Knowledge (XXG)

Solenoidal vector field

Source 📝

20: 169: 629:
This statement does not mean that the field lines of a solenoidal field must be closed, neither that they cannot begin or end. For a detailed discussion of the subject, see J. Slepian: "Lines of Force in Electric and Magnetic Fields", American Journal of Physics, vol. 19, pp. 87-90, 1951, and L.
365: 416: 214: 579: 301: 149: 79: 310: 242: 519: 163:
gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:
601: 270: 657: 120: 382: 174: 534: 458: 647: 304: 611: 585: 469: 630:
Zilberti: "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017.
675: 26: 680: 423: 248: 101: 465: 222: 491: 160: 653: 255:
and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field
368: 260: 151:
A common way of expressing this property is to say that the field has no sources or sinks.
19: 643: 606: 525: 85: 482: 451: 441:, which is σωληνοειδές (sōlēnoeidēs) meaning pipe-shaped, from σωλην (sōlēn) or pipe. 360:{\displaystyle \nabla \cdot \mathbf {v} =\nabla \cdot (\nabla \times \mathbf {A} )=0.} 669: 252: 107: 114: 475: 418:(Strictly speaking, this holds subject to certain technical conditions on 438: 251:
states that any vector field can be expressed as the sum of an
307:(as can be shown, for example, using Cartesian coordinates): 649:
Vectors, tensors, and the basic equations of fluid mechanics
263:
component, because the definition of the vector potential
411:{\displaystyle \mathbf {v} =\nabla \times \mathbf {A} .} 209:{\displaystyle \;\;\mathbf {v} \cdot \,d\mathbf {S} =0,} 574:{\textstyle {\frac {\partial \rho _{e}}{\partial t}}=0} 296:{\displaystyle \mathbf {v} =\nabla \times \mathbf {A} } 537: 494: 385: 313: 273: 225: 177: 123: 29: 573: 513: 410: 359: 295: 236: 208: 143: 73: 244:is the outward normal to each surface element. 8: 144:{\displaystyle \nabla \cdot \mathbf {v} =0.} 179: 178: 602:Longitudinal and transverse vector fields 548: 538: 536: 499: 493: 400: 386: 384: 343: 320: 312: 288: 274: 272: 229: 224: 192: 188: 180: 176: 130: 122: 30: 28: 23:An example of a solenoidal vector field, 74:{\displaystyle \mathbf {v} (x,y)=(y,-x)} 18: 622: 531:where the charge density is unvarying, 249:fundamental theorem of vector calculus 437:has its origin in the Greek word for 7: 556: 541: 394: 337: 328: 314: 282: 124: 14: 117:zero at all points in the field: 16:Vector field with zero divergence 401: 387: 375:there exists a vector potential 344: 321: 289: 275: 230: 193: 181: 167: 131: 31: 371:also holds: for any solenoidal 348: 334: 68: 53: 47: 35: 1: 303:automatically results in the 237:{\displaystyle d\mathbf {S} } 98:divergence-free vector field 514:{\displaystyle \rho _{e}=0} 94:incompressible vector field 697: 612:Conservative vector field 586:magnetic vector potential 470:incompressible fluid flow 459:Gauss's law for magnetism 424:Helmholtz decomposition 103:transverse vector field 90:solenoidal vector field 575: 515: 412: 361: 297: 238: 210: 145: 81: 75: 576: 516: 413: 362: 298: 239: 211: 146: 76: 22: 535: 492: 488:in neutral regions ( 383: 311: 271: 223: 175: 121: 27: 571: 511: 408: 357: 293: 234: 206: 161:divergence theorem 141: 92:(also known as an 82: 71: 563: 688: 662: 644:Aris, Rutherford 631: 627: 591:in Coulomb gauge 580: 578: 577: 572: 564: 562: 554: 553: 552: 539: 520: 518: 517: 512: 504: 503: 417: 415: 414: 409: 404: 390: 366: 364: 363: 358: 347: 324: 302: 300: 299: 294: 292: 278: 261:vector potential 243: 241: 240: 235: 233: 216: 215: 213: 212: 207: 196: 184: 171: 170: 150: 148: 147: 142: 134: 80: 78: 77: 72: 34: 696: 695: 691: 690: 689: 687: 686: 685: 676:Vector calculus 666: 665: 660: 642: 639: 634: 628: 624: 620: 607:Stream function 598: 555: 544: 540: 533: 532: 526:current density 495: 490: 489: 447: 432: 381: 380: 309: 308: 269: 268: 221: 220: 217: 173: 172: 168: 166: 157: 119: 118: 86:vector calculus 25: 24: 17: 12: 11: 5: 694: 692: 684: 683: 681:Fluid dynamics 678: 668: 667: 664: 663: 658: 638: 635: 633: 632: 621: 619: 616: 615: 614: 609: 604: 597: 594: 593: 592: 582: 570: 567: 561: 558: 551: 547: 543: 522: 510: 507: 502: 498: 483:electric field 479: 472: 462: 452:magnetic field 446: 443: 431: 428: 407: 403: 399: 396: 393: 389: 356: 353: 350: 346: 342: 339: 336: 333: 330: 327: 323: 319: 316: 291: 287: 284: 281: 277: 232: 228: 205: 202: 199: 195: 191: 187: 183: 165: 156: 153: 140: 137: 133: 129: 126: 70: 67: 64: 61: 58: 55: 52: 49: 46: 43: 40: 37: 33: 15: 13: 10: 9: 6: 4: 3: 2: 693: 682: 679: 677: 674: 673: 671: 661: 659:0-486-66110-5 655: 651: 650: 645: 641: 640: 636: 626: 623: 617: 613: 610: 608: 605: 603: 600: 599: 595: 590: 587: 583: 568: 565: 559: 549: 545: 530: 527: 523: 508: 505: 500: 496: 487: 484: 480: 477: 473: 471: 467: 463: 460: 456: 453: 449: 448: 444: 442: 440: 436: 429: 427: 425: 421: 405: 397: 391: 378: 374: 370: 354: 351: 340: 331: 325: 317: 306: 285: 279: 266: 262: 258: 254: 250: 245: 226: 203: 200: 197: 189: 185: 164: 162: 154: 152: 138: 135: 127: 116: 112: 109: 105: 104: 99: 95: 91: 87: 65: 62: 59: 56: 50: 44: 41: 38: 21: 648: 625: 588: 528: 485: 468:field of an 454: 434: 433: 419: 376: 372: 264: 256: 253:irrotational 246: 218: 158: 110: 108:vector field 102: 97: 93: 89: 83: 259:has only a 670:Categories 637:References 435:Solenoidal 379:such that 155:Properties 115:divergence 652:, Dover, 557:∂ 546:ρ 542:∂ 497:ρ 476:vorticity 430:Etymology 398:× 395:∇ 341:× 338:∇ 332:⋅ 329:∇ 318:⋅ 315:∇ 286:× 283:∇ 186:⋅ 128:⋅ 125:∇ 63:− 646:(1989), 596:See also 466:velocity 445:Examples 439:solenoid 369:converse 305:identity 106:) is a 100:, or a 656:  422:, see 219:where 618:Notes 478:field 457:(see 113:with 654:ISBN 584:The 524:The 481:The 474:The 464:The 450:The 367:The 267:as: 247:The 159:The 96:, a 426:.) 84:In 672:: 521:); 355:0. 139:0. 88:a 589:A 581:. 569:0 566:= 560:t 550:e 529:J 509:0 506:= 501:e 486:E 461:) 455:B 420:v 406:. 402:A 392:= 388:v 377:A 373:v 352:= 349:) 345:A 335:( 326:= 322:v 290:A 280:= 276:v 265:A 257:v 231:S 227:d 204:, 201:0 198:= 194:S 190:d 182:v 136:= 132:v 111:v 69:) 66:x 60:, 57:y 54:( 51:= 48:) 45:y 42:, 39:x 36:( 32:v

Index


vector calculus
transverse vector field
vector field
divergence
divergence theorem
fundamental theorem of vector calculus
irrotational
vector potential
identity
converse
Helmholtz decomposition
solenoid
magnetic field
Gauss's law for magnetism
velocity
incompressible fluid flow
vorticity
electric field
current density
magnetic vector potential
Longitudinal and transverse vector fields
Stream function
Conservative vector field
Aris, Rutherford
Vectors, tensors, and the basic equations of fluid mechanics
ISBN
0-486-66110-5
Categories
Vector calculus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.