomposition
spherical coordinates
solenoidal vector fields
magnetic fields
incompressible fluids
Vector operator
vector field
divergence
spherical coordinates
scalar field
curl
decomposition
Chandrasekhar–Kendall function
Cartesian coordinates
Toroidal and poloidal
Chandrasekhar–Kendall function
Hydrodynamic and hydromagnetic stability
Backus 1986


Backus 1986


Backus, Parker & Constable 1996
Backus, Parker & Constable 1996
Jones 2008
Hydrodynamic and hydromagnetic stability
Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow. Applications to the boussinesq-equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.