Knowledge (XXG)

Polyadenylation

Source πŸ“

493:. The 3’ region of a transcript contains many polyadenylation signals (PAS). When more proximal (closer towards 5’ end) PAS sites are utilized, this shortens the length of the 3’ untranslated region (3' UTR) of a transcript. Studies in both humans and flies have shown tissue specific APA. With neuronal tissues preferring distal PAS usage, leading to longer 3’ UTRs and testis tissues preferring proximal PAS leading to shorter 3’ UTRs. Studies have shown there is a correlation between a gene's conservation level and its tendency to do alternative polyadenylation, with highly conserved genes exhibiting more APA. Similarly, highly expressed genes follow this same pattern. 589: 477: 691:, two closely related complexes that recycle RNA into nucleotides. This enzyme degrades RNA by attacking the bond between the 3β€²-most nucleotides with a phosphate, breaking off a diphosphate nucleotide. This reaction is reversible, and so the enzyme can also extend RNA with more nucleotides. The heteropolymeric tail added by polynucleotide phosphorylase is very rich in adenine. The choice of adenine is most likely the result of higher 410:
reduces deadenylation. The rate of deadenylation may also be regulated by RNA-binding proteins. Additionally, RNA triple helix structures and RNA motifs such as the poly(A) tail 3’ end binding pocket retard deadenylation process and inhibit poly(A) tail removal. Once the poly(A) tail is removed, the decapping complex removes the 5β€² cap, leading to a degradation of the RNA. Several other proteins are involved in deadenylation in
135: 361:. Poly(A)-binding protein promotes export from the nucleus and translation, and inhibits degradation. This protein binds to the poly(A) tail prior to mRNA export from the nucleus and in yeast also recruits poly(A) nuclease, an enzyme that shortens the poly(A) tail and allows the export of the mRNA. Poly(A)-binding protein is exported to the cytoplasm with the RNA. mRNAs that are not exported are degraded by the 33: 771:
protection of the 3β€² end of the RNA from nucleases, but later the specific roles of polyadenylation in nuclear export and translation were identified. The polymerases responsible for polyadenylation were first purified and characterized in the 1960s and 1970s, but the large number of accessory proteins that control this process were discovered only in the early 1990s.
5761: 386:, the poly(A) tails of most mRNAs in the cytoplasm gradually get shorter, and mRNAs with shorter poly(A) tail are translated less and degraded sooner. However, it can take many hours before an mRNA is degraded. This deadenylation and degradation process can be accelerated by microRNAs complementary to the 449:
In the early mouse embryo, cytoplasmic polyadenylation of maternal RNAs from the egg cell allows the cell to survive and grow even though transcription does not start until the middle of the 2-cell stage (4-cell stage in human). In the brain, cytoplasmic polyadenylation is active during learning and
340:
long the enzyme can no longer bind to CPSF and polyadenylation stops, thus determining the length of the poly(A) tail. CPSF is in contact with RNA polymerase II, allowing it to signal the polymerase to terminate transcription. When RNA polymerase II reaches a "termination sequence" (⁡'TTTATT' on the
508:
in the 3β€² UTR. MicroRNAs tend to repress translation and promote degradation of the mRNAs they bind to, although there are examples of microRNAs that stabilise transcripts. Alternative polyadenylation can also shorten the coding region, thus making the mRNA code for a different protein, but this is
316:
The RNA is typically cleaved before transcription termination, as CstF also binds to RNA polymerase II. Through a poorly understood mechanism (as of 2002), it signals for RNA polymerase II to slip off of the transcript. Cleavage also involves the protein CFII, though it is unknown how. The cleavage
627:
contain both stabilising and destabilising poly(A) tails. Destabilising polyadenylation targets both mRNA and noncoding RNAs. The poly(A) tails are 43 nucleotides long on average. The stabilising ones start at the stop codon, and without them the stop codon (UAA) is not complete as the genome only
409:
and remove nucleotides from the poly(A) tail. The level of access to the 5β€² cap and poly(A) tail is important in controlling how soon the mRNA is degraded. PARN deadenylates less if the RNA is bound by the initiation factors 4E (at the 5β€² cap) and 4G (at the poly(A) tail), which is why translation
663:
of all living organisms, it is presumed, had some form of polyadenylation system. A few organisms do not polyadenylate mRNA, which implies that they have lost their polyadenylation machineries during evolution. Although no examples of eukaryotes that lack polyadenylation are known, mRNAs from the
699:
as an energy currency, making it more likely to be incorporated in this tail in early lifeforms. It has been suggested that the involvement of adenine-rich tails in RNA degradation prompted the later evolution of polyadenylate polymerases (the enzymes that produce poly(A) tails with no other
373:
ribosomal subunit. However, a poly(A) tail is not required for the translation of all mRNAs. Further, poly(A) tailing (oligo-adenylation) can determine the fate of RNA molecules that are usually not poly(A)-tailed (such as (small) non-coding (sn)RNAs etc.) and thereby induce their RNA decay.
770:
in extracts made from cell nuclei that could polymerise ATP, but not ADP, into polyadenine. Although identified in many types of cells, this activity had no known function until 1971, when poly(A) sequences were found in mRNAs. The only function of these sequences was thought at first to be
312:
exist. Two other proteins add specificity to the binding to an RNA: CstF and CFI. CstF binds to a GU-rich region further downstream of CPSF's site. CFI recognises a third site on the RNA (a set of UGUAA sequences in mammals) and can recruit CPSF even if the AAUAAA sequence is missing. The
108:
The poly(A) tail is important for the nuclear export, translation and stability of mRNA. The tail is shortened over time, and, when it is short enough, the mRNA is enzymatically degraded. However, in a few cell types, mRNAs with short poly(A) tails are stored for later activation by
214:
Many eukaryotic non-coding RNAs are always polyadenylated at the end of transcription. There are small RNAs where the poly(A) tail is seen only in intermediary forms and not in the mature RNA as the ends are removed during processing, the notable ones being
172:
template. By convention, RNA sequences are written in a 5β€² to 3β€² direction. The 5β€² end is the part of the RNA molecule that is transcribed first, and the 3β€² end is transcribed last. The 3β€² end is also where the poly(A) tail is found on polyadenylated RNAs.
528:(a group of bacterial compounds that trigger an immune response). This results in the selection of weak poly(A) sites and thus shorter transcripts. This removes regulatory elements in the 3β€² untranslated regions of mRNAs for defense-related products like 313:
polyadenylation signal β€“ the sequence motif recognised by the RNA cleavage complex β€“ varies between groups of eukaryotes. Most human polyadenylation sites contain the AAUAAA sequence, but this sequence is less common in plants and fungi.
97:; these proteins then synthesize the poly(A) tail at the RNA's 3β€² end. In some genes these proteins add a poly(A) tail at one of several possible sites. Therefore, polyadenylation can produce more than one transcript from a single gene ( 647:). It can synthesise a 3β€² extension where the vast majority of the bases are adenines. Like in bacteria, polyadenylation by polynucleotide phosphorylase promotes degradation of the RNA in plastids and likely also archaea. 5206:
Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G (December 2008). "Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome".
536:. These mRNAs then have longer half-lives and produce more of these proteins. RNA-binding proteins other than those in the polyadenylation machinery can also affect whether a polyadenylation site is used, as can 3921:
Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, Baltimore D (June 1980). "Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3β€² ends".
4058:
Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher-GΓΆppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S (December 2018).
394:, mRNAs with shortened poly(A) tails are not degraded, but are instead stored and translationally inactive. These short tailed mRNAs are activated by cytoplasmic polyadenylation after fertilisation, during 715:. It is presumed that the horizontal transfer of bacterial CCA-adding enzyme to eukaryotes allowed the archaeal-like CCA-adding enzyme to switch function to a poly(A) polymerase. Some lineages, like 6180: 203:
and aids in transcription termination, export of the mRNA from the nucleus, and translation. Almost all eukaryotic mRNAs are polyadenylated, with the exception of animal replication-dependent
655:
Although polyadenylation is seen in almost all organisms, it is not universal. However, the wide distribution of this modification and the fact that it is present in organisms from all three
186:, tune how active the mRNA is. There are also many RNAs that are not translated, called non-coding RNAs. Like the untranslated regions, many of these non-coding RNAs have regulatory roles. 4019:"Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection" 512:
The choice of poly(A) site can be influenced by extracellular stimuli and depends on the expression of the proteins that take part in polyadenylation. For example, the expression of
2483:
Tefferi A, Wieben ED, Dewald GW, Whiteman DA, Bernard ME, Spelsberg TC (August 2002). "Primer on medical genomics part II: Background principles and methods in molecular genetics".
3603:
Smibert, Peter; Miura, Pedro; Westholm, Jakub O.; Shenker, Sol; May, Gemma; Duff, Michael O.; Zhang, Dayu; Eads, Brian D.; Carlson, Joe; Brown, James B.; Eisman, Robert C. (2012).
3167:
Sakurai T, Sato M, Kimura M (November 2005). "Diverse patterns of poly(A) tail elongation and shortening of murine maternal mRNAs from fully grown oocyte to 2-cell embryo stages".
199:
In nuclear polyadenylation, a poly(A) tail is added to an RNA at the end of transcription. On mRNAs, the poly(A) tail protects the mRNA molecule from enzymatic degradation in the
628:
encodes the U or UA part. Plant mitochondria have only destabilising polyadenylation. Mitochondrial polyadenylation has never been observed in either budding or fission yeast.
5028:"Domain analysis of the chloroplast polynucleotide phosphorylase reveals discrete functions in RNA degradation, polyadenylation, and sequence homology with exosome proteins" 336:. Another protein, PAB2, binds to the new, short poly(A) tail and increases the affinity of polyadenylate polymerase for the RNA. When the poly(A) tail is approximately 250 116:
mRNA molecules in both prokaryotes and eukaryotes have polyadenylated 3β€²-ends, with the prokaryotic poly(A) tails generally shorter and fewer mRNA molecules polyadenylated.
3010:
Torabi, Seyed-Fakhreddin; Vaidya, Anand T.; Tycowski, Kazimierz T.; DeGregorio, Suzanne J.; Wang, Jimin; Shu, Mei-Di; Steitz, Thomas A.; Steitz, Joan A. (2021-02-05).
616:
to overcome these secondary structures. The poly(A) tail can also recruit RNases that cut the RNA in two. These bacterial poly(A) tails are about 30 nucleotides long.
540:
near the polyadenylation signal. In addition, numerous other components involved in transcription, splicing or other mechanisms regulating RNA biology can affect APA.
469:. Depending on the cell type, the polymerase can be the same type of polyadenylate polymerase (PAP) that is used in the nuclear process, or the cytoplasmic polymerase 454:, which is the strengthening of the signal transmission from a nerve cell to another in response to nerve impulses and is important for learning and memory formation. 5451:"The Functional Role of the 3β€² Untranslated Region and Poly(A) Tail of Duck Hepatitis a Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation" 5449:
Chen, Jun-Hao; Zhang, Rui-Hua; Lin, Shao-Li; Li, Peng-Fei; Lan, Jing-Jing; Song, Sha-Sha; Gao, Ji-Ming; Wang, Yu; Xie, Zhi-Jing; Li, Fu-Chang; Jiang, Shi-Jin (2018).
211:
structure followed by a purine-rich sequence, termed histone downstream element, that directs where the RNA is cut so that the 3β€² end of the histone mRNA is formed.
109:
re-polyadenylation in the cytosol. In contrast, when polyadenylation occurs in bacteria, it promotes RNA degradation. This is also sometimes the case for eukaryotic
6224: 6173: 458: 249: 2754:"sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs" 5647:"Polyadenylic Acid Sequences in the Heterogeneous Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa Cells: Possible Evidence for a Precursor Relationship" 5245:
Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (April 2008). "Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases".
341:
DNA template and ⁡'AAUAAA' on the primary transcript), the end of transcription is signaled. The polyadenylation machinery is also physically linked to the
5075:
Slomovic S, Portnoy V, Schuster G (2008). "Chapter 24 Detection and Characterization of Polyadenylated RNA in Eukarya, Bacteria, Archaea, and Organelles".
6166: 2152:
Stumpf G, Domdey H (November 1996). "Dependence of yeast pre-mRNA 3β€²-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor".
1306:
Hunt AG, Xu R, Addepalli B, Rao S, Forbes KP, Meeks LR, Xing D, Mo M, Zhao H, Bandyopadhyay A, Dampanaboina L, Marion A, Von Lanken C, Li QQ (May 2008).
5793: 4222:
Danckwardt S, Kaufmann I, Gentzel M, Foerstner KU, Gantzert AS, Gehring NH, Neu-Yilik G, Bork P, Keller W, Wilm M, Hentze MW, Kulozik AE (June 2007).
2440:
Nag A, Narsinh K, Martinson HG (July 2007). "The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase".
608:. Polynucleotide phosphorylase binds to the 3β€² end of RNAs and the 3β€² extension provided by the poly(A) tail allows it to bind to the RNAs whose 4930:"PNPase activity determines the efficiency of mRNA 3β€²-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts" 4744:
Slomovic S, Portnoy V, Liveanu V, Schuster G (2006). "RNA Polyadenylation in Prokaryotes and Organelles; Different Tails Tell Different Tales".
2142:
Molecular Biology of the Cell, Chapter 6, "From DNA to RNA". 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002.
612:
would otherwise block the 3β€² end. Successive rounds of polyadenylation and degradation of the 3β€² end by polynucleotide phosphorylase allows the
5282:"Direct Evidence that the Poly(A) Tail of Influenza A Virus mRNA Is Synthesized by Reiterative Copying of a U Track in the Virion RNA Template" 4846:"Kinetics of polynucleotide phosphorylase: comparison of enzymes from Streptomyces and Escherichia coli and effects of nucleoside diphosphates" 2705:"Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay" 300:
cleaves the 3β€²-most part of a newly produced RNA and polyadenylates the end produced by this cleavage. The cleavage is catalysed by the enzyme
4271:
Danckwardt S, Gantzert AS, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M, GrΓΆne HJ, Schirmacher P, Hentze MW, Kulozik AE (February 2011).
1892:"Crystal structure of a human cleavage factor CFI(m)25/CFI(m)68/RNA complex provides an insight into poly(A) site recognition and RNA looping" 5961: 5618: 5092: 1201: 4116:
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (November 2008).
580:. Poly(A) tails have also been found on human rRNA fragments, both the form of homopolymeric (A only) and heterpolymeric (mostly A) tails. 4061:"Transcriptome 3β€² end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma" 146:(for polyadenylic acid tail) reflects the way RNA nucleotides are abbreviated, with a letter for the base the nucleotide contains (A for 6234: 5845: 5825: 4657: 259: 90: 5523:"Polynucleotide Biosynthesis: Formation of a Sequence of Adenylate Units from Adenosine Triphosphate by an Enzyme from Thymus Nuclei" 2203:
Iseli C, Stevenson BJ, de Souza SJ, Samaia HB, Camargo AA, Buetow KH, Strausberg RL, Simpson AJ, Bucher P, Jongeneel CV (July 2002).
497:
data (sequencing of only mRNAs inside ribosomes) has shown that mRNA isoforms with shorter 3’ UTRs are more likely to be translated.
6189: 5933: 1308:"Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling" 631:
While many bacteria and mitochondria have polyadenylate polymerases, they also have another type of polyadenylation, performed by
3662:"Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes" 1833:"Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3β€² processing" 1409:
Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (November 2002). "The human and mouse replication-dependent histone genes".
6087: 6031: 501: 387: 3337:"PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila" 6026: 489:
Many protein-coding genes have more than one polyadenylation site, so a gene can code for several mRNAs that differ in their
2580:"Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein" 2806:"A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells" 1059: 6114: 6045: 5786: 224: 5392:"Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA" 208: 5850: 680: 632: 366: 365:. Poly(A)-binding protein also can bind to, and thus recruit, several proteins that affect translation, one of these is 3874:"MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene" 6229: 596:
In many bacteria, both mRNAs and non-coding RNAs can be polyadenylated. This poly(A) tail promotes degradation by the
533: 517: 254: 4893:
Nagaike T, Suzuki T, Ueda T (April 2008). "Polyadenylation in mammalian mitochondria: insights from recent studies".
446:. These shortened poly(A) tails are often less than 20 nucleotides, and are lengthened to around 80–150 nucleotides. 6065: 5765: 5118:"RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus" 3967:"Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing" 232: 142:
RNAs are a type of large biological molecules, whose individual building blocks are called nucleotides. The name
1941:"Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition" 703:
Polyadenylate polymerases are not as ancient. They have separately evolved in both bacteria and eukaryotes from
6488: 6109: 5897: 5810: 5779: 666: 569: 321: 163: 86: 79: 6435: 6256: 6070: 5887: 5872: 660: 358: 325: 52: 576:, which maintains a tail that is around 4 nucleotides long to the 3β€² end. The RNA is then degraded by the 6493: 6075: 6000: 5892: 4644:
RΓ©gnier P, Arraiano CM (March 2000). "Degradation of mRNA in bacteria: emergence of ubiquitous features".
3768:"Proliferating cells express mRNAs with shortened 3β€² untranslated regions and fewer microRNA target sites" 696: 588: 451: 329: 4175:"Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3β€²-UTR" 2254:"Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis" 5990: 5975: 5855: 5116:
Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G (December 2005).
3719:"Processing and transcriptome expansion at the mRNA 3β€² end in health and disease: finding the right end" 692: 443: 177: 71:, the poly(A) tail promotes degradation of the mRNA. It, therefore, forms part of the larger process of 64: 3012:"RNA stabilization by a poly(A) tail 3β€²-end binding pocket and other modes of poly(A)-RNA interaction" 6319: 6097: 5995: 5913: 5658: 5403: 5344: 4753: 4129: 4072: 3779: 2915: 2393:"Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination" 2161: 1844: 1457: 1071: 1016: 739: 442:. This lengthens the poly(A) tail of an mRNA with a shortened poly(A) tail, so that the mRNA will be 102: 4312:
Wood AJ, Schulz R, Woodfine K, Koltowska K, Beechey CV, Peters J, Bourc'his D, Oakey RJ (May 2008).
176:
Messenger RNA (mRNA) is RNA that has a coding region that acts as a template for protein synthesis (
6312: 5923: 609: 3120:"Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein" 2528:"mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation" 134: 6058: 5941: 4769: 4669: 4525: 3947: 3317: 3100: 3057: 2619:
Vinciguerra P, Stutz F (June 2004). "mRNA export: an assembly line from genes to nuclear pores".
2508: 2465: 2185: 1993:"An interaction between U2AF 65 and CF I(m) links the splicing and 3β€² end processing machineries" 1577: 1097: 1040: 834: 525: 494: 220: 2096:"RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes" 4494:
LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (June 2005).
4224:"Splicing factors stimulate polyadenylation via USEs at non-canonical 3β€² end formation signals" 1991:
Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S (October 2006).
1654:
Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH (2006).
592:
Polyadenylation in bacteria helps polynucleotide phosphorylase degrade past secondary structure
6307: 6142: 5740: 5686: 5624: 5614: 5577: 5482: 5431: 5390:
Neeleman, Lyda; Olsthoorn, RenΓ© C. L.; Linthorst, Huub J. M.; Bol, John F. (4 December 2001).
5372: 5313: 5262: 5224: 5188: 5147: 5098: 5088: 5057: 5008: 4959: 4910: 4875: 4826: 4808: 4723: 4661: 4626: 4577: 4517: 4476: 4427: 4392: 4343: 4294: 4253: 4204: 4155: 4098: 4040: 3996: 3939: 3903: 3854: 3805: 3748: 3699: 3681: 3642: 3624: 3585: 3567: 3526: 3508: 3466: 3417: 3368: 3309: 3268: 3233: 3184: 3149: 3092: 3049: 3031: 2992: 2943: 2884: 2835: 2783: 2734: 2685: 2636: 2601: 2557: 2500: 2457: 2422: 2373: 2332: 2283: 2234: 2177: 2125: 2076: 2047:"Genome level analysis of rice mRNA 3β€²-end processing signals and alternative polyadenylation" 2022: 1970: 1921: 1872: 1813: 1772: 1720: 1685: 1633: 1569: 1534: 1485: 1426: 1391: 1339: 1285: 1248: 1197: 1170: 1135: 1089: 1032: 989: 940: 886: 826: 561: 476: 289: 6387: 6382: 5167:"Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated" 4363:"TREND-DB-a transcriptome-wide atlas of the dynamic landscape of alternative polyadenylation" 6392: 6367: 5730: 5722: 5676: 5666: 5606: 5567: 5534: 5472: 5462: 5421: 5411: 5362: 5352: 5303: 5293: 5254: 5216: 5178: 5137: 5129: 5080: 5047: 5039: 4998: 4990: 4979:"RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R" 4949: 4941: 4902: 4865: 4857: 4816: 4800: 4761: 4713: 4705: 4653: 4616: 4608: 4567: 4559: 4507: 4466: 4458: 4419: 4382: 4374: 4333: 4325: 4284: 4243: 4235: 4194: 4186: 4145: 4137: 4088: 4080: 4030: 3986: 3978: 3931: 3893: 3885: 3844: 3836: 3795: 3787: 3738: 3730: 3689: 3673: 3632: 3616: 3575: 3557: 3516: 3500: 3456: 3448: 3407: 3399: 3358: 3348: 3299: 3260: 3223: 3215: 3176: 3139: 3131: 3084: 3039: 3023: 2982: 2974: 2933: 2923: 2874: 2866: 2825: 2817: 2773: 2765: 2724: 2716: 2675: 2667: 2628: 2591: 2547: 2539: 2492: 2449: 2412: 2404: 2363: 2322: 2314: 2273: 2265: 2224: 2216: 2169: 2115: 2107: 2066: 2058: 2012: 2004: 1960: 1952: 1911: 1903: 1862: 1852: 1803: 1762: 1754: 1712: 1675: 1667: 1623: 1615: 1561: 1524: 1516: 1475: 1465: 1418: 1381: 1373: 1329: 1319: 1275: 1238: 1230: 1162: 1127: 1079: 1024: 979: 971: 930: 922: 876: 868: 816: 743: 656: 435: 207:
mRNAs. These are the only mRNAs in eukaryotes that lack a poly(A) tail, ending instead in a
5605:. Progress in Nucleic Acid Research and Molecular Biology. Vol. 71. pp. 285–389. 6465: 6266: 6249: 6244: 6119: 5802: 5500: 3075:
Wilusz CJ, Wormington M, Peltz SW (April 2001). "The cap-to-tail guide to mRNA turnover".
688: 644: 577: 537: 362: 274: 269: 94: 72: 4410:
Reinisch KM, Wolin SL (April 2007). "Emerging themes in non-coding RNA quality control".
3219: 2963:"Wispy, the Drosophila homolog of GLD-2, is required during oogenesis and egg activation" 1703:
Lutz CS (October 2008). "Alternative polyadenylation: a twist on mRNA 3β€² end formation".
5662: 5407: 5348: 4757: 4133: 4076: 3783: 2919: 2165: 1848: 1461: 1166: 1075: 1020: 320:
When the RNA is cleaved, polyadenylation starts, catalysed by polyadenylate polymerase.
6430: 6329: 6214: 6209: 5946: 5918: 5735: 5710: 5477: 5450: 5367: 5332: 5280:
Poon, Leo L. M.; Pritlove, David C.; Fodor, Ervin; Brownlee, George G. (1 April 1999).
5142: 5117: 5003: 4978: 4870: 4845: 4821: 4788: 4621: 4596: 4572: 4547: 4471: 4446: 4445:
Jia H, Wang X, Liu F, Guenther UP, Srinivasan S, Anderson JT, Jankowsky E (June 2011).
4387: 4362: 4338: 4313: 4248: 4223: 4199: 4174: 4150: 4117: 4093: 4060: 3991: 3966: 3898: 3873: 3849: 3824: 3800: 3767: 3743: 3718: 3694: 3661: 3637: 3604: 3580: 3545: 3521: 3488: 3461: 3436: 3363: 3336: 3228: 3203: 3144: 3119: 3044: 3011: 2987: 2962: 2938: 2903: 2830: 2805: 2778: 2753: 2729: 2704: 2327: 2302: 2278: 2253: 2120: 2095: 2071: 2046: 2017: 1992: 1965: 1940: 1916: 1891: 1867: 1832: 1680: 1655: 1619: 1529: 1504: 1480: 1445: 1386: 1361: 1334: 1307: 1243: 1218: 984: 959: 881: 856: 620: 549: 395: 293: 110: 5711:"3β€² end mRNA processing: molecular mechanisms and implications for health and disease" 5681: 5646: 5610: 5539: 5522: 5308: 5281: 5084: 5052: 5027: 4954: 4929: 4718: 4693: 3825:"Expression and function of micro-RNAs in immune cells during normal or disease state" 3437:"3β€² end mRNA processing: molecular mechanisms and implications for health and disease" 3412: 3387: 2879: 2854: 2680: 2655: 2552: 2527: 2417: 2392: 2229: 2204: 1808: 1792:"A mechanism for the regulation of pre-mRNA 3β€² processing by human cleavage factor Im" 1791: 1767: 1742: 1628: 1603: 1422: 872: 821: 804: 6482: 6147: 5834: 5426: 5391: 5183: 5166: 3935: 3061: 1581: 1131: 935: 910: 720: 624: 573: 557: 431: 411: 333: 304:
and occurs 10–30 nucleotides downstream of its binding site. This site often has the
129: 48: 6158: 5298: 4773: 4673: 4529: 3321: 2189: 1101: 1044: 6276: 6197: 6021: 5951: 5820: 5642: 5598: 5518: 3951: 3104: 2512: 2469: 926: 708: 553: 383: 285: 3872:
Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (November 2008).
2173: 838: 317:
site associated with a polyadenylation signal can vary up to some 50 nucleotides.
5357: 5258: 4906: 4804: 4496:"RNA degradation by the exosome is promoted by a nuclear polyadenylation complex" 4289: 4272: 3620: 2578:
Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K (August 2007).
1656:"Systematic variation in mRNA 3β€²-processing signals during mouse spermatogenesis" 1190: 1007:
Zhuang Y, Zhang H, Lin S (June 2013). "Polyadenylation of 18S rRNA in algae(1)".
426:
There is polyadenylation in the cytosol of some animal cell types, namely in the
6455: 6302: 6261: 6124: 6053: 2978: 735: 731: 684: 597: 342: 4512: 4495: 4462: 4084: 3304: 3287: 3264: 3204:"Virtues and limitations of the preimplantation mouse embryo as a model system" 3180: 2908:
Proceedings of the National Academy of Sciences of the United States of America
2671: 1837:
Proceedings of the National Academy of Sciences of the United States of America
1450:
Proceedings of the National Academy of Sciences of the United States of America
490: 406: 138:
Chemical structure of RNA. The sequence of bases differs between RNA molecules.
6082: 4765: 4423: 3734: 3605:"Global patterns of tissue-specific alternative polyadenylation in Drosophila" 3562: 2804:
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, de Moor CH (2007).
2632: 2352:"Poly(A) tail length control is caused by termination of processive synthesis" 2269: 1907: 1565: 1084: 975: 751: 712: 521: 337: 5726: 5467: 5133: 4812: 4273:"p38 MAPK controls prothrombin expression by regulated RNA 3β€² end processing" 4239: 4118:"HITS-CLIP yields genome-wide insights into brain alternative RNA processing" 3685: 3628: 3571: 3512: 3452: 3035: 2008: 5026:
Yehudai-Resheff S, Portnoy V, Yogev S, Adir N, Schuster G (September 2003).
4709: 3791: 3027: 2928: 2656:"Multiple portions of poly(A)-binding protein stimulate translation in vivo" 1857: 1470: 1324: 727: 672: 200: 60: 32: 5744: 5671: 5628: 5572: 5555: 5486: 5435: 5416: 5376: 5317: 5266: 5228: 5192: 5151: 5102: 5061: 5012: 4963: 4945: 4914: 4879: 4830: 4727: 4694:"Comparative genomics and evolution of proteins involved in RNA metabolism" 4665: 4630: 4581: 4521: 4480: 4431: 4396: 4347: 4298: 4257: 4208: 4159: 4102: 4044: 4035: 4018: 4000: 3907: 3858: 3809: 3752: 3703: 3646: 3589: 3530: 3470: 3421: 3372: 3313: 3272: 3237: 3188: 3153: 3096: 3053: 2996: 2947: 2888: 2839: 2787: 2738: 2689: 2640: 2605: 2596: 2579: 2543: 2504: 2461: 2426: 2408: 2391:
Dichtl B, Blank D, Sadowski M, HΓΌbner W, Weiser S, Keller W (August 2002).
2368: 2351: 2336: 2287: 2238: 2129: 2080: 2026: 1974: 1925: 1876: 1817: 1776: 1724: 1689: 1573: 1538: 1489: 1430: 1395: 1343: 1289: 1252: 1174: 1093: 1036: 993: 944: 890: 830: 568:, polyadenylation is a way of marking the RNA for degradation, at least in 17: 5760: 5690: 5581: 4378: 3943: 2561: 2377: 2181: 1637: 1139: 758:) in order to emphasize their own genes' expression over the host cell's. 288:
polyadenylation complex in the nucleus of eukaryotes works on products of
6102: 6092: 6016: 4994: 4658:
10.1002/(SICI)1521-1878(200003)22:3<235::AID-BIES5>3.0.CO;2-2
4612: 3889: 3677: 3504: 3403: 3388:"A large-scale analysis of mRNA polyadenylation of human and mouse genes" 3135: 2821: 2769: 2318: 2062: 1758: 1671: 1280: 1267: 529: 505: 427: 415: 216: 151: 68: 4861: 4141: 1956: 1520: 308:
sequence AAUAAA on the RNA, but variants of it that bind more weakly to
6422: 6402: 6397: 5838: 5043: 4563: 4447:"The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex" 4329: 4190: 3982: 3353: 2870: 1741:
Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D (July 2000).
1377: 1234: 716: 640: 636: 204: 155: 147: 63:, polyadenylation is part of the process that produces mature mRNA for 56: 5220: 3840: 2720: 1716: 1028: 6377: 6372: 6352: 6288: 6239: 3088: 2496: 2453: 2220: 2111: 1552:
Amaral PP, Mattick JS (August 2008). "Noncoding RNA in development".
767: 755: 565: 439: 391: 346: 264: 159: 5603:
A history of poly A sequences: from formation to factors to function
1505:"A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis" 1153:
Stevens A (1963). "Ribonucleic Acids-Biosynthesis and Degradation".
2303:"Molecular dissection of mRNA poly(A) tail length control in yeast" 6445: 6440: 6362: 6357: 6347: 6342: 6337: 6297: 5860: 5771: 2301:
Viphakone N, Voisinet-Hakil F, Minvielle-Sebastia L (April 2008).
2045:
Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ (May 2008).
747: 704: 513: 509:
much less common than just shortening the 3β€² untranslated region.
470: 5501:"Inhibition of host poly(A)-binding protein by virus ~ ViralZone" 5331:
Wu, Hung-Yi; Ke, Ting-Yung; Liao, Wei-Yu; Chang, Nai-Yun (2013).
4314:"Regulation of alternative polyadenylation by genomic imprinting" 3766:
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (June 2008).
3286:
PiquΓ© M, LΓ³pez JM, Foissac S, GuigΓ³ R, MΓ©ndez R (February 2008).
2961:
Cui J, Sackton KL, Horner VL, Kumar KE, Wolfner MF (April 2008).
1743:"Patterns of variant polyadenylation signal usage in human genes" 480:
Results of using different polyadenylation sites on the same gene
6460: 6450: 6292: 5333:"Regulation of Coronaviral Poly(A) Tail Length during Infection" 5247:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
4895:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
4793:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
3335:
Benoit P, Papin C, Kwak JE, Wickens M, Simonelig M (June 2008).
1604:"Assembly of a processive messenger RNA polyadenylation complex" 1118:
Sarkar N (June 1997). "Polyadenylation of mRNA in prokaryotes".
780: 466: 462: 402: 309: 301: 228: 83: 6162: 5775: 2094:
Glover-Cutter K, Kim S, Espinosa J, Bentley DL (January 2008).
1503:
Yoshikawa M, Peragine A, Park MY, Poethig RS (September 2005).
5830: 457:
Cytoplasmic polyadenylation requires the RNA-binding proteins
370: 169: 125: 3288:"A combinatorial code for CPE-mediated translational control" 2752:
Kargapolova Y, Levin M, Lackner K, Danckwardt S (June 2017).
93:
segment of the newly made pre-mRNA is first cleaved off by a
2855:"A protein interaction framework for human mRNA degradation" 2654:
Gray NK, Coller JM, Dickson KS, Wickens M (September 2000).
500:
Since alternative polyadenylation changes the length of the
695:
concentrations than other nucleotides as a result of using
504:, it can also change which binding sites are available for 4017:
Shell SA, Hesse C, Morris SM, Milcarek C (December 2005).
5079:. Methods in Enzymology. Vol. 447. pp. 501–20. 1444:
Saini HK, Griffiths-Jones S, Enright AJ (November 2007).
3717:
Ogorodnikov A, Kargapolova Y, Danckwardt S (June 2016).
2205:"Long-range heterogeneity at the 3β€² ends of human mRNAs" 1890:
Yang Q, Coseno M, Gilmartin GM, DoubliΓ© S (March 2011).
635:
itself. This enzyme is found in bacteria, mitochondria,
4844:
Chang SA, Cozad M, Mackie GA, Jones GH (January 2008).
3251:
Richter JD (June 2007). "CPEB: a life in translation".
1060:"RNA turnover: unexpected consequences of being tailed" 911:"Cytoplasmic polyadenylation in development and beyond" 639:
and as a constituent of the archaeal exosome (in those
55:; in other words, it is a stretch of RNA that has only 4789:"Mitochondrial poly(A) polymerase and polyadenylation" 4173:
Hall-Pogar T, Liang S, Hague LK, Lutz CS (July 2007).
711:. Its catalytic domain is homologous to that of other 5709:
Danckwardt S, Hentze MW, Kulozik AE (February 2008).
3546:"Biased alternative polyadenylation in human tissues" 3435:
Danckwardt S, Hentze MW, Kulozik AE (February 2008).
766:
Poly(A)polymerase was first identified in 1960 as an
572:. This polyadenylation is done in the nucleus by the 1939:
Venkataraman K, Brown KM, Gilmartin GM (June 2005).
707:, which is the enzyme that completes the 3β€² ends of 6421: 6328: 6275: 6196: 6135: 6044: 6009: 5983: 5974: 5932: 5906: 5880: 5871: 5809: 4692:Anantharaman V, Koonin EV, Aravind L (April 2002). 4595:Slomovic S, Laufer D, Geiger D, Schuster G (2006). 3169:
Biochemical and Biophysical Research Communications
1362:"Early evolution of histone mRNA 3β€² end processing" 27:
Addition of adenylic acids to 3' end of mature mRNA
5556:"Mechanism and regulation of mRNA polyadenylation" 1189: 465:, and can involve other RNA-binding proteins like 235: β€“ a poly(A) tail is part of the mature RNA. 4597:"Polyadenylation of ribosomal RNA in human cells" 857:"Regulation of mRNA stability in mammalian cells" 5077:RNA Turnover in Bacteria, Archaea and Organelles 3489:"Alternative polyadenylation of mRNA precursors" 1446:"Genomic analysis of human microRNA transcripts" 805:"Integrating mRNA processing with transcription" 803:Proudfoot NJ, Furger A, Dye MJ (February 2002). 5651:Proceedings of the National Academy of Sciences 5396:Proceedings of the National Academy of Sciences 4687: 4685: 4683: 4541: 4539: 2526:Coller JM, Gray NK, Wickens MP (October 1998). 1602:Bienroth S, Keller W, Wahle E (February 1993). 1219:"Trading translation with RNA-binding proteins" 5645:; Vaughan, M. H.; Nakazato, H. (1 June 1971). 4361:Marini F, Scherzinger D, Danckwardt S (2021). 3544:Zhang, Haibo; Lee, Ju Youn; Tian, Bin (2005). 2904:"MicroRNAs direct rapid deadenylation of mRNA" 2573: 2571: 1188:Lehninger AL, Nelson DL, Cox MM, eds. (1993). 357:The poly(A) tail acts as the binding site for 51:(mRNA). The poly(A) tail consists of multiple 6174: 5787: 4928:Walter M, Kilian J, Kudla J (December 2002). 4739: 4737: 3823:Tili E, Michaille JJ, Calin GA (April 2008). 1831:Yang Q, Gilmartin GM, DoubliΓ© S (June 2010). 1360:DΓ‘vila LΓ³pez M, Samuelsson T (January 2008). 960:"Emerging features of mRNA decay in bacteria" 754:, inhibit the cell's poly-A binding protein ( 252:: cleavage/polyadenylation specificity factor 78:The process of polyadenylation begins as the 36:Typical structure of a mature eukaryotic mRNA 8: 2799: 2797: 1736: 1734: 726:Polyadenylate tails are observed in several 723:, never evolved a polyadenylate polymerase. 683:. This enzyme is part of both the bacterial 600:, which contains two RNA-degrading enzymes: 5593: 5591: 4548:"RNA-specific ribonucleotidyl transferases" 3118:Jung MY, Lorenz L, Richter JD (June 2006). 1597: 1595: 1593: 1591: 798: 796: 679:The most ancient polyadenylating enzyme is 6281: 6202: 6181: 6167: 6159: 5980: 5942:Precursor mRNA (pre-mRNA / hnRNA) 5877: 5794: 5780: 5772: 1355: 1353: 915:Microbiology and Molecular Biology Reviews 5734: 5680: 5670: 5571: 5538: 5476: 5466: 5425: 5415: 5366: 5356: 5307: 5297: 5182: 5141: 5051: 5002: 4953: 4869: 4820: 4717: 4620: 4571: 4511: 4470: 4386: 4337: 4288: 4247: 4198: 4149: 4092: 4034: 3990: 3897: 3848: 3829:International Journal of Medical Sciences 3799: 3742: 3693: 3660:Lee, Ju Youn; Ji, Zhe; Tian, Bin (2008). 3636: 3579: 3561: 3520: 3460: 3411: 3362: 3352: 3303: 3227: 3143: 3043: 2986: 2937: 2927: 2878: 2829: 2777: 2728: 2679: 2595: 2551: 2442:Nature Structural & Molecular Biology 2416: 2367: 2326: 2277: 2228: 2119: 2100:Nature Structural & Molecular Biology 2070: 2016: 1964: 1915: 1866: 1856: 1807: 1766: 1679: 1627: 1528: 1479: 1469: 1385: 1333: 1323: 1279: 1242: 1083: 983: 934: 904: 902: 900: 880: 850: 848: 820: 227:RNAs that, for example, includes the RNA 2040: 2038: 2036: 1790:Brown KM, Gilmartin GM (December 2003). 1113: 1111: 587: 475: 133: 31: 3965:Tian B, Pan Z, Lee JY (February 2007). 3386:Tian B, Hu J, Zhang H, Lutz CS (2005). 1986: 1984: 1301: 1299: 792: 5554:Colgan DF, Manley JL (November 1997). 5240: 5238: 3493:Nature Reviews. Molecular Cell Biology 2902:Wu L, Fan J, Belasco JG (March 2006). 1649: 1647: 619:In as different groups as animals and 5962:Histone acetylation and deacetylation 4787:Chang, Jeong Ho; Tong, Liang (2012). 4412:Current Opinion in Structural Biology 4012: 4010: 3482: 3480: 3077:Nature Reviews Molecular Cell Biology 1266:Mattick JS, Makunin IV (April 2006). 855:Guhaniyogi J, Brewer G (March 2001). 544:Tagging for degradation in eukaryotes 7: 6027:Ribosome-nascent chain complex (RNC) 4546:Martin G, Keller W (November 2007). 3487:Tian, Bin; Manley, James L. (2017). 3220:10.1016/j.theriogenology.2007.09.032 2853:Lehner B, Sanderson CM (July 2004). 5165:Portnoy V, Schuster G (June 2008). 4023:The Journal of Biological Chemistry 2584:The Journal of Biological Chemistry 2356:The Journal of Biological Chemistry 2252:Balbo PB, Bohm A (September 2007). 1167:10.1146/annurev.bi.32.070163.000311 223: β€“ a seemingly large group of 4746:Critical Reviews in Plant Sciences 1620:10.1002/j.1460-2075.1993.tb05690.x 414:and human cells, most notably the 401:In animals, poly(A) ribonuclease ( 324:builds the poly(A) tail by adding 47:to an RNA transcript, typically a 25: 6190:Post-transcriptional modification 2703:Meaux S, Van Hoof A (July 2006). 1217:Abaza I, Gebauer F (March 2008). 1196:(2nd ed.). New York: Worth. 267:: polyadenylate binding protein 2 5759: 5521:; Abrams, Richard (April 1960). 5184:10.1111/j.1574-6968.2008.01157.x 1274:. 15 Spec No 1 (90001): R17-29. 1132:10.1146/annurev.biochem.66.1.173 369:-4G, which in turn recruits the 296:. Here, a multi-protein complex 6032:Post-translational modification 5527:Journal of Biological Chemistry 5299:10.1128/JVI.73.4.3473-3476.1999 2621:Current Opinion in Cell Biology 670:and the salt-tolerant archaean 4977:Portnoy V, Schuster G (2006). 3253:Trends in Biochemical Sciences 3124:Molecular and Cellular Biology 927:10.1128/MMBR.63.2.446-456.1999 661:last universal common ancestor 1: 5611:10.1016/S0079-6603(02)71046-5 5540:10.1016/S0021-9258(18)69494-3 5085:10.1016/S0076-6879(08)02224-6 2174:10.1126/science.274.5292.1517 1809:10.1016/S1097-2765(03)00453-2 1423:10.1016/S0888-7543(02)96850-3 1155:Annual Review of Biochemistry 1120:Annual Review of Biochemistry 873:10.1016/S0378-1119(01)00350-X 822:10.1016/S0092-8674(02)00617-7 584:In prokaryotes and organelles 298:(see components on the right) 257:: cleavage stimulation factor 182:). The rest of the mRNA, the 5358:10.1371/journal.pone.0070548 5259:10.1016/j.bbagrm.2007.12.004 4907:10.1016/j.bbagrm.2008.02.001 4805:10.1016/j.bbagrm.2011.10.012 4290:10.1016/j.molcel.2010.12.032 3936:10.1016/0092-8674(80)90615-7 3621:10.1016/j.celrep.2012.01.001 681:polynucleotide phosphorylase 633:polynucleotide phosphorylase 602:polynucleotide phosphorylase 2979:10.1534/genetics.107.084558 1058:Anderson JT (August 2005). 518:cleavage stimulatory factor 485:Alternative polyadenylation 422:Cytoplasmic polyadenylation 99:alternative polyadenylation 6510: 4513:10.1016/j.cell.2005.04.029 4463:10.1016/j.cell.2011.05.010 4085:10.1038/s41467-018-07580-5 3305:10.1016/j.cell.2007.12.038 3265:10.1016/j.tibs.2007.04.004 3181:10.1016/j.bbrc.2005.08.250 1192:Principles of biochemistry 262:: polyadenylate polymerase 123: 6284: 6205: 5455:Frontiers in Microbiology 5171:FEMS Microbiology Letters 4766:10.1080/07352680500391337 4424:10.1016/j.sbi.2007.03.012 3735:10.1007/s00424-016-1828-3 3563:10.1186/gb-2005-6-12-r100 2633:10.1016/j.ceb.2004.03.013 2350:Wahle E (February 1995). 2270:10.1016/j.str.2007.07.010 1908:10.1016/j.str.2010.12.021 1566:10.1007/s00335-008-9136-7 1085:10.1016/j.cub.2005.08.002 976:10.1017/S1355838200001023 958:Steege DA (August 2000). 659:of life implies that the 345:, a complex that removes 332:to the RNA, cleaving off 233:X chromosome inactivation 6093:sequestration (P-bodies) 5727:10.1038/sj.emboj.7601932 5468:10.3389/fmicb.2018.02250 5134:10.1038/sj.embor.7400571 4240:10.1038/sj.emboj.7601699 3453:10.1038/sj.emboj.7601932 3202:Taft RA (January 2008). 2672:10.1093/emboj/19.17.4723 2009:10.1038/sj.emboj.7601331 1272:Human Molecular Genetics 909:Richter JD (June 1999). 746:. Some viruses, such as 676:lack this modification. 667:Mycoplasma gallisepticum 322:Polyadenylate polymerase 53:adenosine monophosphates 6257:Poly(A)-binding protein 6071:Gene regulatory network 5560:Genes & Development 4850:Journal of Bacteriology 4318:Genes & Development 3792:10.1126/science.1155390 3028:10.1126/science.abe6523 2929:10.1073/pnas.0510928103 2532:Genes & Development 2485:Mayo Clinic Proceedings 1945:Genes & Development 1858:10.1073/pnas.1000848107 1509:Genes & Development 1471:10.1073/pnas.0703890104 1325:10.1186/1471-2164-9-220 359:poly(A)-binding protein 326:adenosine monophosphate 190:Nuclear polyadenylation 6076:cis-regulatory element 5672:10.1073/pnas.68.6.1336 5573:10.1101/gad.11.21.2755 5417:10.1073/pnas.251542798 4983:Nucleic Acids Research 4698:Nucleic Acids Research 4601:Nucleic Acids Research 4367:Nucleic Acids Research 4036:10.1074/jbc.M508848200 3878:Nucleic Acids Research 3666:Nucleic Acids Research 3392:Nucleic Acids Research 2810:Nucleic Acids Research 2758:Nucleic Acids Research 2597:10.1074/jbc.M701256200 2544:10.1101/gad.12.20.3226 2369:10.1074/jbc.270.6.2800 2307:Nucleic Acids Research 2051:Nucleic Acids Research 1660:Nucleic Acids Research 700:nucleotides in them). 593: 481: 452:long-term potentiation 388:3β€² untranslated region 330:adenosine triphosphate 306:polyadenylation signal 162:). RNAs are produced ( 139: 37: 4710:10.1093/nar/30.7.1427 4065:Nature Communications 591: 520:(CstF), increases in 479: 450:could play a role in 277:: cleavage factor II 137: 124:Further information: 43:is the addition of a 35: 6320:Alternative splicing 6098:alternative splicing 6088:Post-transcriptional 5914:Transcription factor 5768:at Wikimedia Commons 5505:viralzone.expasy.org 4946:10.1093/emboj/cdf686 3505:10.1038/nrm.2016.116 3136:10.1128/MCB.02470-05 2409:10.1093/emboj/cdf390 1759:10.1101/gr.10.7.1001 1705:ACS Chemical Biology 1009:Journal of Phycology 740:Alfalfa mosaic virus 184:untranslated regions 103:alternative splicing 6022:Transfer RNA (tRNA) 5663:1971PNAS...68.1336E 5408:2001PNAS...9814286N 5402:(25): 14286–14291. 5349:2013PLoSO...870548W 5286:Journal of Virology 4862:10.1128/JB.00327-07 4758:2006CRvPS..25...65S 4379:10.1093/nar/gkaa722 4142:10.1038/nature07488 4134:2008Natur.456..464L 4077:2018NatCo...9.5331O 3784:2008Sci...320.1643S 2920:2006PNAS..103.4034W 2166:1996Sci...274.1517S 1957:10.1101/gad.1298605 1849:2010PNAS..10710062Y 1521:10.1101/gad.1352605 1462:2007PNAS..10417719S 1076:2005CBio...15.R635A 1021:2013JPcgy..49..570Z 610:secondary structure 526:lipopolysaccharides 272:: cleavage factor I 221:long noncoding RNAs 6431:5β€² cap methylation 6136:Influential people 6115:Post-translational 5934:Post-transcription 5044:10.1105/tpc.013326 4995:10.1093/nar/gkl763 4613:10.1093/nar/gkl357 4564:10.1261/rna.652807 4373:(D1): D:243–D253. 4330:10.1101/gad.473408 4191:10.1261/rna.577707 3983:10.1101/gr.5532707 3890:10.1093/nar/gkn624 3678:10.1093/nar/gkn540 3404:10.1093/nar/gki158 3354:10.1242/dev.021444 3022:(6529): eabe6523. 2871:10.1101/gr.2122004 2822:10.1093/nar/gkm830 2770:10.1093/nar/gkx152 2319:10.1093/nar/gkn080 2063:10.1093/nar/gkn158 1672:10.1093/nar/gkl919 1378:10.1261/rna.782308 1281:10.1093/hmg/ddl046 1235:10.1261/rna.848208 768:enzymatic activity 673:Haloferax volcanii 594: 482: 405:) can bind to the 392:immature egg cells 353:Downstream effects 246:Proteins involved: 140: 38: 6476: 6475: 6417: 6416: 6413: 6412: 6330:pre-mRNA factors 6156: 6155: 6040: 6039: 5970: 5969: 5846:Special transfers 5764:Media related to 5620:978-0-12-540071-8 5221:10.1021/bi8012214 5094:978-0-12-374377-0 4799:(9–10): 992–997. 3841:10.7150/ijms.5.73 3672:(17): 5581–5590. 2764:(10): 6074–6086. 2721:10.1261/rna.46306 2160:(5292): 1517–20. 1717:10.1021/cb800138w 1203:978-0-87901-500-8 1029:10.1111/jpy.12068 705:CCA-adding enzyme 687:and the archaeal 367:initiation factor 290:RNA polymerase II 282: 281: 231:, which mediates 120:Background on RNA 16:(Redirected from 6501: 6282: 6215:5β€² cap formation 6203: 6183: 6176: 6169: 6160: 5981: 5878: 5796: 5789: 5782: 5773: 5763: 5748: 5738: 5715:The EMBO Journal 5695: 5694: 5684: 5674: 5657:(6): 1336–1340. 5639: 5633: 5632: 5595: 5586: 5585: 5575: 5551: 5545: 5544: 5542: 5533:(4): 1142–1149. 5515: 5509: 5508: 5497: 5491: 5490: 5480: 5470: 5446: 5440: 5439: 5429: 5419: 5387: 5381: 5380: 5370: 5360: 5328: 5322: 5321: 5311: 5301: 5292:(4): 3473–3476. 5277: 5271: 5270: 5242: 5233: 5232: 5215:(50): 13158–68. 5203: 5197: 5196: 5186: 5162: 5156: 5155: 5145: 5113: 5107: 5106: 5072: 5066: 5065: 5055: 5023: 5017: 5016: 5006: 4974: 4968: 4967: 4957: 4934:The EMBO Journal 4925: 4919: 4918: 4890: 4884: 4883: 4873: 4841: 4835: 4834: 4824: 4784: 4778: 4777: 4741: 4732: 4731: 4721: 4689: 4678: 4677: 4641: 4635: 4634: 4624: 4592: 4586: 4585: 4575: 4543: 4534: 4533: 4515: 4491: 4485: 4484: 4474: 4442: 4436: 4435: 4407: 4401: 4400: 4390: 4358: 4352: 4351: 4341: 4309: 4303: 4302: 4292: 4268: 4262: 4261: 4251: 4228:The EMBO Journal 4219: 4213: 4212: 4202: 4170: 4164: 4163: 4153: 4113: 4107: 4106: 4096: 4055: 4049: 4048: 4038: 4029:(48): 39950–61. 4014: 4005: 4004: 3994: 3962: 3956: 3955: 3918: 3912: 3911: 3901: 3869: 3863: 3862: 3852: 3820: 3814: 3813: 3803: 3778:(5883): 1643–7. 3763: 3757: 3756: 3746: 3714: 3708: 3707: 3697: 3657: 3651: 3650: 3640: 3600: 3594: 3593: 3583: 3565: 3541: 3535: 3534: 3524: 3484: 3475: 3474: 3464: 3441:The EMBO Journal 3432: 3426: 3425: 3415: 3383: 3377: 3376: 3366: 3356: 3332: 3326: 3325: 3307: 3283: 3277: 3276: 3248: 3242: 3241: 3231: 3199: 3193: 3192: 3164: 3158: 3157: 3147: 3115: 3109: 3108: 3089:10.1038/35067025 3072: 3066: 3065: 3047: 3007: 3001: 3000: 2990: 2958: 2952: 2951: 2941: 2931: 2899: 2893: 2892: 2882: 2850: 2844: 2843: 2833: 2801: 2792: 2791: 2781: 2749: 2743: 2742: 2732: 2700: 2694: 2693: 2683: 2660:The EMBO Journal 2651: 2645: 2644: 2616: 2610: 2609: 2599: 2590:(34): 25067–75. 2575: 2566: 2565: 2555: 2523: 2517: 2516: 2497:10.4065/77.8.785 2480: 2474: 2473: 2454:10.1038/nsmb1253 2437: 2431: 2430: 2420: 2397:The EMBO Journal 2388: 2382: 2381: 2371: 2347: 2341: 2340: 2330: 2298: 2292: 2291: 2281: 2249: 2243: 2242: 2232: 2221:10.1101/gr.62002 2200: 2194: 2193: 2149: 2143: 2140: 2134: 2133: 2123: 2112:10.1038/nsmb1352 2091: 2085: 2084: 2074: 2042: 2031: 2030: 2020: 1997:The EMBO Journal 1988: 1979: 1978: 1968: 1936: 1930: 1929: 1919: 1887: 1881: 1880: 1870: 1860: 1828: 1822: 1821: 1811: 1787: 1781: 1780: 1770: 1738: 1729: 1728: 1700: 1694: 1693: 1683: 1651: 1642: 1641: 1631: 1608:The EMBO Journal 1599: 1586: 1585: 1554:Mammalian Genome 1549: 1543: 1542: 1532: 1500: 1494: 1493: 1483: 1473: 1456:(45): 17719–24. 1441: 1435: 1434: 1406: 1400: 1399: 1389: 1357: 1348: 1347: 1337: 1327: 1303: 1294: 1293: 1283: 1268:"Non-coding RNA" 1263: 1257: 1256: 1246: 1214: 1208: 1207: 1195: 1185: 1179: 1178: 1150: 1144: 1143: 1115: 1106: 1105: 1087: 1055: 1049: 1048: 1004: 998: 997: 987: 955: 949: 948: 938: 906: 895: 894: 884: 852: 843: 842: 824: 800: 744:Duck Hepatitis A 243: 242: 219:. But, for many 21: 6509: 6508: 6504: 6503: 6502: 6500: 6499: 6498: 6489:Gene expression 6479: 6478: 6477: 6472: 6409: 6324: 6271: 6267:Polyuridylation 6220:Polyadenylation 6192: 6187: 6157: 6152: 6131: 6066:Transcriptional 6036: 6005: 5966: 5957:Polyadenylation 5928: 5902: 5867: 5861:Proteinβ†’Protein 5812: 5805: 5803:Gene expression 5800: 5766:Polyadenylation 5756: 5751: 5708: 5704: 5702:Further reading 5699: 5698: 5641: 5640: 5636: 5621: 5597: 5596: 5589: 5566:(21): 2755–66. 5553: 5552: 5548: 5517: 5516: 5512: 5499: 5498: 5494: 5448: 5447: 5443: 5389: 5388: 5384: 5330: 5329: 5325: 5279: 5278: 5274: 5244: 5243: 5236: 5205: 5204: 5200: 5164: 5163: 5159: 5128:(12): 1188–93. 5115: 5114: 5110: 5095: 5074: 5073: 5069: 5025: 5024: 5020: 4989:(20): 5923–31. 4976: 4975: 4971: 4940:(24): 6905–14. 4927: 4926: 4922: 4892: 4891: 4887: 4843: 4842: 4838: 4786: 4785: 4781: 4743: 4742: 4735: 4691: 4690: 4681: 4643: 4642: 4638: 4607:(10): 2966–75. 4594: 4593: 4589: 4558:(11): 1834–49. 4545: 4544: 4537: 4493: 4492: 4488: 4444: 4443: 4439: 4409: 4408: 4404: 4360: 4359: 4355: 4311: 4310: 4306: 4270: 4269: 4265: 4234:(11): 2658–69. 4221: 4220: 4216: 4172: 4171: 4167: 4128:(7221): 464–9. 4115: 4114: 4110: 4057: 4056: 4052: 4016: 4015: 4008: 3971:Genome Research 3964: 3963: 3959: 3920: 3919: 3915: 3884:(19): 6318–32. 3871: 3870: 3866: 3822: 3821: 3817: 3765: 3764: 3760: 3729:(6): 993–1012. 3723:PflΓΌgers Archiv 3716: 3715: 3711: 3659: 3658: 3654: 3602: 3601: 3597: 3543: 3542: 3538: 3486: 3485: 3478: 3434: 3433: 3429: 3385: 3384: 3380: 3347:(11): 1969–79. 3334: 3333: 3329: 3285: 3284: 3280: 3250: 3249: 3245: 3201: 3200: 3196: 3166: 3165: 3161: 3130:(11): 4277–87. 3117: 3116: 3112: 3074: 3073: 3069: 3009: 3008: 3004: 2960: 2959: 2955: 2901: 2900: 2896: 2859:Genome Research 2852: 2851: 2847: 2803: 2802: 2795: 2751: 2750: 2746: 2702: 2701: 2697: 2666:(17): 4723–33. 2653: 2652: 2648: 2618: 2617: 2613: 2577: 2576: 2569: 2538:(20): 3226–35. 2525: 2524: 2520: 2482: 2481: 2477: 2439: 2438: 2434: 2403:(15): 4125–35. 2390: 2389: 2385: 2349: 2348: 2344: 2300: 2299: 2295: 2251: 2250: 2246: 2209:Genome Research 2202: 2201: 2197: 2151: 2150: 2146: 2141: 2137: 2093: 2092: 2088: 2044: 2043: 2034: 2003:(20): 4854–64. 1990: 1989: 1982: 1951:(11): 1315–27. 1938: 1937: 1933: 1889: 1888: 1884: 1843:(22): 10062–7. 1830: 1829: 1825: 1789: 1788: 1784: 1747:Genome Research 1740: 1739: 1732: 1702: 1701: 1697: 1653: 1652: 1645: 1601: 1600: 1589: 1560:(7–8): 454–92. 1551: 1550: 1546: 1515:(18): 2164–75. 1502: 1501: 1497: 1443: 1442: 1438: 1408: 1407: 1403: 1359: 1358: 1351: 1305: 1304: 1297: 1265: 1264: 1260: 1216: 1215: 1211: 1204: 1187: 1186: 1182: 1152: 1151: 1147: 1117: 1116: 1109: 1064:Current Biology 1057: 1056: 1052: 1006: 1005: 1001: 957: 956: 952: 908: 907: 898: 854: 853: 846: 802: 801: 794: 789: 777: 764: 653: 586: 550:non-coding RNAs 546: 538:DNA methylation 524:in response to 516:, a subunit of 495:Ribo-sequencing 487: 430:, during early 424: 390:of an mRNA. In 380: 355: 273: 268: 263: 258: 253: 247: 241: 197: 192: 132: 122: 111:non-coding RNAs 95:set of proteins 73:gene expression 41:Polyadenylation 28: 23: 22: 15: 12: 11: 5: 6507: 6505: 6497: 6496: 6491: 6481: 6480: 6474: 6473: 6471: 6470: 6469: 6468: 6463: 6458: 6453: 6448: 6443: 6436:mRNA decapping 6433: 6427: 6425: 6419: 6418: 6415: 6414: 6411: 6410: 6408: 6407: 6406: 6405: 6400: 6395: 6390: 6385: 6380: 6375: 6370: 6365: 6360: 6355: 6350: 6345: 6334: 6332: 6326: 6325: 6323: 6322: 6317: 6316: 6315: 6310: 6300: 6295: 6285: 6279: 6273: 6272: 6270: 6269: 6264: 6259: 6254: 6253: 6252: 6247: 6242: 6237: 6232: 6227: 6217: 6212: 6210:Precursor mRNA 6206: 6200: 6194: 6193: 6188: 6186: 6185: 6178: 6171: 6163: 6154: 6153: 6151: 6150: 6145: 6143:FranΓ§ois Jacob 6139: 6137: 6133: 6132: 6130: 6129: 6128: 6127: 6122: 6112: 6107: 6106: 6105: 6100: 6095: 6085: 6080: 6079: 6078: 6073: 6063: 6062: 6061: 6050: 6048: 6042: 6041: 6038: 6037: 6035: 6034: 6029: 6024: 6019: 6013: 6011: 6007: 6006: 6004: 6003: 5998: 5993: 5987: 5985: 5978: 5972: 5971: 5968: 5967: 5965: 5964: 5959: 5954: 5949: 5944: 5938: 5936: 5930: 5929: 5927: 5926: 5921: 5919:RNA polymerase 5916: 5910: 5908: 5904: 5903: 5901: 5900: 5895: 5890: 5884: 5882: 5875: 5869: 5868: 5866: 5865: 5864: 5863: 5858: 5853: 5843: 5842: 5841: 5823: 5817: 5815: 5807: 5806: 5801: 5799: 5798: 5791: 5784: 5776: 5770: 5769: 5755: 5754:External links 5752: 5750: 5749: 5705: 5703: 5700: 5697: 5696: 5634: 5619: 5587: 5546: 5510: 5492: 5441: 5382: 5323: 5272: 5234: 5198: 5157: 5108: 5093: 5067: 5038:(9): 2003–19. 5032:The Plant Cell 5018: 4969: 4920: 4885: 4836: 4779: 4733: 4704:(7): 1427–64. 4679: 4636: 4587: 4535: 4486: 4457:(6): 890–901. 4437: 4402: 4353: 4304: 4283:(3): 298–310. 4277:Molecular Cell 4263: 4214: 4185:(7): 1103–15. 4165: 4108: 4050: 4006: 3957: 3930:(2): 293–301. 3913: 3864: 3815: 3758: 3709: 3652: 3615:(3): 277–289. 3595: 3550:Genome Biology 3536: 3476: 3427: 3378: 3327: 3278: 3243: 3208:Theriogenology 3194: 3159: 3110: 3067: 3002: 2973:(4): 2017–29. 2953: 2914:(11): 4034–9. 2894: 2865:(7): 1315–23. 2845: 2793: 2744: 2715:(7): 1323–37. 2695: 2646: 2611: 2567: 2518: 2491:(8): 785–808. 2475: 2432: 2383: 2342: 2313:(7): 2418–33. 2293: 2264:(9): 1117–31. 2244: 2215:(7): 1068–74. 2195: 2144: 2135: 2086: 2057:(9): 3150–61. 2032: 1980: 1931: 1882: 1823: 1802:(6): 1467–76. 1796:Molecular Cell 1782: 1753:(7): 1001–10. 1730: 1711:(10): 609–17. 1695: 1643: 1587: 1544: 1495: 1436: 1401: 1349: 1295: 1258: 1209: 1202: 1180: 1145: 1107: 1070:(16): R635-8. 1050: 999: 970:(8): 1079–90. 950: 896: 867:(1–2): 11–23. 844: 791: 790: 788: 785: 784: 783: 776: 773: 763: 760: 652: 649: 585: 582: 545: 542: 486: 483: 423: 420: 396:egg activation 382:In eukaryotic 379: 376: 354: 351: 294:precursor mRNA 280: 279: 240: 237: 196: 193: 191: 188: 121: 118: 101:), similar to 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6506: 6495: 6494:Messenger RNA 6492: 6490: 6487: 6486: 6484: 6467: 6464: 6462: 6459: 6457: 6454: 6452: 6449: 6447: 6444: 6442: 6439: 6438: 6437: 6434: 6432: 6429: 6428: 6426: 6424: 6420: 6404: 6401: 6399: 6396: 6394: 6391: 6389: 6386: 6384: 6381: 6379: 6376: 6374: 6371: 6369: 6366: 6364: 6361: 6359: 6356: 6354: 6351: 6349: 6346: 6344: 6341: 6340: 6339: 6336: 6335: 6333: 6331: 6327: 6321: 6318: 6314: 6311: 6309: 6306: 6305: 6304: 6301: 6299: 6296: 6294: 6290: 6287: 6286: 6283: 6280: 6278: 6274: 6268: 6265: 6263: 6260: 6258: 6255: 6251: 6248: 6246: 6243: 6241: 6238: 6236: 6233: 6231: 6228: 6226: 6223: 6222: 6221: 6218: 6216: 6213: 6211: 6208: 6207: 6204: 6201: 6199: 6195: 6191: 6184: 6179: 6177: 6172: 6170: 6165: 6164: 6161: 6149: 6148:Jacques Monod 6146: 6144: 6141: 6140: 6138: 6134: 6126: 6123: 6121: 6118: 6117: 6116: 6113: 6111: 6110:Translational 6108: 6104: 6101: 6099: 6096: 6094: 6091: 6090: 6089: 6086: 6084: 6081: 6077: 6074: 6072: 6069: 6068: 6067: 6064: 6060: 6057: 6056: 6055: 6052: 6051: 6049: 6047: 6043: 6033: 6030: 6028: 6025: 6023: 6020: 6018: 6015: 6014: 6012: 6008: 6002: 5999: 5997: 5994: 5992: 5989: 5988: 5986: 5982: 5979: 5977: 5973: 5963: 5960: 5958: 5955: 5953: 5950: 5948: 5945: 5943: 5940: 5939: 5937: 5935: 5931: 5925: 5922: 5920: 5917: 5915: 5912: 5911: 5909: 5905: 5899: 5896: 5894: 5891: 5889: 5886: 5885: 5883: 5879: 5876: 5874: 5873:Transcription 5870: 5862: 5859: 5857: 5854: 5852: 5849: 5848: 5847: 5844: 5840: 5836: 5832: 5829: 5828: 5827: 5826:Central dogma 5824: 5822: 5819: 5818: 5816: 5814: 5808: 5804: 5797: 5792: 5790: 5785: 5783: 5778: 5777: 5774: 5767: 5762: 5758: 5757: 5753: 5746: 5742: 5737: 5732: 5728: 5724: 5721:(3): 482–98. 5720: 5716: 5712: 5707: 5706: 5701: 5692: 5688: 5683: 5678: 5673: 5668: 5664: 5660: 5656: 5652: 5648: 5644: 5638: 5635: 5630: 5626: 5622: 5616: 5612: 5608: 5604: 5600: 5594: 5592: 5588: 5583: 5579: 5574: 5569: 5565: 5561: 5557: 5550: 5547: 5541: 5536: 5532: 5528: 5524: 5520: 5519:Edmonds, Mary 5514: 5511: 5506: 5502: 5496: 5493: 5488: 5484: 5479: 5474: 5469: 5464: 5460: 5456: 5452: 5445: 5442: 5437: 5433: 5428: 5423: 5418: 5413: 5409: 5405: 5401: 5397: 5393: 5386: 5383: 5378: 5374: 5369: 5364: 5359: 5354: 5350: 5346: 5343:(7): e70548. 5342: 5338: 5334: 5327: 5324: 5319: 5315: 5310: 5305: 5300: 5295: 5291: 5287: 5283: 5276: 5273: 5268: 5264: 5260: 5256: 5253:(4): 247–55. 5252: 5248: 5241: 5239: 5235: 5230: 5226: 5222: 5218: 5214: 5210: 5202: 5199: 5194: 5190: 5185: 5180: 5177:(1): 97–103. 5176: 5172: 5168: 5161: 5158: 5153: 5149: 5144: 5139: 5135: 5131: 5127: 5123: 5119: 5112: 5109: 5104: 5100: 5096: 5090: 5086: 5082: 5078: 5071: 5068: 5063: 5059: 5054: 5049: 5045: 5041: 5037: 5033: 5029: 5022: 5019: 5014: 5010: 5005: 5000: 4996: 4992: 4988: 4984: 4980: 4973: 4970: 4965: 4961: 4956: 4951: 4947: 4943: 4939: 4935: 4931: 4924: 4921: 4916: 4912: 4908: 4904: 4900: 4896: 4889: 4886: 4881: 4877: 4872: 4867: 4863: 4859: 4856:(1): 98–106. 4855: 4851: 4847: 4840: 4837: 4832: 4828: 4823: 4818: 4814: 4810: 4806: 4802: 4798: 4794: 4790: 4783: 4780: 4775: 4771: 4767: 4763: 4759: 4755: 4751: 4747: 4740: 4738: 4734: 4729: 4725: 4720: 4715: 4711: 4707: 4703: 4699: 4695: 4688: 4686: 4684: 4680: 4675: 4671: 4667: 4663: 4659: 4655: 4652:(3): 235–44. 4651: 4647: 4640: 4637: 4632: 4628: 4623: 4618: 4614: 4610: 4606: 4602: 4598: 4591: 4588: 4583: 4579: 4574: 4569: 4565: 4561: 4557: 4553: 4549: 4542: 4540: 4536: 4531: 4527: 4523: 4519: 4514: 4509: 4506:(5): 713–24. 4505: 4501: 4497: 4490: 4487: 4482: 4478: 4473: 4468: 4464: 4460: 4456: 4452: 4448: 4441: 4438: 4433: 4429: 4425: 4421: 4418:(2): 209–14. 4417: 4413: 4406: 4403: 4398: 4394: 4389: 4384: 4380: 4376: 4372: 4368: 4364: 4357: 4354: 4349: 4345: 4340: 4335: 4331: 4327: 4324:(9): 1141–6. 4323: 4319: 4315: 4308: 4305: 4300: 4296: 4291: 4286: 4282: 4278: 4274: 4267: 4264: 4259: 4255: 4250: 4245: 4241: 4237: 4233: 4229: 4225: 4218: 4215: 4210: 4206: 4201: 4196: 4192: 4188: 4184: 4180: 4176: 4169: 4166: 4161: 4157: 4152: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4112: 4109: 4104: 4100: 4095: 4090: 4086: 4082: 4078: 4074: 4070: 4066: 4062: 4054: 4051: 4046: 4042: 4037: 4032: 4028: 4024: 4020: 4013: 4011: 4007: 4002: 3998: 3993: 3988: 3984: 3980: 3977:(2): 156–65. 3976: 3972: 3968: 3961: 3958: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3925: 3917: 3914: 3909: 3905: 3900: 3895: 3891: 3887: 3883: 3879: 3875: 3868: 3865: 3860: 3856: 3851: 3846: 3842: 3838: 3834: 3830: 3826: 3819: 3816: 3811: 3807: 3802: 3797: 3793: 3789: 3785: 3781: 3777: 3773: 3769: 3762: 3759: 3754: 3750: 3745: 3740: 3736: 3732: 3728: 3724: 3720: 3713: 3710: 3705: 3701: 3696: 3691: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3656: 3653: 3648: 3644: 3639: 3634: 3630: 3626: 3622: 3618: 3614: 3610: 3606: 3599: 3596: 3591: 3587: 3582: 3577: 3573: 3569: 3564: 3559: 3555: 3551: 3547: 3540: 3537: 3532: 3528: 3523: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3483: 3481: 3477: 3472: 3468: 3463: 3458: 3454: 3450: 3447:(3): 482–98. 3446: 3442: 3438: 3431: 3428: 3423: 3419: 3414: 3409: 3405: 3401: 3398:(1): 201–12. 3397: 3393: 3389: 3382: 3379: 3374: 3370: 3365: 3360: 3355: 3350: 3346: 3342: 3338: 3331: 3328: 3323: 3319: 3315: 3311: 3306: 3301: 3298:(3): 434–48. 3297: 3293: 3289: 3282: 3279: 3274: 3270: 3266: 3262: 3259:(6): 279–85. 3258: 3254: 3247: 3244: 3239: 3235: 3230: 3225: 3221: 3217: 3213: 3209: 3205: 3198: 3195: 3190: 3186: 3182: 3178: 3175:(4): 1181–9. 3174: 3170: 3163: 3160: 3155: 3151: 3146: 3141: 3137: 3133: 3129: 3125: 3121: 3114: 3111: 3106: 3102: 3098: 3094: 3090: 3086: 3083:(4): 237–46. 3082: 3078: 3071: 3068: 3063: 3059: 3055: 3051: 3046: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3006: 3003: 2998: 2994: 2989: 2984: 2980: 2976: 2972: 2968: 2964: 2957: 2954: 2949: 2945: 2940: 2935: 2930: 2925: 2921: 2917: 2913: 2909: 2905: 2898: 2895: 2890: 2886: 2881: 2876: 2872: 2868: 2864: 2860: 2856: 2849: 2846: 2841: 2837: 2832: 2827: 2823: 2819: 2815: 2811: 2807: 2800: 2798: 2794: 2789: 2785: 2780: 2775: 2771: 2767: 2763: 2759: 2755: 2748: 2745: 2740: 2736: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2699: 2696: 2691: 2687: 2682: 2677: 2673: 2669: 2665: 2661: 2657: 2650: 2647: 2642: 2638: 2634: 2630: 2627:(3): 285–92. 2626: 2622: 2615: 2612: 2607: 2603: 2598: 2593: 2589: 2585: 2581: 2574: 2572: 2568: 2563: 2559: 2554: 2549: 2545: 2541: 2537: 2533: 2529: 2522: 2519: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2479: 2476: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2436: 2433: 2428: 2424: 2419: 2414: 2410: 2406: 2402: 2398: 2394: 2387: 2384: 2379: 2375: 2370: 2365: 2362:(6): 2800–8. 2361: 2357: 2353: 2346: 2343: 2338: 2334: 2329: 2324: 2320: 2316: 2312: 2308: 2304: 2297: 2294: 2289: 2285: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2245: 2240: 2236: 2231: 2226: 2222: 2218: 2214: 2210: 2206: 2199: 2196: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2148: 2145: 2139: 2136: 2131: 2127: 2122: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2087: 2082: 2078: 2073: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2039: 2037: 2033: 2028: 2024: 2019: 2014: 2010: 2006: 2002: 1998: 1994: 1987: 1985: 1981: 1976: 1972: 1967: 1962: 1958: 1954: 1950: 1946: 1942: 1935: 1932: 1927: 1923: 1918: 1913: 1909: 1905: 1902:(3): 368–77. 1901: 1897: 1893: 1886: 1883: 1878: 1874: 1869: 1864: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1827: 1824: 1819: 1815: 1810: 1805: 1801: 1797: 1793: 1786: 1783: 1778: 1774: 1769: 1764: 1760: 1756: 1752: 1748: 1744: 1737: 1735: 1731: 1726: 1722: 1718: 1714: 1710: 1706: 1699: 1696: 1691: 1687: 1682: 1677: 1673: 1669: 1666:(1): 234–46. 1665: 1661: 1657: 1650: 1648: 1644: 1639: 1635: 1630: 1625: 1621: 1617: 1614:(2): 585–94. 1613: 1609: 1605: 1598: 1596: 1594: 1592: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1548: 1545: 1540: 1536: 1531: 1526: 1522: 1518: 1514: 1510: 1506: 1499: 1496: 1491: 1487: 1482: 1477: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1437: 1432: 1428: 1424: 1420: 1417:(5): 487–98. 1416: 1412: 1405: 1402: 1397: 1393: 1388: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1354: 1350: 1345: 1341: 1336: 1331: 1326: 1321: 1317: 1313: 1309: 1302: 1300: 1296: 1291: 1287: 1282: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1245: 1240: 1236: 1232: 1228: 1224: 1220: 1213: 1210: 1205: 1199: 1194: 1193: 1184: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1149: 1146: 1141: 1137: 1133: 1129: 1126:(1): 173–97. 1125: 1121: 1114: 1112: 1108: 1103: 1099: 1095: 1091: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 1000: 995: 991: 986: 981: 977: 973: 969: 965: 961: 954: 951: 946: 942: 937: 932: 928: 924: 921:(2): 446–56. 920: 916: 912: 905: 903: 901: 897: 892: 888: 883: 878: 874: 870: 866: 862: 858: 851: 849: 845: 840: 836: 832: 828: 823: 818: 815:(4): 501–12. 814: 810: 806: 799: 797: 793: 786: 782: 779: 778: 774: 772: 769: 761: 759: 757: 753: 749: 745: 741: 737: 733: 729: 724: 722: 721:cyanobacteria 718: 714: 710: 706: 701: 698: 694: 690: 686: 682: 677: 675: 674: 669: 668: 662: 658: 650: 648: 646: 643:that have an 642: 638: 634: 629: 626: 622: 617: 615: 611: 607: 603: 599: 590: 583: 581: 579: 575: 574:TRAMP complex 571: 567: 563: 559: 555: 551: 543: 541: 539: 535: 531: 527: 523: 519: 515: 510: 507: 503: 498: 496: 492: 484: 478: 474: 472: 468: 464: 460: 455: 453: 447: 445: 441: 437: 433: 432:embryogenesis 429: 421: 419: 417: 413: 412:budding yeast 408: 404: 399: 397: 393: 389: 385: 384:somatic cells 378:Deadenylation 377: 375: 372: 368: 364: 360: 352: 350: 348: 344: 339: 335: 334:pyrophosphate 331: 327: 323: 318: 314: 311: 307: 303: 299: 295: 291: 287: 278: 276: 271: 266: 261: 256: 251: 245: 244: 238: 236: 234: 230: 226: 222: 218: 212: 210: 206: 202: 194: 189: 187: 185: 181: 180: 174: 171: 167: 166: 161: 157: 153: 149: 145: 136: 131: 130:Messenger RNA 127: 119: 117: 114: 112: 106: 104: 100: 96: 92: 88: 85: 81: 80:transcription 76: 74: 70: 66: 62: 58: 54: 50: 49:messenger RNA 46: 42: 34: 30: 19: 6291: / 6277:RNA splicing 6219: 6125:irreversible 6010:Key elements 5956: 5907:Key elements 5821:Genetic code 5811:Introduction 5718: 5714: 5654: 5650: 5637: 5602: 5563: 5559: 5549: 5530: 5526: 5513: 5504: 5495: 5458: 5454: 5444: 5399: 5395: 5385: 5340: 5336: 5326: 5289: 5285: 5275: 5250: 5246: 5212: 5209:Biochemistry 5208: 5201: 5174: 5170: 5160: 5125: 5122:EMBO Reports 5121: 5111: 5076: 5070: 5035: 5031: 5021: 4986: 4982: 4972: 4937: 4933: 4923: 4901:(4): 266–9. 4898: 4894: 4888: 4853: 4849: 4839: 4796: 4792: 4782: 4752:(1): 65–77. 4749: 4745: 4701: 4697: 4649: 4645: 4639: 4604: 4600: 4590: 4555: 4551: 4503: 4499: 4489: 4454: 4450: 4440: 4415: 4411: 4405: 4370: 4366: 4356: 4321: 4317: 4307: 4280: 4276: 4266: 4231: 4227: 4217: 4182: 4178: 4168: 4125: 4121: 4111: 4068: 4064: 4053: 4026: 4022: 3974: 3970: 3960: 3927: 3923: 3916: 3881: 3877: 3867: 3832: 3828: 3818: 3775: 3771: 3761: 3726: 3722: 3712: 3669: 3665: 3655: 3612: 3609:Cell Reports 3608: 3598: 3556:(12): R100. 3553: 3549: 3539: 3499:(1): 18–30. 3496: 3492: 3444: 3440: 3430: 3395: 3391: 3381: 3344: 3340: 3330: 3295: 3291: 3281: 3256: 3252: 3246: 3211: 3207: 3197: 3172: 3168: 3162: 3127: 3123: 3113: 3080: 3076: 3070: 3019: 3015: 3005: 2970: 2966: 2956: 2911: 2907: 2897: 2862: 2858: 2848: 2816:(19): e132. 2813: 2809: 2761: 2757: 2747: 2712: 2708: 2698: 2663: 2659: 2649: 2624: 2620: 2614: 2587: 2583: 2535: 2531: 2521: 2488: 2484: 2478: 2448:(7): 662–9. 2445: 2441: 2435: 2400: 2396: 2386: 2359: 2355: 2345: 2310: 2306: 2296: 2261: 2257: 2247: 2212: 2208: 2198: 2157: 2153: 2147: 2138: 2103: 2099: 2089: 2054: 2050: 2000: 1996: 1948: 1944: 1934: 1899: 1895: 1885: 1840: 1836: 1826: 1799: 1795: 1785: 1750: 1746: 1708: 1704: 1698: 1663: 1659: 1611: 1607: 1557: 1553: 1547: 1512: 1508: 1498: 1453: 1449: 1439: 1414: 1410: 1404: 1369: 1365: 1315: 1312:BMC Genomics 1311: 1271: 1261: 1229:(3): 404–9. 1226: 1222: 1212: 1191: 1183: 1158: 1154: 1148: 1123: 1119: 1067: 1063: 1053: 1015:(3): 570–9. 1012: 1008: 1002: 967: 963: 953: 918: 914: 864: 860: 812: 808: 765: 730:, including 725: 702: 678: 671: 665: 654: 630: 625:mitochondria 621:trypanosomes 618: 613: 605: 601: 595: 552:, including 547: 511: 499: 488: 456: 448: 434:and in post- 425: 400: 381: 356: 319: 315: 305: 297: 283: 248: 213: 198: 183: 178: 175: 164: 144:poly(A) tail 143: 141: 115: 107: 98: 77: 45:poly(A) tail 44: 40: 39: 29: 6303:Spliceosome 6262:RNA editing 5976:Translation 5813:to genetics 5643:Edmonds, M. 4071:(1): 5331. 3835:(2): 73–9. 3341:Development 3214:(1): 10–6. 2106:(1): 71–8. 1372:(1): 1–10. 736:Coronavirus 732:Influenza A 728:RNA viruses 713:polymerases 685:degradosome 614:degradosome 598:degradosome 522:macrophages 440:nerve cells 349:from RNAs. 343:spliceosome 338:nucleotides 328:units from 179:translation 165:transcribed 65:translation 18:Poly-A tail 6483:Categories 6120:reversible 6083:lac operon 6059:imprinting 6054:Epigenetic 6046:Regulation 6001:Eukaryotic 5947:5' capping 5898:Eukaryotic 5599:Edmonds, M 787:References 752:Poliovirus 664:bacterium 444:translated 292:, such as 286:processive 225:regulatory 158:and U for 87:terminates 67:. In many 61:eukaryotes 59:bases. In 6423:Cytosolic 5991:Bacterial 5888:Bacterial 4813:0006-3002 4646:BioEssays 3686:1362-4962 3629:2211-1247 3572:1474-760X 3513:1471-0080 3062:231195473 3036:0036-8075 2258:Structure 1896:Structure 1582:206956408 1161:: 15–42. 651:Evolution 548:For many 506:microRNAs 438:sites of 418:complex. 239:Mechanism 217:microRNAs 209:stem-loop 201:cytoplasm 168:) from a 6103:microRNA 6017:Ribosome 5996:Archaeal 5952:Splicing 5924:Promoter 5893:Archaeal 5837: β†’ 5833: β†’ 5745:18256699 5629:12102557 5601:(2002). 5487:30319572 5461:: 2250. 5436:11717411 5377:23923003 5337:PLOS ONE 5318:10074205 5267:18177749 5229:19053279 5193:18399989 5152:16282984 5103:19161858 5062:12953107 5013:17065466 4964:12486011 4915:18312863 4880:17965156 4831:22172994 4774:86607431 4728:11917006 4674:26109164 4666:10684583 4631:16738135 4582:17872511 4530:14898055 4522:15935758 4481:21663793 4432:17395456 4397:32976578 4348:18451104 4299:21292162 4258:17464285 4209:17507659 4160:18978773 4103:30552333 4045:16207706 4001:17210931 3908:18835850 3859:18392144 3810:18566288 3753:27220521 3704:18757892 3647:22685694 3590:16356263 3531:27677860 3471:18256699 3422:15647503 3373:18434412 3322:16092673 3314:18267074 3273:17481902 3238:18023855 3189:16169522 3154:16705177 3097:11283721 3054:33414189 2997:18430932 2967:Genetics 2948:16495412 2889:15231747 2840:17933768 2788:28334977 2739:16714281 2690:10970864 2641:15145353 2606:17595167 2505:12173714 2462:17572685 2427:12145212 2337:18304944 2288:17850751 2239:12097343 2190:34840144 2130:18157150 2081:18411206 2027:17024186 1975:15937220 1926:21295486 1877:20479262 1818:14690600 1777:10899149 1725:18817380 1690:17158511 1574:18839252 1539:16131612 1490:17965236 1431:12408966 1411:Genomics 1396:17998288 1344:18479511 1290:16651366 1253:18212021 1175:14140701 1102:19003617 1094:16111937 1045:19863143 1037:27007045 994:10943888 945:10357857 891:11255003 831:11909521 775:See also 637:plastids 530:lysozyme 436:synaptic 428:germline 416:CCR4-Not 195:Function 154:, G for 152:cytosine 150:, C for 69:bacteria 6403:PRPF40B 6398:PRPF40A 6388:PRPF38B 6383:PRPF38A 6198:Nuclear 5856:RNAβ†’DNA 5851:RNAβ†’RNA 5839:Protein 5736:2241648 5691:5288383 5659:Bibcode 5582:9353246 5478:6167517 5404:Bibcode 5368:3726627 5345:Bibcode 5143:1369208 5004:1635327 4871:2223728 4822:3307840 4754:Bibcode 4622:1474067 4573:2040100 4472:3115544 4388:7778938 4339:2335310 4249:1888663 4200:1894925 4151:2597294 4130:Bibcode 4094:6294251 4073:Bibcode 3992:1781347 3952:7448467 3944:6771018 3899:2577349 3850:2288788 3801:2587246 3780:Bibcode 3772:Science 3744:4893057 3695:2553571 3638:3368434 3581:1414089 3522:5483950 3462:2241648 3364:9154023 3229:2239213 3145:1489097 3105:9734550 3045:9491362 3016:Science 2988:2323793 2939:1449641 2916:Bibcode 2831:2095794 2779:5449641 2730:1484436 2562:9784497 2513:2237085 2470:5777074 2378:7852352 2328:2367721 2279:2032019 2182:8929410 2162:Bibcode 2154:Science 2121:2836588 2072:2396415 2018:1618107 1966:1142555 1917:3056899 1868:2890493 1845:Bibcode 1681:1802579 1638:8440247 1530:1221887 1481:2077053 1458:Bibcode 1387:2151031 1335:2391170 1318:: 220. 1244:2248257 1140:9242905 1072:Bibcode 1017:Bibcode 985:1369983 882:3340483 762:History 717:archaea 689:exosome 657:domains 645:exosome 641:archaea 606:RNase E 578:exosome 514:CstF-64 467:Pumilio 363:exosome 347:introns 205:histone 156:guanine 148:adenine 91:3β€²-most 57:adenine 6393:PRPF39 6378:PRPF31 6373:PRPF19 6368:PRPF18 6353:PRPF4B 6289:Intron 5743:  5733:  5689:  5682:389184 5679:  5627:  5617:  5580:  5485:  5475:  5434:  5424:  5375:  5365:  5316:  5309:104115 5306:  5265:  5227:  5191:  5150:  5140:  5101:  5091:  5060:  5053:181327 5050:  5011:  5001:  4962:  4955:139106 4952:  4913:  4878:  4868:  4829:  4819:  4811:  4772:  4726:  4719:101826 4716:  4672:  4664:  4629:  4619:  4580:  4570:  4528:  4520:  4479:  4469:  4430:  4395:  4385:  4346:  4336:  4297:  4256:  4246:  4207:  4197:  4158:  4148:  4122:Nature 4101:  4091:  4043:  3999:  3989:  3950:  3942:  3906:  3896:  3857:  3847:  3808:  3798:  3751:  3741:  3702:  3692:  3684:  3645:  3635:  3627:  3588:  3578:  3570:  3529:  3519:  3511:  3469:  3459:  3420:  3413:546146 3410:  3371:  3361:  3320:  3312:  3271:  3236:  3226:  3187:  3152:  3142:  3103:  3095:  3060:  3052:  3042:  3034:  2995:  2985:  2946:  2936:  2887:  2880:442147 2877:  2838:  2828:  2786:  2776:  2737:  2727:  2688:  2681:302064 2678:  2639:  2604:  2560:  2553:317214 2550:  2511:  2503:  2468:  2460:  2425:  2418:126137 2415:  2376:  2335:  2325:  2286:  2276:  2237:  2230:186619 2227:  2188:  2180:  2128:  2118:  2079:  2069:  2025:  2015:  1973:  1963:  1924:  1914:  1875:  1865:  1816:  1775:  1768:310884 1765:  1723:  1688:  1678:  1636:  1629:413241 1626:  1580:  1572:  1537:  1527:  1488:  1478:  1429:  1394:  1384:  1342:  1332:  1288:  1251:  1241:  1200:  1173:  1138:  1100:  1092:  1043:  1035:  992:  982:  943:  933:  889:  879:  839:478260 837:  829:  756:PABPC1 742:, and 623:, the 566:snoRNA 564:, and 502:3' UTR 491:3β€² end 407:5β€² cap 160:uracil 89:. The 6446:DCP1B 6441:DCP1A 6363:PRPF8 6358:PRPF6 6348:PRPF4 6343:PRPF3 6338:PLRG1 6308:minor 6298:snRNP 5984:Types 5881:Types 5427:64674 4770:S2CID 4670:S2CID 4526:S2CID 3948:S2CID 3318:S2CID 3101:S2CID 3058:S2CID 2509:S2CID 2466:S2CID 2186:S2CID 1578:S2CID 1098:S2CID 1041:S2CID 936:98972 835:S2CID 748:HIV-1 709:tRNAs 570:yeast 562:snRNA 534:TNF-Ξ± 471:GLD-2 265:PABII 82:of a 6466:EDC4 6461:EDC3 6456:DCPS 6451:DCP2 6293:Exon 6250:CFII 6240:PAB2 6230:CstF 6225:CPSF 5741:PMID 5687:PMID 5625:PMID 5615:ISBN 5578:PMID 5483:PMID 5432:PMID 5373:PMID 5314:PMID 5263:PMID 5251:1779 5225:PMID 5189:PMID 5148:PMID 5099:PMID 5089:ISBN 5058:PMID 5009:PMID 4960:PMID 4911:PMID 4899:1779 4876:PMID 4827:PMID 4809:ISSN 4797:1819 4724:PMID 4662:PMID 4627:PMID 4578:PMID 4518:PMID 4500:Cell 4477:PMID 4451:Cell 4428:PMID 4393:PMID 4344:PMID 4295:PMID 4254:PMID 4205:PMID 4156:PMID 4099:PMID 4041:PMID 3997:PMID 3940:PMID 3924:Cell 3904:PMID 3855:PMID 3806:PMID 3749:PMID 3700:PMID 3682:ISSN 3643:PMID 3625:ISSN 3586:PMID 3568:ISSN 3527:PMID 3509:ISSN 3467:PMID 3418:PMID 3369:PMID 3310:PMID 3292:Cell 3269:PMID 3234:PMID 3185:PMID 3150:PMID 3093:PMID 3050:PMID 3032:ISSN 2993:PMID 2944:PMID 2885:PMID 2836:PMID 2784:PMID 2735:PMID 2686:PMID 2637:PMID 2602:PMID 2558:PMID 2501:PMID 2458:PMID 2423:PMID 2374:PMID 2333:PMID 2284:PMID 2235:PMID 2178:PMID 2126:PMID 2077:PMID 2023:PMID 1971:PMID 1922:PMID 1873:PMID 1814:PMID 1773:PMID 1721:PMID 1686:PMID 1634:PMID 1570:PMID 1535:PMID 1486:PMID 1427:PMID 1392:PMID 1340:PMID 1286:PMID 1249:PMID 1198:ISBN 1171:PMID 1136:PMID 1090:PMID 1033:PMID 990:PMID 941:PMID 887:PMID 861:Gene 827:PMID 809:Cell 781:SV40 750:and 719:and 604:and 558:rRNA 554:tRNA 532:and 463:CPEB 461:and 459:CPSF 403:PARN 310:CPSF 302:CPSF 284:The 275:CFII 255:CstF 250:CPSF 229:Xist 128:and 84:gene 6245:CFI 6235:PAP 5835:RNA 5831:DNA 5731:PMC 5723:doi 5677:PMC 5667:doi 5607:doi 5568:doi 5535:doi 5531:235 5473:PMC 5463:doi 5422:PMC 5412:doi 5363:PMC 5353:doi 5304:PMC 5294:doi 5255:doi 5217:doi 5179:doi 5175:283 5138:PMC 5130:doi 5081:doi 5048:PMC 5040:doi 4999:PMC 4991:doi 4950:PMC 4942:doi 4903:doi 4866:PMC 4858:doi 4854:190 4817:PMC 4801:doi 4762:doi 4714:PMC 4706:doi 4654:doi 4617:PMC 4609:doi 4568:PMC 4560:doi 4552:RNA 4508:doi 4504:121 4467:PMC 4459:doi 4455:145 4420:doi 4383:PMC 4375:doi 4334:PMC 4326:doi 4285:doi 4244:PMC 4236:doi 4195:PMC 4187:doi 4179:RNA 4146:PMC 4138:doi 4126:456 4089:PMC 4081:doi 4031:doi 4027:280 3987:PMC 3979:doi 3932:doi 3894:PMC 3886:doi 3845:PMC 3837:doi 3796:PMC 3788:doi 3776:320 3739:PMC 3731:doi 3727:468 3690:PMC 3674:doi 3633:PMC 3617:doi 3576:PMC 3558:doi 3517:PMC 3501:doi 3457:PMC 3449:doi 3408:PMC 3400:doi 3359:PMC 3349:doi 3345:135 3300:doi 3296:132 3261:doi 3224:PMC 3216:doi 3177:doi 3173:336 3140:PMC 3132:doi 3085:doi 3040:PMC 3024:doi 3020:371 2983:PMC 2975:doi 2971:178 2934:PMC 2924:doi 2912:103 2875:PMC 2867:doi 2826:PMC 2818:doi 2774:PMC 2766:doi 2725:PMC 2717:doi 2709:RNA 2676:PMC 2668:doi 2629:doi 2592:doi 2588:282 2548:PMC 2540:doi 2493:doi 2450:doi 2413:PMC 2405:doi 2364:doi 2360:270 2323:PMC 2315:doi 2274:PMC 2266:doi 2225:PMC 2217:doi 2170:doi 2158:274 2116:PMC 2108:doi 2067:PMC 2059:doi 2013:PMC 2005:doi 1961:PMC 1953:doi 1912:PMC 1904:doi 1863:PMC 1853:doi 1841:107 1804:doi 1763:PMC 1755:doi 1713:doi 1676:PMC 1668:doi 1624:PMC 1616:doi 1562:doi 1525:PMC 1517:doi 1476:PMC 1466:doi 1454:104 1419:doi 1382:PMC 1374:doi 1366:RNA 1330:PMC 1320:doi 1276:doi 1239:PMC 1231:doi 1223:RNA 1163:doi 1128:doi 1080:doi 1025:doi 980:PMC 972:doi 964:RNA 931:PMC 923:doi 877:PMC 869:doi 865:265 817:doi 813:108 697:ATP 693:ADP 371:40S 270:CFI 260:PAP 170:DNA 126:RNA 6485:: 6313:U1 5739:. 5729:. 5719:27 5717:. 5713:. 5685:. 5675:. 5665:. 5655:68 5653:. 5649:. 5623:. 5613:. 5590:^ 5576:. 5564:11 5562:. 5558:. 5529:. 5525:. 5503:. 5481:. 5471:. 5457:. 5453:. 5430:. 5420:. 5410:. 5400:98 5398:. 5394:. 5371:. 5361:. 5351:. 5339:. 5335:. 5312:. 5302:. 5290:73 5288:. 5284:. 5261:. 5249:. 5237:^ 5223:. 5213:47 5211:. 5187:. 5173:. 5169:. 5146:. 5136:. 5124:. 5120:. 5097:. 5087:. 5056:. 5046:. 5036:15 5034:. 5030:. 5007:. 4997:. 4987:34 4985:. 4981:. 4958:. 4948:. 4938:21 4936:. 4932:. 4909:. 4897:. 4874:. 4864:. 4852:. 4848:. 4825:. 4815:. 4807:. 4795:. 4791:. 4768:. 4760:. 4750:25 4748:. 4736:^ 4722:. 4712:. 4702:30 4700:. 4696:. 4682:^ 4668:. 4660:. 4650:22 4648:. 4625:. 4615:. 4605:34 4603:. 4599:. 4576:. 4566:. 4556:13 4554:. 4550:. 4538:^ 4524:. 4516:. 4502:. 4498:. 4475:. 4465:. 4453:. 4449:. 4426:. 4416:17 4414:. 4391:. 4381:. 4371:49 4369:. 4365:. 4342:. 4332:. 4322:22 4320:. 4316:. 4293:. 4281:41 4279:. 4275:. 4252:. 4242:. 4232:26 4230:. 4226:. 4203:. 4193:. 4183:13 4181:. 4177:. 4154:. 4144:. 4136:. 4124:. 4120:. 4097:. 4087:. 4079:. 4067:. 4063:. 4039:. 4025:. 4021:. 4009:^ 3995:. 3985:. 3975:17 3973:. 3969:. 3946:. 3938:. 3928:20 3926:. 3902:. 3892:. 3882:36 3880:. 3876:. 3853:. 3843:. 3831:. 3827:. 3804:. 3794:. 3786:. 3774:. 3770:. 3747:. 3737:. 3725:. 3721:. 3698:. 3688:. 3680:. 3670:36 3668:. 3664:. 3641:. 3631:. 3623:. 3611:. 3607:. 3584:. 3574:. 3566:. 3552:. 3548:. 3525:. 3515:. 3507:. 3497:18 3495:. 3491:. 3479:^ 3465:. 3455:. 3445:27 3443:. 3439:. 3416:. 3406:. 3396:33 3394:. 3390:. 3367:. 3357:. 3343:. 3339:. 3316:. 3308:. 3294:. 3290:. 3267:. 3257:32 3255:. 3232:. 3222:. 3212:69 3210:. 3206:. 3183:. 3171:. 3148:. 3138:. 3128:26 3126:. 3122:. 3099:. 3091:. 3079:. 3056:. 3048:. 3038:. 3030:. 3018:. 3014:. 2991:. 2981:. 2969:. 2965:. 2942:. 2932:. 2922:. 2910:. 2906:. 2883:. 2873:. 2863:14 2861:. 2857:. 2834:. 2824:. 2814:35 2812:. 2808:. 2796:^ 2782:. 2772:. 2762:45 2760:. 2756:. 2733:. 2723:. 2713:12 2711:. 2707:. 2684:. 2674:. 2664:19 2662:. 2658:. 2635:. 2625:16 2623:. 2600:. 2586:. 2582:. 2570:^ 2556:. 2546:. 2536:12 2534:. 2530:. 2507:. 2499:. 2489:77 2487:. 2464:. 2456:. 2446:14 2444:. 2421:. 2411:. 2401:21 2399:. 2395:. 2372:. 2358:. 2354:. 2331:. 2321:. 2311:36 2309:. 2305:. 2282:. 2272:. 2262:15 2260:. 2256:. 2233:. 2223:. 2213:12 2211:. 2207:. 2184:. 2176:. 2168:. 2156:. 2124:. 2114:. 2104:15 2102:. 2098:. 2075:. 2065:. 2055:36 2053:. 2049:. 2035:^ 2021:. 2011:. 2001:25 1999:. 1995:. 1983:^ 1969:. 1959:. 1949:19 1947:. 1943:. 1920:. 1910:. 1900:19 1898:. 1894:. 1871:. 1861:. 1851:. 1839:. 1835:. 1812:. 1800:12 1798:. 1794:. 1771:. 1761:. 1751:10 1749:. 1745:. 1733:^ 1719:. 1707:. 1684:. 1674:. 1664:35 1662:. 1658:. 1646:^ 1632:. 1622:. 1612:12 1610:. 1606:. 1590:^ 1576:. 1568:. 1558:19 1556:. 1533:. 1523:. 1513:19 1511:. 1507:. 1484:. 1474:. 1464:. 1452:. 1448:. 1425:. 1415:80 1413:. 1390:. 1380:. 1370:14 1368:. 1364:. 1352:^ 1338:. 1328:. 1314:. 1310:. 1298:^ 1284:. 1270:. 1247:. 1237:. 1227:14 1225:. 1221:. 1169:. 1159:32 1157:. 1134:. 1124:66 1122:. 1110:^ 1096:. 1088:. 1078:. 1068:15 1066:. 1062:. 1039:. 1031:. 1023:. 1013:49 1011:. 988:. 978:. 966:. 962:. 939:. 929:. 919:63 917:. 913:. 899:^ 885:. 875:. 863:. 859:. 847:^ 833:. 825:. 811:. 807:. 795:^ 738:, 734:, 560:, 556:, 398:. 113:. 105:. 75:. 6182:e 6175:t 6168:v 5795:e 5788:t 5781:v 5747:. 5725:: 5693:. 5669:: 5661:: 5631:. 5609:: 5584:. 5570:: 5543:. 5537:: 5507:. 5489:. 5465:: 5459:9 5438:. 5414:: 5406:: 5379:. 5355:: 5347:: 5341:8 5320:. 5296:: 5269:. 5257:: 5231:. 5219:: 5195:. 5181:: 5154:. 5132:: 5126:6 5105:. 5083:: 5064:. 5042:: 5015:. 4993:: 4966:. 4944:: 4917:. 4905:: 4882:. 4860:: 4833:. 4803:: 4776:. 4764:: 4756:: 4730:. 4708:: 4676:. 4656:: 4633:. 4611:: 4584:. 4562:: 4532:. 4510:: 4483:. 4461:: 4434:. 4422:: 4399:. 4377:: 4350:. 4328:: 4301:. 4287:: 4260:. 4238:: 4211:. 4189:: 4162:. 4140:: 4132:: 4105:. 4083:: 4075:: 4069:9 4047:. 4033:: 4003:. 3981:: 3954:. 3934:: 3910:. 3888:: 3861:. 3839:: 3833:5 3812:. 3790:: 3782:: 3755:. 3733:: 3706:. 3676:: 3649:. 3619:: 3613:1 3592:. 3560:: 3554:6 3533:. 3503:: 3473:. 3451:: 3424:. 3402:: 3375:. 3351:: 3324:. 3302:: 3275:. 3263:: 3240:. 3218:: 3191:. 3179:: 3156:. 3134:: 3107:. 3087:: 3081:2 3064:. 3026:: 2999:. 2977:: 2950:. 2926:: 2918:: 2891:. 2869:: 2842:. 2820:: 2790:. 2768:: 2741:. 2719:: 2692:. 2670:: 2643:. 2631:: 2608:. 2594:: 2564:. 2542:: 2515:. 2495:: 2472:. 2452:: 2429:. 2407:: 2380:. 2366:: 2339:. 2317:: 2290:. 2268:: 2241:. 2219:: 2192:. 2172:: 2164:: 2132:. 2110:: 2083:. 2061:: 2029:. 2007:: 1977:. 1955:: 1928:. 1906:: 1879:. 1855:: 1847:: 1820:. 1806:: 1779:. 1757:: 1727:. 1715:: 1709:3 1692:. 1670:: 1640:. 1618:: 1584:. 1564:: 1541:. 1519:: 1492:. 1468:: 1460:: 1433:. 1421:: 1398:. 1376:: 1346:. 1322:: 1316:9 1292:. 1278:: 1255:. 1233:: 1206:. 1177:. 1165:: 1142:. 1130:: 1104:. 1082:: 1074:: 1047:. 1027:: 1019:: 996:. 974:: 968:6 947:. 925:: 893:. 871:: 841:. 819:: 473:. 20:)

Index

Poly-A tail

messenger RNA
adenosine monophosphates
adenine
eukaryotes
translation
bacteria
gene expression
transcription
gene
terminates
3β€²-most
set of proteins
alternative splicing
non-coding RNAs
RNA
Messenger RNA

adenine
cytosine
guanine
uracil
transcribed
DNA
translation
cytoplasm
histone
stem-loop
microRNAs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑