Knowledge (XXG)

Pollard's p − 1 algorithm

Source 📝

123: − 1 has at least one large prime factor. Most sufficiently large primes are strong; if a prime used for cryptographic purposes turns out to be non-strong, it is much more likely to be through malice than through an accident of 941: 489: 1930: 1058: 240: 1934: 1442: 135:
factorization method is more efficient than Pollard's algorithm and finds safe prime factors just as quickly as it finds non-safe prime factors of similar size, thus the size of
322: 1475: 854: 416: 1990: 1799: 1435: 56: 279: − 1 by making it a number with very many prime factors; generally, we take the product of all prime powers less than some limit 1667: 1411: 971: 1609: 1428: 1273: 794: 132: 1538: 1715: 1513: 1662: 1599: 1543: 1506: 1804: 1695: 1614: 1604: 1480: 1632: 1286: 1885: 1880: 1809: 1710: 1309: 100:
and thus minimally smooth. These primes are sometimes construed as "safe for cryptographic purposes", but they might be
1847: 116: 48: 1761: 1926: 1916: 1875: 1651: 1645: 1619: 1490: 181: 160: 1911: 1852: 1814: 1687: 1533: 1485: 124: 1829: 1720: 1397: 259: 1940: 1890: 1870: 848:. After completing the first stage, which is the same as the basic algorithm, instead of computing a new 1591: 1566: 1495: 41: 1950: 290: 1945: 1837: 1819: 1794: 1756: 1500: 1375: 1330: 746:
Since the algorithm is incremental, it is able to keep running with the bound constantly increasing.
94: 1955: 1921: 1842: 1746: 1705: 1700: 1677: 1581: 771: 1786: 1733: 1730: 1571: 1470: 1346: 328:
runs through those prime powers. Check at each stage, or once at the end if you prefer, whether
250: 71: 1527: 1520: 112: 1906: 1862: 1576: 1553: 1407: 1197: 1751: 1383: 1338: 1741: 1640: 936:{\displaystyle M'=\prod _{{\text{primes }}q\leq B_{2}}q^{\lfloor \log _{q}B_{2}\rfloor }} 809: = 2 will find a quarter of all 64-bit factors and 1/27 of all 96-bit factors. 1379: 1334: 1771: 1672: 1657: 1561: 1462: 1388: 1359: 1984: 1766: 1451: 1350: 67: 38: 1776: 105: 1276:, use a modified version of the p - 1 algorithm to eliminate potential candidates. 484:{\displaystyle M=\prod _{{\text{primes}}~q\leq B}q^{\lfloor \log _{q}{B}\rfloor }} 51:
in 1974. It is a special-purpose algorithm, meaning that it is only suitable for
1420: 1342: 817:
A variant of the basic algorithm is sometimes used; instead of requiring that
360: − 1 is divisible by small primes, at which point the Pollard 86: 1454: 70:; the essential observation is that, by working in the multiplicative group 44: 801: − 1 method once the factors are at all large; running the 17: 1321:
Pollard, J. M. (1974). "Theorems of factorization and primality testing".
774:, the probability that the largest factor of such a number is less than ( 128: 62:
The factors it finds are ones for which the number preceding the factor,
1401: 1265: 1255: 52: 1053:{\displaystyle Q=\prod _{{\text{primes }}q\in (B_{1},B_{2}]}(H^{q}-1)} 1269: 1177:
are even numbers. The distribution of prime numbers is such that the
1406:. Providence, RI: American Mathematical Society. pp. 138–141. 1156:
the difference between consecutive prime numbers. Since typically
825:, we require it to have all but one of its factors less than some 1310:
What are strong primes and are they necessary for the RSA system?
732:
299 / 13 = 23 is prime, thus it is fully factored: 299 = 13 × 23.
78:, we are also working in the multiplicative groups modulo all of 55:
with specific types of factors; it is the simplest example of an
1424: 782:; so there is a probability of about 3 = 1/27 that a 653:
are all the same in some rare cases, this algorithm will fail.
676:
make it run slower, but are more likely to produce a factor.
305: 761:, can be modelled as a random number of size less than  629:
in step 7, this usually indicates that all factors were
85:
The existence of this algorithm leads to the concept of
1971:
indicate that algorithm is for numbers of special forms
633:-powersmooth, but in rare cases it could indicate that 1089:. As before, exponentiations can be done modulo  974: 857: 607:
in step 6, this indicates there are no prime factors
419: 293: 275:
The idea is to make the exponent a large multiple of
184: 139:
is the key security parameter, not the smoothness of
104:— in current recommendations for cryptographic 1258:
package includes an efficient implementation of the
1899: 1861: 1828: 1785: 1729: 1686: 1590: 1552: 1461: 1186:will all be relatively small. It is suggested that 1323:Proceedings of the Cambridge Philosophical Society 1052: 935: 641:. Additionally, when the maximum prime factors of 483: 316: 234: 1110:, …} be successive prime numbers in the interval 27:Special-purpose algorithm for factoring integers 376:The basic algorithm can be written as follows: 536:(note: exponentiation can be done modulo  364: − 1 algorithm simply returns 348:It is possible that for all the prime factors 1436: 821: − 1 has all its factors less than 518:= 2, random selection here is not imperative) 235:{\displaystyle a^{K(p-1)}\equiv 1{\pmod {p}}} 8: 1358:Montgomery, P. L.; Silverman, R. D. (1990). 928: 902: 476: 455: 1443: 1429: 1421: 832:, and the remaining factor less than some 1387: 1035: 1017: 1004: 986: 985: 973: 922: 909: 901: 889: 874: 873: 856: 729:Since 1 < 13 < 299, thus return 13. 471: 462: 454: 431: 430: 418: 308: 304: 298: 292: 216: 189: 183: 155:be a composite integer with prime factor 1302: 1245:, saving the need for exponentiations. 57:algebraic-group factorisation algorithm 656:The running time of this algorithm is 1085:produces a nontrivial factor of  7: 1274:Great Internet Mersenne Prime Search 93: − 1 is two times a 224: 805: − 1 method up to 514:is odd, then we can always select 498:randomly pick a positive integer, 272:will be divisible by that factor. 131:by the cryptography industry: the 127:. This terminology is considered 25: 1652:Special number field sieve (SNFS) 1646:General number field sieve (GNFS) 1389:10.1090/S0025-5718-1990-1011444-3 778: − 1) is roughly 1991:Integer factorization algorithms 1229:) can be stored in a table, and 757:is the smallest prime factor of 684:If we want to factor the number 317:{\displaystyle x^{w}{\bmod {n}}} 163:, we know that for all integers 287:, and repeatedly replace it by 217: 1272:, the official clients of the 1047: 1028: 1023: 997: 637:had a small order modulo  228: 218: 205: 193: 171:and for all positive integers 35: − 1 algorithm 1: 491:(note: explicitly evaluating 1610:Lenstra elliptic curve (ECM) 1262: − 1 method. 790:will yield a factorisation. 753: − 1, where 117:necessary but not sufficient 797:is faster than the Pollard 591:and go to step 2 or return 571:and go to step 2 or return 506:(note: we can actually fix 2007: 1917:Exponentiation by squaring 1600:Continued fraction (CFRAC) 1368:Mathematics of Computation 407:select a smoothness bound 372:Algorithm and running time 1964: 1360:"An FFT extension to the 1343:10.1017/S0305004100049252 1312:, RSA Laboratories (2007) 393:: a nontrivial factor of 89:, being primes for which 66: − 1, is 1364:− 1 factoring algorithm" 1225:, … (mod  340:is not equal to 1. 125:random number generation 1830:Greatest common divisor 1398:Samuel S. Wagstaff, Jr. 1207:. Hence, the values of 645:for each prime factors 283:. Start with a random 161:Fermat's little theorem 1941:Modular exponentiation 1054: 937: 587:then select a smaller 502:, which is coprime to 485: 318: 236: 1668:Shanks's square forms 1592:Integer factorization 1567:Sieve of Eratosthenes 1055: 938: 795:elliptic curve method 567:then select a larger 495:may not be necessary) 486: 319: 237: 42:integer factorization 1946:Montgomery reduction 1820:Function field sieve 1795:Baby-step giant-step 1641:Quadratic sieve (QS) 1403:The Joy of Factoring 972: 855: 739:Methods of choosing 417: 387:: a composite number 291: 182: 95:Sophie Germain prime 1956:Trachtenberg system 1922:Integer square root 1863:Modular square root 1582:Wheel factorization 1534:Quadratic Frobenius 1514:Lucas–Lehmer–Riesel 1380:1990MaCom..54..839M 1335:1974PCPS...76..521P 672:; larger values of 74:a composite number 1848:Extended Euclidean 1787:Discrete logarithm 1716:Schönhage–Strassen 1572:Sieve of Pritchard 1050: 1027: 933: 896: 619:-powersmooth. If 481: 449: 314: 249:is congruent to 1 232: 1978: 1977: 1577:Sieve of Sundaram 1413:978-1-4704-1048-3 1235:be computed from 989: 981: 877: 869: 813:Two-stage variant 793:In practice, the 438: 434: 426: 16:(Redirected from 1998: 1927:Integer relation 1900:Other algorithms 1805:Pollard kangaroo 1696:Ancient Egyptian 1554:Prime-generating 1539:Solovay–Strassen 1452:Number-theoretic 1445: 1438: 1431: 1422: 1417: 1393: 1391: 1374:(190): 839–854. 1354: 1313: 1307: 1244: 1234: 1224: 1218: 1212: 1206: 1176: 1165: 1127: 1084: 1072: 1059: 1057: 1056: 1051: 1040: 1039: 1026: 1022: 1021: 1009: 1008: 990: 987: 964: 942: 940: 939: 934: 932: 931: 927: 926: 914: 913: 895: 894: 893: 878: 875: 865: 847: 769: 768: 671: 628: 606: 586: 566: 553: 535: 490: 488: 487: 482: 480: 479: 475: 467: 466: 448: 436: 435: 432: 344:Multiple factors 339: 323: 321: 320: 315: 313: 312: 303: 302: 271: 241: 239: 238: 233: 231: 209: 208: 39:number theoretic 21: 2006: 2005: 2001: 2000: 1999: 1997: 1996: 1995: 1981: 1980: 1979: 1974: 1960: 1895: 1857: 1824: 1781: 1725: 1682: 1586: 1548: 1521:Proth's theorem 1463:Primality tests 1457: 1449: 1414: 1396: 1357: 1320: 1317: 1316: 1308: 1304: 1299: 1283: 1251: 1249:Implementations 1236: 1230: 1220: 1214: 1208: 1205: 1195: 1187: 1185: 1175: 1167: 1163: 1157: 1155: 1145: 1136: 1125: 1118: 1111: 1109: 1102: 1074: 1064: 1031: 1013: 1000: 970: 969: 954: 952: 918: 905: 897: 885: 858: 853: 852: 846: 839: 833: 831: 815: 772:Dixon's theorem 764: 762: 744: 682: 657: 620: 601: 578: 561: 544: 522: 458: 450: 415: 414: 374: 346: 329: 294: 289: 288: 258: 185: 180: 179: 149: 28: 23: 22: 15: 12: 11: 5: 2004: 2002: 1994: 1993: 1983: 1982: 1976: 1975: 1973: 1972: 1965: 1962: 1961: 1959: 1958: 1953: 1948: 1943: 1938: 1924: 1919: 1914: 1909: 1903: 1901: 1897: 1896: 1894: 1893: 1888: 1883: 1881:Tonelli–Shanks 1878: 1873: 1867: 1865: 1859: 1858: 1856: 1855: 1850: 1845: 1840: 1834: 1832: 1826: 1825: 1823: 1822: 1817: 1815:Index calculus 1812: 1810:Pohlig–Hellman 1807: 1802: 1797: 1791: 1789: 1783: 1782: 1780: 1779: 1774: 1769: 1764: 1762:Newton-Raphson 1759: 1754: 1749: 1744: 1738: 1736: 1727: 1726: 1724: 1723: 1718: 1713: 1708: 1703: 1698: 1692: 1690: 1688:Multiplication 1684: 1683: 1681: 1680: 1675: 1673:Trial division 1670: 1665: 1660: 1658:Rational sieve 1655: 1648: 1643: 1638: 1630: 1622: 1617: 1612: 1607: 1602: 1596: 1594: 1588: 1587: 1585: 1584: 1579: 1574: 1569: 1564: 1562:Sieve of Atkin 1558: 1556: 1550: 1549: 1547: 1546: 1541: 1536: 1531: 1524: 1517: 1510: 1503: 1498: 1493: 1488: 1486:Elliptic curve 1483: 1478: 1473: 1467: 1465: 1459: 1458: 1450: 1448: 1447: 1440: 1433: 1425: 1419: 1418: 1412: 1394: 1355: 1329:(3): 521–528. 1315: 1314: 1301: 1300: 1298: 1295: 1294: 1293: 1282: 1279: 1278: 1277: 1263: 1250: 1247: 1203: 1191: 1181: 1171: 1161: 1150: 1141: 1132: 1123: 1116: 1107: 1100: 1061: 1060: 1049: 1046: 1043: 1038: 1034: 1030: 1025: 1020: 1016: 1012: 1007: 1003: 999: 996: 993: 984: 980: 977: 950: 944: 943: 930: 925: 921: 917: 912: 908: 904: 900: 892: 888: 884: 881: 872: 868: 864: 861: 844: 837: 829: 814: 811: 743: 737: 736: 735: 734: 733: 730: 727: 713: 706: 699: 681: 678: 598: 597: 596: 595: 575: 558: 541: 519: 496: 478: 474: 470: 465: 461: 457: 453: 447: 444: 441: 429: 425: 422: 411: 402: 401: 388: 373: 370: 345: 342: 311: 307: 301: 297: 243: 242: 230: 227: 223: 220: 215: 212: 207: 204: 201: 198: 195: 192: 188: 148: 145: 47:, invented by 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2003: 1992: 1989: 1988: 1986: 1970: 1967: 1966: 1963: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1936: 1932: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1904: 1902: 1898: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1876:Pocklington's 1874: 1872: 1869: 1868: 1866: 1864: 1860: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1835: 1833: 1831: 1827: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1792: 1790: 1788: 1784: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1739: 1737: 1735: 1732: 1728: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1693: 1691: 1689: 1685: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1653: 1649: 1647: 1644: 1642: 1639: 1637: 1635: 1631: 1629: 1627: 1623: 1621: 1620:Pollard's rho 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1597: 1595: 1593: 1589: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1559: 1557: 1555: 1551: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1529: 1525: 1523: 1522: 1518: 1516: 1515: 1511: 1509: 1508: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1468: 1466: 1464: 1460: 1456: 1453: 1446: 1441: 1439: 1434: 1432: 1427: 1426: 1423: 1415: 1409: 1405: 1404: 1399: 1395: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1363: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1319: 1318: 1311: 1306: 1303: 1296: 1292: 1291:+ 1 algorithm 1290: 1285: 1284: 1280: 1275: 1271: 1267: 1264: 1261: 1257: 1253: 1252: 1248: 1246: 1243: 1239: 1233: 1228: 1223: 1217: 1211: 1202: 1199: 1194: 1190: 1184: 1180: 1174: 1170: 1160: 1153: 1149: 1146: −  1144: 1140: 1137: =  1135: 1131: 1122: 1115: 1106: 1099: 1094: 1092: 1088: 1082: 1078: 1073:and check if 1071: 1067: 1044: 1041: 1036: 1032: 1018: 1014: 1010: 1005: 1001: 994: 991: 982: 978: 975: 968: 967: 966: 965:, we compute 962: 958: 953:and checking 949: 923: 919: 915: 910: 906: 898: 890: 886: 882: 879: 870: 866: 862: 859: 851: 850: 849: 843: 836: 828: 824: 820: 812: 810: 808: 804: 800: 796: 791: 789: 785: 781: 777: 773: 767: 760: 756: 752: 747: 742: 738: 731: 728: 725: 721: 717: 714: 711: 707: 704: 700: 697: 693: 692: 691: 690: 689: 687: 679: 677: 675: 669: 665: 661: 654: 652: 648: 644: 640: 636: 632: 627: 623: 618: 614: 610: 604: 594: 590: 585: 581: 576: 574: 570: 564: 559: 557: 552: 548: 542: 539: 533: 529: 525: 520: 517: 513: 509: 505: 501: 497: 494: 472: 468: 463: 459: 451: 445: 442: 439: 427: 423: 420: 412: 410: 406: 405: 404: 403: 400: 396: 392: 389: 386: 382: 379: 378: 377: 371: 369: 367: 363: 359: 355: 351: 343: 341: 337: 333: 327: 309: 299: 295: 286: 282: 278: 273: 269: 265: 261: 256: 252: 248: 225: 221: 213: 210: 202: 199: 196: 190: 186: 178: 177: 176: 174: 170: 166: 162: 158: 154: 147:Base concepts 146: 144: 142: 138: 134: 130: 126: 122: 118: 114: 111: 107: 106:strong primes 103: 99: 96: 92: 88: 83: 81: 77: 73: 69: 65: 60: 58: 54: 50: 46: 43: 40: 36: 34: 19: 1968: 1650: 1633: 1625: 1624: 1544:Miller–Rabin 1526: 1519: 1512: 1507:Lucas–Lehmer 1505: 1402: 1371: 1367: 1361: 1326: 1322: 1305: 1288: 1259: 1241: 1237: 1231: 1226: 1221: 1215: 1209: 1200: 1192: 1188: 1182: 1178: 1172: 1168: 1158: 1151: 1147: 1142: 1138: 1133: 1129: 1120: 1113: 1104: 1097: 1095: 1090: 1086: 1080: 1076: 1069: 1065: 1062: 988:primes  960: 956: 947: 945: 876:primes  841: 834: 826: 822: 818: 816: 806: 802: 798: 792: 787: 783: 779: 775: 765: 758: 754: 750: 749:Assume that 748: 745: 740: 723: 719: 715: 709: 705:= 2 × 3 × 5. 702: 695: 685: 683: 673: 667: 663: 659: 655: 650: 646: 642: 638: 634: 630: 625: 621: 616: 612: 608: 602: 599: 592: 588: 583: 579: 572: 568: 562: 555: 554:then return 550: 546: 537: 531: 527: 523: 515: 511: 507: 503: 499: 492: 408: 398: 394: 390: 384: 380: 375: 365: 361: 357: 353: 349: 347: 335: 331: 325: 284: 280: 276: 274: 267: 263: 254: 253:a factor of 246: 245:If a number 244: 172: 168: 164: 156: 152: 150: 140: 136: 120: 109: 101: 97: 90: 84: 79: 75: 63: 61: 49:John Pollard 32: 30: 29: 1800:Pollard rho 1757:Goldschmidt 1491:Pocklington 1481:Baillie–PSW 1287:Williams's 334:− 1, 266:− 1, 257:, then the 167:coprime to 87:safe primes 82:s factors. 68:powersmooth 18:Pollard P-1 1912:Cornacchia 1907:Chakravala 1455:algorithms 1297:References 708:We select 694:We select 611:for which 510:, e.g. if 113:ANSI X9.31 31:Pollard's 1886:Berlekamp 1843:Euclidean 1731:Euclidean 1711:Toom–Cook 1706:Karatsuba 1351:122817056 1042:− 995:∈ 983:∏ 929:⌋ 916:⁡ 903:⌊ 883:≤ 871:∏ 786:value of 477:⌋ 469:⁡ 456:⌊ 443:≤ 428:∏ 211:≡ 200:− 115:), it is 45:algorithm 1985:Category 1853:Lehmer's 1747:Chunking 1734:division 1663:Fermat's 1400:(2013). 1281:See also 863:′ 521:compute 129:obsolete 53:integers 1969:Italics 1891:Kunerth 1871:Cipolla 1752:Fourier 1721:Fürer's 1615:Euler's 1605:Dixon's 1528:Pépin's 1376:Bibcode 1331:Bibcode 1266:Prime95 1256:GMP-ECM 763:√ 726:) = 13. 688:= 299. 680:Example 593:failure 573:failure 545:1 < 413:define 399:failure 1951:Schoof 1838:Binary 1742:Binary 1678:Shor's 1496:Fermat 1410:  1349:  1270:MPrime 1164:> 2 1063:where 780:ε 718:= gcd( 666:× log 662:× log 526:= gcd( 437:  433:primes 391:Output 381:Inputs 251:modulo 159:. By 102:unsafe 72:modulo 1772:Short 1501:Lucas 1347:S2CID 1096:Let { 959:− 1, 770:. By 722:− 1, 701:Thus 549:< 530:− 1, 119:that 37:is a 1767:Long 1701:Long 1408:ISBN 1268:and 1254:The 1128:and 1075:gcd( 955:gcd( 946:for 712:= 2. 698:= 5. 330:gcd( 151:Let 110:e.g. 1931:LLL 1777:SRT 1636:+ 1 1628:− 1 1476:APR 1471:AKS 1384:doi 1339:doi 907:log 649:of 643:p-1 615:is 613:p-1 605:= 1 600:If 577:if 565:= 1 560:if 543:if 460:log 397:or 352:of 324:as 306:mod 260:gcd 222:mod 141:p-1 133:ECM 1987:: 1935:KZ 1933:; 1382:. 1372:54 1370:. 1366:. 1345:. 1337:. 1327:76 1325:. 1219:, 1213:, 1198:ln 1196:≤ 1166:, 1154:−1 1119:, 1103:, 1093:. 1079:, 1068:= 840:≫ 658:O( 624:= 582:= 383:: 368:. 356:, 175:: 143:. 80:N' 59:. 1937:) 1929:( 1634:p 1626:p 1444:e 1437:t 1430:v 1416:. 1392:. 1386:: 1378:: 1362:P 1353:. 1341:: 1333:: 1289:p 1260:p 1242:H 1240:⋅ 1238:H 1232:H 1227:n 1222:H 1216:H 1210:H 1204:2 1201:B 1193:n 1189:d 1183:n 1179:d 1173:n 1169:d 1162:1 1159:B 1152:n 1148:q 1143:n 1139:q 1134:n 1130:d 1126:] 1124:2 1121:B 1117:1 1114:B 1112:( 1108:2 1105:q 1101:1 1098:q 1091:n 1087:n 1083:) 1081:n 1077:Q 1070:a 1066:H 1048:) 1045:1 1037:q 1033:H 1029:( 1024:] 1019:2 1015:B 1011:, 1006:1 1002:B 998:( 992:q 979:= 976:Q 963:) 961:n 957:a 951:2 948:B 924:2 920:B 911:q 899:q 891:2 887:B 880:q 867:= 860:M 845:1 842:B 838:2 835:B 830:1 827:B 823:B 819:p 807:B 803:p 799:p 788:n 784:B 776:p 766:n 759:n 755:p 751:p 741:B 724:n 720:a 716:g 710:a 703:M 696:B 686:n 674:B 670:) 668:n 664:B 660:B 651:n 647:p 639:n 635:a 631:B 626:n 622:g 617:B 609:p 603:g 589:B 584:n 580:g 569:B 563:g 556:g 551:n 547:g 540:) 538:n 534:) 532:n 528:a 524:g 516:a 512:n 508:a 504:n 500:a 493:M 473:B 464:q 452:q 446:B 440:q 424:= 421:M 409:B 395:n 385:n 366:n 362:p 358:p 354:n 350:p 338:) 336:n 332:x 326:w 310:n 300:w 296:x 285:x 281:B 277:p 270:) 268:n 264:x 262:( 255:n 247:x 229:) 226:p 219:( 214:1 206:) 203:1 197:p 194:( 191:K 187:a 173:K 169:p 165:a 157:p 153:n 137:p 121:p 108:( 98:q 91:p 76:N 64:p 33:p 20:)

Index

Pollard P-1
number theoretic
integer factorization
algorithm
John Pollard
integers
algebraic-group factorisation algorithm
powersmooth
modulo
safe primes
Sophie Germain prime
strong primes
ANSI X9.31
necessary but not sufficient
random number generation
obsolete
ECM
Fermat's little theorem
modulo
gcd
Dixon's theorem
elliptic curve method
ln
GMP-ECM
Prime95
MPrime
Great Internet Mersenne Prime Search
Williams's p + 1 algorithm
What are strong primes and are they necessary for the RSA system?
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.