Knowledge (XXG)

Polyadenylation

Source πŸ“

482:. The 3’ region of a transcript contains many polyadenylation signals (PAS). When more proximal (closer towards 5’ end) PAS sites are utilized, this shortens the length of the 3’ untranslated region (3' UTR) of a transcript. Studies in both humans and flies have shown tissue specific APA. With neuronal tissues preferring distal PAS usage, leading to longer 3’ UTRs and testis tissues preferring proximal PAS leading to shorter 3’ UTRs. Studies have shown there is a correlation between a gene's conservation level and its tendency to do alternative polyadenylation, with highly conserved genes exhibiting more APA. Similarly, highly expressed genes follow this same pattern. 578: 466: 680:, two closely related complexes that recycle RNA into nucleotides. This enzyme degrades RNA by attacking the bond between the 3β€²-most nucleotides with a phosphate, breaking off a diphosphate nucleotide. This reaction is reversible, and so the enzyme can also extend RNA with more nucleotides. The heteropolymeric tail added by polynucleotide phosphorylase is very rich in adenine. The choice of adenine is most likely the result of higher 399:
reduces deadenylation. The rate of deadenylation may also be regulated by RNA-binding proteins. Additionally, RNA triple helix structures and RNA motifs such as the poly(A) tail 3’ end binding pocket retard deadenylation process and inhibit poly(A) tail removal. Once the poly(A) tail is removed, the decapping complex removes the 5β€² cap, leading to a degradation of the RNA. Several other proteins are involved in deadenylation in
124: 350:. Poly(A)-binding protein promotes export from the nucleus and translation, and inhibits degradation. This protein binds to the poly(A) tail prior to mRNA export from the nucleus and in yeast also recruits poly(A) nuclease, an enzyme that shortens the poly(A) tail and allows the export of the mRNA. Poly(A)-binding protein is exported to the cytoplasm with the RNA. mRNAs that are not exported are degraded by the 22: 760:
protection of the 3β€² end of the RNA from nucleases, but later the specific roles of polyadenylation in nuclear export and translation were identified. The polymerases responsible for polyadenylation were first purified and characterized in the 1960s and 1970s, but the large number of accessory proteins that control this process were discovered only in the early 1990s.
5750: 375:, the poly(A) tails of most mRNAs in the cytoplasm gradually get shorter, and mRNAs with shorter poly(A) tail are translated less and degraded sooner. However, it can take many hours before an mRNA is degraded. This deadenylation and degradation process can be accelerated by microRNAs complementary to the 438:
In the early mouse embryo, cytoplasmic polyadenylation of maternal RNAs from the egg cell allows the cell to survive and grow even though transcription does not start until the middle of the 2-cell stage (4-cell stage in human). In the brain, cytoplasmic polyadenylation is active during learning and
329:
long the enzyme can no longer bind to CPSF and polyadenylation stops, thus determining the length of the poly(A) tail. CPSF is in contact with RNA polymerase II, allowing it to signal the polymerase to terminate transcription. When RNA polymerase II reaches a "termination sequence" (⁡'TTTATT' on the
497:
in the 3β€² UTR. MicroRNAs tend to repress translation and promote degradation of the mRNAs they bind to, although there are examples of microRNAs that stabilise transcripts. Alternative polyadenylation can also shorten the coding region, thus making the mRNA code for a different protein, but this is
305:
The RNA is typically cleaved before transcription termination, as CstF also binds to RNA polymerase II. Through a poorly understood mechanism (as of 2002), it signals for RNA polymerase II to slip off of the transcript. Cleavage also involves the protein CFII, though it is unknown how. The cleavage
616:
contain both stabilising and destabilising poly(A) tails. Destabilising polyadenylation targets both mRNA and noncoding RNAs. The poly(A) tails are 43 nucleotides long on average. The stabilising ones start at the stop codon, and without them the stop codon (UAA) is not complete as the genome only
398:
and remove nucleotides from the poly(A) tail. The level of access to the 5β€² cap and poly(A) tail is important in controlling how soon the mRNA is degraded. PARN deadenylates less if the RNA is bound by the initiation factors 4E (at the 5β€² cap) and 4G (at the poly(A) tail), which is why translation
652:
of all living organisms, it is presumed, had some form of polyadenylation system. A few organisms do not polyadenylate mRNA, which implies that they have lost their polyadenylation machineries during evolution. Although no examples of eukaryotes that lack polyadenylation are known, mRNAs from the
688:
as an energy currency, making it more likely to be incorporated in this tail in early lifeforms. It has been suggested that the involvement of adenine-rich tails in RNA degradation prompted the later evolution of polyadenylate polymerases (the enzymes that produce poly(A) tails with no other
362:
ribosomal subunit. However, a poly(A) tail is not required for the translation of all mRNAs. Further, poly(A) tailing (oligo-adenylation) can determine the fate of RNA molecules that are usually not poly(A)-tailed (such as (small) non-coding (sn)RNAs etc.) and thereby induce their RNA decay.
759:
in extracts made from cell nuclei that could polymerise ATP, but not ADP, into polyadenine. Although identified in many types of cells, this activity had no known function until 1971, when poly(A) sequences were found in mRNAs. The only function of these sequences was thought at first to be
301:
exist. Two other proteins add specificity to the binding to an RNA: CstF and CFI. CstF binds to a GU-rich region further downstream of CPSF's site. CFI recognises a third site on the RNA (a set of UGUAA sequences in mammals) and can recruit CPSF even if the AAUAAA sequence is missing. The
97:
The poly(A) tail is important for the nuclear export, translation and stability of mRNA. The tail is shortened over time, and, when it is short enough, the mRNA is enzymatically degraded. However, in a few cell types, mRNAs with short poly(A) tails are stored for later activation by
203:
Many eukaryotic non-coding RNAs are always polyadenylated at the end of transcription. There are small RNAs where the poly(A) tail is seen only in intermediary forms and not in the mature RNA as the ends are removed during processing, the notable ones being
161:
template. By convention, RNA sequences are written in a 5β€² to 3β€² direction. The 5β€² end is the part of the RNA molecule that is transcribed first, and the 3β€² end is transcribed last. The 3β€² end is also where the poly(A) tail is found on polyadenylated RNAs.
517:(a group of bacterial compounds that trigger an immune response). This results in the selection of weak poly(A) sites and thus shorter transcripts. This removes regulatory elements in the 3β€² untranslated regions of mRNAs for defense-related products like 302:
polyadenylation signal β€“ the sequence motif recognised by the RNA cleavage complex β€“ varies between groups of eukaryotes. Most human polyadenylation sites contain the AAUAAA sequence, but this sequence is less common in plants and fungi.
86:; these proteins then synthesize the poly(A) tail at the RNA's 3β€² end. In some genes these proteins add a poly(A) tail at one of several possible sites. Therefore, polyadenylation can produce more than one transcript from a single gene ( 636:). It can synthesise a 3β€² extension where the vast majority of the bases are adenines. Like in bacteria, polyadenylation by polynucleotide phosphorylase promotes degradation of the RNA in plastids and likely also archaea. 5195:
Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G (December 2008). "Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome".
525:. These mRNAs then have longer half-lives and produce more of these proteins. RNA-binding proteins other than those in the polyadenylation machinery can also affect whether a polyadenylation site is used, as can 3910:
Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, Baltimore D (June 1980). "Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3β€² ends".
4047:
Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher-GΓΆppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S (December 2018).
383:, mRNAs with shortened poly(A) tails are not degraded, but are instead stored and translationally inactive. These short tailed mRNAs are activated by cytoplasmic polyadenylation after fertilisation, during 704:. It is presumed that the horizontal transfer of bacterial CCA-adding enzyme to eukaryotes allowed the archaeal-like CCA-adding enzyme to switch function to a poly(A) polymerase. Some lineages, like 6169: 192:
and aids in transcription termination, export of the mRNA from the nucleus, and translation. Almost all eukaryotic mRNAs are polyadenylated, with the exception of animal replication-dependent
644:
Although polyadenylation is seen in almost all organisms, it is not universal. However, the wide distribution of this modification and the fact that it is present in organisms from all three
175:, tune how active the mRNA is. There are also many RNAs that are not translated, called non-coding RNAs. Like the untranslated regions, many of these non-coding RNAs have regulatory roles. 4008:"Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection" 501:
The choice of poly(A) site can be influenced by extracellular stimuli and depends on the expression of the proteins that take part in polyadenylation. For example, the expression of
2472:
Tefferi A, Wieben ED, Dewald GW, Whiteman DA, Bernard ME, Spelsberg TC (August 2002). "Primer on medical genomics part II: Background principles and methods in molecular genetics".
3592:
Smibert, Peter; Miura, Pedro; Westholm, Jakub O.; Shenker, Sol; May, Gemma; Duff, Michael O.; Zhang, Dayu; Eads, Brian D.; Carlson, Joe; Brown, James B.; Eisman, Robert C. (2012).
3156:
Sakurai T, Sato M, Kimura M (November 2005). "Diverse patterns of poly(A) tail elongation and shortening of murine maternal mRNAs from fully grown oocyte to 2-cell embryo stages".
188:
In nuclear polyadenylation, a poly(A) tail is added to an RNA at the end of transcription. On mRNAs, the poly(A) tail protects the mRNA molecule from enzymatic degradation in the
617:
encodes the U or UA part. Plant mitochondria have only destabilising polyadenylation. Mitochondrial polyadenylation has never been observed in either budding or fission yeast.
5017:"Domain analysis of the chloroplast polynucleotide phosphorylase reveals discrete functions in RNA degradation, polyadenylation, and sequence homology with exosome proteins" 325:. Another protein, PAB2, binds to the new, short poly(A) tail and increases the affinity of polyadenylate polymerase for the RNA. When the poly(A) tail is approximately 250 105:
mRNA molecules in both prokaryotes and eukaryotes have polyadenylated 3β€²-ends, with the prokaryotic poly(A) tails generally shorter and fewer mRNA molecules polyadenylated.
2999:
Torabi, Seyed-Fakhreddin; Vaidya, Anand T.; Tycowski, Kazimierz T.; DeGregorio, Suzanne J.; Wang, Jimin; Shu, Mei-Di; Steitz, Thomas A.; Steitz, Joan A. (2021-02-05).
605:
to overcome these secondary structures. The poly(A) tail can also recruit RNases that cut the RNA in two. These bacterial poly(A) tails are about 30 nucleotides long.
529:
near the polyadenylation signal. In addition, numerous other components involved in transcription, splicing or other mechanisms regulating RNA biology can affect APA.
458:. Depending on the cell type, the polymerase can be the same type of polyadenylate polymerase (PAP) that is used in the nuclear process, or the cytoplasmic polymerase 443:, which is the strengthening of the signal transmission from a nerve cell to another in response to nerve impulses and is important for learning and memory formation. 5440:"The Functional Role of the 3β€² Untranslated Region and Poly(A) Tail of Duck Hepatitis a Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation" 5438:
Chen, Jun-Hao; Zhang, Rui-Hua; Lin, Shao-Li; Li, Peng-Fei; Lan, Jing-Jing; Song, Sha-Sha; Gao, Ji-Ming; Wang, Yu; Xie, Zhi-Jing; Li, Fu-Chang; Jiang, Shi-Jin (2018).
200:
structure followed by a purine-rich sequence, termed histone downstream element, that directs where the RNA is cut so that the 3β€² end of the histone mRNA is formed.
98:
re-polyadenylation in the cytosol. In contrast, when polyadenylation occurs in bacteria, it promotes RNA degradation. This is also sometimes the case for eukaryotic
6213: 6162: 447: 238: 2743:"sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs" 5636:"Polyadenylic Acid Sequences in the Heterogeneous Nuclear RNA and Rapidly-Labeled Polyribosomal RNA of HeLa Cells: Possible Evidence for a Precursor Relationship" 5234:
Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (April 2008). "Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases".
330:
DNA template and ⁡'AAUAAA' on the primary transcript), the end of transcription is signaled. The polyadenylation machinery is also physically linked to the
5064:
Slomovic S, Portnoy V, Schuster G (2008). "Chapter 24 Detection and Characterization of Polyadenylated RNA in Eukarya, Bacteria, Archaea, and Organelles".
6155: 2141:
Stumpf G, Domdey H (November 1996). "Dependence of yeast pre-mRNA 3β€²-end processing on CFT1: a sequence homolog of the mammalian AAUAAA binding factor".
1295:
Hunt AG, Xu R, Addepalli B, Rao S, Forbes KP, Meeks LR, Xing D, Mo M, Zhao H, Bandyopadhyay A, Dampanaboina L, Marion A, Von Lanken C, Li QQ (May 2008).
5782: 4211:
Danckwardt S, Kaufmann I, Gentzel M, Foerstner KU, Gantzert AS, Gehring NH, Neu-Yilik G, Bork P, Keller W, Wilm M, Hentze MW, Kulozik AE (June 2007).
2429:
Nag A, Narsinh K, Martinson HG (July 2007). "The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase".
597:. Polynucleotide phosphorylase binds to the 3β€² end of RNAs and the 3β€² extension provided by the poly(A) tail allows it to bind to the RNAs whose 4919:"PNPase activity determines the efficiency of mRNA 3β€²-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts" 4733:
Slomovic S, Portnoy V, Liveanu V, Schuster G (2006). "RNA Polyadenylation in Prokaryotes and Organelles; Different Tails Tell Different Tales".
2131:
Molecular Biology of the Cell, Chapter 6, "From DNA to RNA". 4th edition. Alberts B, Johnson A, Lewis J, et al. New York: Garland Science; 2002.
601:
would otherwise block the 3β€² end. Successive rounds of polyadenylation and degradation of the 3β€² end by polynucleotide phosphorylase allows the
5271:"Direct Evidence that the Poly(A) Tail of Influenza A Virus mRNA Is Synthesized by Reiterative Copying of a U Track in the Virion RNA Template" 4835:"Kinetics of polynucleotide phosphorylase: comparison of enzymes from Streptomyces and Escherichia coli and effects of nucleoside diphosphates" 2694:"Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay" 289:
cleaves the 3β€²-most part of a newly produced RNA and polyadenylates the end produced by this cleavage. The cleavage is catalysed by the enzyme
4260:
Danckwardt S, Gantzert AS, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M, GrΓΆne HJ, Schirmacher P, Hentze MW, Kulozik AE (February 2011).
1881:"Crystal structure of a human cleavage factor CFI(m)25/CFI(m)68/RNA complex provides an insight into poly(A) site recognition and RNA looping" 5950: 5607: 5081: 1190: 4105:
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (November 2008).
569:. Poly(A) tails have also been found on human rRNA fragments, both the form of homopolymeric (A only) and heterpolymeric (mostly A) tails. 4050:"Transcriptome 3β€² end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma" 135:(for polyadenylic acid tail) reflects the way RNA nucleotides are abbreviated, with a letter for the base the nucleotide contains (A for 6223: 5834: 5814: 4646: 248: 79: 5512:"Polynucleotide Biosynthesis: Formation of a Sequence of Adenylate Units from Adenosine Triphosphate by an Enzyme from Thymus Nuclei" 2192:
Iseli C, Stevenson BJ, de Souza SJ, Samaia HB, Camargo AA, Buetow KH, Strausberg RL, Simpson AJ, Bucher P, Jongeneel CV (July 2002).
486:
data (sequencing of only mRNAs inside ribosomes) has shown that mRNA isoforms with shorter 3’ UTRs are more likely to be translated.
6178: 5922: 1297:"Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling" 620:
While many bacteria and mitochondria have polyadenylate polymerases, they also have another type of polyadenylation, performed by
3651:"Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes" 1822:"Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3β€² processing" 1398:
Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (November 2002). "The human and mouse replication-dependent histone genes".
6076: 6020: 490: 376: 3326:"PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila" 6015: 478:
Many protein-coding genes have more than one polyadenylation site, so a gene can code for several mRNAs that differ in their
2569:"Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein" 2795:"A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells" 1048: 6103: 6034: 5775: 213: 5381:"Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA" 197: 5839: 669: 621: 355: 354:. Poly(A)-binding protein also can bind to, and thus recruit, several proteins that affect translation, one of these is 3863:"MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene" 6218: 585:
In many bacteria, both mRNAs and non-coding RNAs can be polyadenylated. This poly(A) tail promotes degradation by the
522: 506: 243: 4882:
Nagaike T, Suzuki T, Ueda T (April 2008). "Polyadenylation in mammalian mitochondria: insights from recent studies".
435:. These shortened poly(A) tails are often less than 20 nucleotides, and are lengthened to around 80–150 nucleotides. 6054: 5754: 5107:"RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus" 3956:"Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing" 221: 131:
RNAs are a type of large biological molecules, whose individual building blocks are called nucleotides. The name
1930:"Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition" 692:
Polyadenylate polymerases are not as ancient. They have separately evolved in both bacteria and eukaryotes from
6477: 6098: 5886: 5799: 5768: 655: 558: 310: 152: 75: 68: 6424: 6245: 6059: 5876: 5861: 649: 347: 314: 41: 565:, which maintains a tail that is around 4 nucleotides long to the 3β€² end. The RNA is then degraded by the 6482: 6064: 5989: 5881: 4633:
RΓ©gnier P, Arraiano CM (March 2000). "Degradation of mRNA in bacteria: emergence of ubiquitous features".
3757:"Proliferating cells express mRNAs with shortened 3β€² untranslated regions and fewer microRNA target sites" 685: 577: 440: 318: 4164:"Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3β€²-UTR" 2243:"Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis" 5979: 5964: 5844: 5105:
Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G (December 2005).
3708:"Processing and transcriptome expansion at the mRNA 3β€² end in health and disease: finding the right end" 681: 432: 166: 60:, the poly(A) tail promotes degradation of the mRNA. It, therefore, forms part of the larger process of 53: 3001:"RNA stabilization by a poly(A) tail 3β€²-end binding pocket and other modes of poly(A)-RNA interaction" 6308: 6086: 5984: 5902: 5647: 5392: 5333: 4742: 4118: 4061: 3768: 2904: 2382:"Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination" 2150: 1833: 1446: 1060: 1005: 728: 431:. This lengthens the poly(A) tail of an mRNA with a shortened poly(A) tail, so that the mRNA will be 91: 4301:
Wood AJ, Schulz R, Woodfine K, Koltowska K, Beechey CV, Peters J, Bourc'his D, Oakey RJ (May 2008).
165:
Messenger RNA (mRNA) is RNA that has a coding region that acts as a template for protein synthesis (
6301: 5912: 598: 3109:"Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein" 2517:"mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation" 123: 6047: 5930: 4758: 4658: 4514: 3936: 3306: 3089: 3046: 2608:
Vinciguerra P, Stutz F (June 2004). "mRNA export: an assembly line from genes to nuclear pores".
2497: 2454: 2174: 1982:"An interaction between U2AF 65 and CF I(m) links the splicing and 3β€² end processing machineries" 1566: 1086: 1029: 823: 514: 483: 209: 2085:"RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes" 4483:
LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (June 2005).
4213:"Splicing factors stimulate polyadenylation via USEs at non-canonical 3β€² end formation signals" 1980:
Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S (October 2006).
1643:
Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH (2006).
581:
Polyadenylation in bacteria helps polynucleotide phosphorylase degrade past secondary structure
6296: 6131: 5729: 5675: 5613: 5603: 5566: 5471: 5420: 5379:
Neeleman, Lyda; Olsthoorn, RenΓ© C. L.; Linthorst, Huub J. M.; Bol, John F. (4 December 2001).
5361: 5302: 5251: 5213: 5177: 5136: 5087: 5077: 5046: 4997: 4948: 4899: 4864: 4815: 4797: 4712: 4650: 4615: 4566: 4506: 4465: 4416: 4381: 4332: 4283: 4242: 4193: 4144: 4087: 4029: 3985: 3928: 3892: 3843: 3794: 3737: 3688: 3670: 3631: 3613: 3574: 3556: 3515: 3497: 3455: 3406: 3357: 3298: 3257: 3222: 3173: 3138: 3081: 3038: 3020: 2981: 2932: 2873: 2824: 2772: 2723: 2674: 2625: 2590: 2546: 2489: 2446: 2411: 2362: 2321: 2272: 2223: 2166: 2114: 2065: 2036:"Genome level analysis of rice mRNA 3β€²-end processing signals and alternative polyadenylation" 2011: 1959: 1910: 1861: 1802: 1761: 1709: 1674: 1622: 1558: 1523: 1474: 1415: 1380: 1328: 1274: 1237: 1186: 1159: 1124: 1078: 1021: 978: 929: 875: 815: 550: 465: 278: 6376: 6371: 5156:"Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated" 4352:"TREND-DB-a transcriptome-wide atlas of the dynamic landscape of alternative polyadenylation" 6381: 6356: 5719: 5711: 5665: 5655: 5595: 5556: 5523: 5461: 5451: 5410: 5400: 5351: 5341: 5292: 5282: 5243: 5205: 5167: 5126: 5118: 5069: 5036: 5028: 4987: 4979: 4968:"RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R" 4938: 4930: 4891: 4854: 4846: 4805: 4789: 4750: 4702: 4694: 4642: 4605: 4597: 4556: 4548: 4496: 4455: 4447: 4408: 4371: 4363: 4322: 4314: 4273: 4232: 4224: 4183: 4175: 4134: 4126: 4077: 4069: 4019: 3975: 3967: 3920: 3882: 3874: 3833: 3825: 3784: 3776: 3727: 3719: 3678: 3662: 3621: 3605: 3564: 3546: 3505: 3489: 3445: 3437: 3396: 3388: 3347: 3337: 3288: 3249: 3212: 3204: 3165: 3128: 3120: 3073: 3028: 3012: 2971: 2963: 2922: 2912: 2863: 2855: 2814: 2806: 2762: 2754: 2713: 2705: 2664: 2656: 2617: 2580: 2536: 2528: 2481: 2438: 2401: 2393: 2352: 2311: 2303: 2262: 2254: 2213: 2205: 2158: 2104: 2096: 2055: 2047: 2001: 1993: 1949: 1941: 1900: 1892: 1851: 1841: 1792: 1751: 1743: 1701: 1664: 1656: 1612: 1604: 1550: 1513: 1505: 1464: 1454: 1407: 1370: 1362: 1318: 1308: 1264: 1227: 1219: 1151: 1116: 1068: 1013: 968: 960: 919: 911: 865: 857: 805: 732: 645: 424: 196:
mRNAs. These are the only mRNAs in eukaryotes that lack a poly(A) tail, ending instead in a
5594:. Progress in Nucleic Acid Research and Molecular Biology. Vol. 71. pp. 285–389. 6454: 6255: 6238: 6233: 6108: 5791: 5489: 3064:
Wilusz CJ, Wormington M, Peltz SW (April 2001). "The cap-to-tail guide to mRNA turnover".
677: 633: 566: 526: 351: 263: 258: 83: 61: 4399:
Reinisch KM, Wolin SL (April 2007). "Emerging themes in non-coding RNA quality control".
3208: 2952:"Wispy, the Drosophila homolog of GLD-2, is required during oogenesis and egg activation" 1692:
Lutz CS (October 2008). "Alternative polyadenylation: a twist on mRNA 3β€² end formation".
5651: 5396: 5337: 4746: 4122: 4065: 3772: 2908: 2154: 1837: 1450: 1155: 1064: 1009: 309:
When the RNA is cleaved, polyadenylation starts, catalysed by polyadenylate polymerase.
6419: 6318: 6203: 6198: 5935: 5907: 5724: 5699: 5466: 5439: 5356: 5321: 5269:
Poon, Leo L. M.; Pritlove, David C.; Fodor, Ervin; Brownlee, George G. (1 April 1999).
5131: 5106: 4992: 4967: 4859: 4834: 4810: 4777: 4610: 4585: 4561: 4536: 4460: 4435: 4434:
Jia H, Wang X, Liu F, Guenther UP, Srinivasan S, Anderson JT, Jankowsky E (June 2011).
4376: 4351: 4327: 4302: 4237: 4212: 4188: 4163: 4139: 4106: 4082: 4049: 3980: 3955: 3887: 3862: 3838: 3813: 3789: 3756: 3732: 3707: 3683: 3650: 3626: 3593: 3569: 3534: 3510: 3477: 3450: 3425: 3352: 3325: 3217: 3192: 3133: 3108: 3033: 3000: 2976: 2951: 2927: 2892: 2819: 2794: 2767: 2742: 2718: 2693: 2316: 2291: 2267: 2242: 2109: 2084: 2060: 2035: 2006: 1981: 1954: 1929: 1905: 1880: 1856: 1821: 1669: 1644: 1608: 1518: 1493: 1469: 1434: 1375: 1350: 1323: 1296: 1232: 1207: 973: 948: 870: 845: 609: 538: 384: 282: 99: 5700:"3β€² end mRNA processing: molecular mechanisms and implications for health and disease" 5670: 5635: 5599: 5528: 5511: 5297: 5270: 5073: 5041: 5016: 4943: 4918: 4707: 4682: 3814:"Expression and function of micro-RNAs in immune cells during normal or disease state" 3426:"3β€² end mRNA processing: molecular mechanisms and implications for health and disease" 3401: 3376: 2868: 2843: 2669: 2644: 2541: 2516: 2406: 2381: 2218: 2193: 1797: 1781:"A mechanism for the regulation of pre-mRNA 3β€² processing by human cleavage factor Im" 1780: 1756: 1731: 1617: 1592: 1411: 861: 810: 793: 6471: 6136: 5823: 5415: 5380: 5172: 5155: 3924: 3050: 1570: 1120: 924: 899: 709: 613: 562: 546: 420: 400: 322: 293:
and occurs 10–30 nucleotides downstream of its binding site. This site often has the
118: 37: 6147: 5287: 4762: 4662: 4518: 3310: 2178: 1090: 1033: 6265: 6186: 6010: 5940: 5809: 5631: 5587: 5507: 3940: 3093: 2501: 2458: 915: 697: 542: 372: 274: 3861:
Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (November 2008).
2162: 827: 306:
site associated with a polyadenylation signal can vary up to some 50 nucleotides.
5346: 5247: 4895: 4793: 4485:"RNA degradation by the exosome is promoted by a nuclear polyadenylation complex" 4278: 4261: 3609: 2567:
Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K (August 2007).
1645:"Systematic variation in mRNA 3β€²-processing signals during mouse spermatogenesis" 1179: 996:
Zhuang Y, Zhang H, Lin S (June 2013). "Polyadenylation of 18S rRNA in algae(1)".
415:
There is polyadenylation in the cytosol of some animal cell types, namely in the
6444: 6291: 6250: 6113: 6042: 2967: 724: 720: 673: 586: 331: 4501: 4484: 4451: 4073: 3293: 3276: 3253: 3193:"Virtues and limitations of the preimplantation mouse embryo as a model system" 3169: 2897:
Proceedings of the National Academy of Sciences of the United States of America
2660: 1826:
Proceedings of the National Academy of Sciences of the United States of America
1439:
Proceedings of the National Academy of Sciences of the United States of America
479: 395: 127:
Chemical structure of RNA. The sequence of bases differs between RNA molecules.
6071: 4754: 4412: 3723: 3594:"Global patterns of tissue-specific alternative polyadenylation in Drosophila" 3551: 2793:
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, de Moor CH (2007).
2621: 2341:"Poly(A) tail length control is caused by termination of processive synthesis" 2258: 1896: 1554: 1073: 964: 740: 701: 510: 326: 5715: 5456: 5122: 4801: 4262:"p38 MAPK controls prothrombin expression by regulated RNA 3β€² end processing" 4228: 4107:"HITS-CLIP yields genome-wide insights into brain alternative RNA processing" 3674: 3617: 3560: 3501: 3441: 3024: 1997: 5015:
Yehudai-Resheff S, Portnoy V, Yogev S, Adir N, Schuster G (September 2003).
4698: 3780: 3016: 2917: 2645:"Multiple portions of poly(A)-binding protein stimulate translation in vivo" 1846: 1459: 1313: 716: 661: 189: 49: 21: 5733: 5660: 5617: 5561: 5544: 5475: 5424: 5405: 5365: 5306: 5255: 5217: 5181: 5140: 5091: 5050: 5001: 4952: 4934: 4903: 4868: 4819: 4716: 4683:"Comparative genomics and evolution of proteins involved in RNA metabolism" 4654: 4619: 4570: 4510: 4469: 4420: 4385: 4336: 4287: 4246: 4197: 4148: 4091: 4033: 4024: 4007: 3989: 3896: 3847: 3798: 3741: 3692: 3635: 3578: 3519: 3459: 3410: 3361: 3302: 3261: 3226: 3177: 3142: 3085: 3042: 2985: 2936: 2877: 2828: 2776: 2727: 2678: 2629: 2594: 2585: 2568: 2532: 2493: 2450: 2415: 2397: 2380:
Dichtl B, Blank D, Sadowski M, HΓΌbner W, Weiser S, Keller W (August 2002).
2357: 2340: 2325: 2276: 2227: 2118: 2069: 2015: 1963: 1914: 1865: 1806: 1765: 1713: 1678: 1562: 1527: 1478: 1419: 1384: 1332: 1278: 1241: 1163: 1082: 1025: 982: 933: 879: 819: 557:, polyadenylation is a way of marking the RNA for degradation, at least in 5749: 5679: 5570: 4367: 3932: 2550: 2366: 2170: 1626: 1128: 747:) in order to emphasize their own genes' expression over the host cell's. 277:
polyadenylation complex in the nucleus of eukaryotes works on products of
6091: 6081: 6005: 4983: 4647:
10.1002/(SICI)1521-1878(200003)22:3<235::AID-BIES5>3.0.CO;2-2
4601: 3878: 3666: 3493: 3392: 3377:"A large-scale analysis of mRNA polyadenylation of human and mouse genes" 3124: 2810: 2758: 2307: 2051: 1747: 1660: 1269: 1256: 518: 494: 416: 404: 205: 140: 57: 4850: 4130: 1945: 1509: 297:
sequence AAUAAA on the RNA, but variants of it that bind more weakly to
6411: 6391: 6386: 5827: 5032: 4552: 4436:"The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex" 4318: 4179: 3971: 3342: 2859: 1730:
Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D (July 2000).
1366: 1223: 705: 629: 625: 193: 144: 136: 52:, polyadenylation is part of the process that produces mature mRNA for 45: 5209: 3829: 2709: 1705: 1017: 6366: 6361: 6341: 6277: 6228: 3077: 2485: 2442: 2209: 2100: 1541:
Amaral PP, Mattick JS (August 2008). "Noncoding RNA in development".
756: 744: 554: 428: 380: 335: 253: 148: 5592:
A history of poly A sequences: from formation to factors to function
1494:"A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis" 1142:
Stevens A (1963). "Ribonucleic Acids-Biosynthesis and Degradation".
2292:"Molecular dissection of mRNA poly(A) tail length control in yeast" 6434: 6429: 6351: 6346: 6336: 6331: 6326: 6286: 5849: 5760: 2290:
Viphakone N, Voisinet-Hakil F, Minvielle-Sebastia L (April 2008).
2034:
Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ (May 2008).
736: 693: 502: 498:
much less common than just shortening the 3β€² untranslated region.
459: 5490:"Inhibition of host poly(A)-binding protein by virus ~ ViralZone" 5320:
Wu, Hung-Yi; Ke, Ting-Yung; Liao, Wei-Yu; Chang, Nai-Yun (2013).
4303:"Regulation of alternative polyadenylation by genomic imprinting" 3755:
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (June 2008).
3275:
PiquΓ© M, LΓ³pez JM, Foissac S, GuigΓ³ R, MΓ©ndez R (February 2008).
2950:
Cui J, Sackton KL, Horner VL, Kumar KE, Wolfner MF (April 2008).
1732:"Patterns of variant polyadenylation signal usage in human genes" 469:
Results of using different polyadenylation sites on the same gene
6449: 6439: 6281: 5322:"Regulation of Coronaviral Poly(A) Tail Length during Infection" 5236:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
4884:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
4782:
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
3324:
Benoit P, Papin C, Kwak JE, Wickens M, Simonelig M (June 2008).
1593:"Assembly of a processive messenger RNA polyadenylation complex" 1107:
Sarkar N (June 1997). "Polyadenylation of mRNA in prokaryotes".
769: 455: 451: 391: 298: 290: 217: 72: 6151: 5764: 2083:
Glover-Cutter K, Kim S, Espinosa J, Bentley DL (January 2008).
1492:
Yoshikawa M, Peragine A, Park MY, Poethig RS (September 2005).
5819: 446:
Cytoplasmic polyadenylation requires the RNA-binding proteins
359: 158: 114: 3277:"A combinatorial code for CPE-mediated translational control" 2741:
Kargapolova Y, Levin M, Lackner K, Danckwardt S (June 2017).
82:
segment of the newly made pre-mRNA is first cleaved off by a
2844:"A protein interaction framework for human mRNA degradation" 2643:
Gray NK, Coller JM, Dickson KS, Wickens M (September 2000).
489:
Since alternative polyadenylation changes the length of the
684:
concentrations than other nucleotides as a result of using
493:, it can also change which binding sites are available for 4006:
Shell SA, Hesse C, Morris SM, Milcarek C (December 2005).
5068:. Methods in Enzymology. Vol. 447. pp. 501–20. 1433:
Saini HK, Griffiths-Jones S, Enright AJ (November 2007).
3706:
Ogorodnikov A, Kargapolova Y, Danckwardt S (June 2016).
2194:"Long-range heterogeneity at the 3β€² ends of human mRNAs" 1879:
Yang Q, Coseno M, Gilmartin GM, DoubliΓ© S (March 2011).
624:
itself. This enzyme is found in bacteria, mitochondria,
4833:
Chang SA, Cozad M, Mackie GA, Jones GH (January 2008).
3240:
Richter JD (June 2007). "CPEB: a life in translation".
1049:"RNA turnover: unexpected consequences of being tailed" 900:"Cytoplasmic polyadenylation in development and beyond" 628:
and as a constituent of the archaeal exosome (in those
44:; in other words, it is a stretch of RNA that has only 4778:"Mitochondrial poly(A) polymerase and polyadenylation" 4162:
Hall-Pogar T, Liang S, Hague LK, Lutz CS (July 2007).
700:. Its catalytic domain is homologous to that of other 5698:
Danckwardt S, Hentze MW, Kulozik AE (February 2008).
3535:"Biased alternative polyadenylation in human tissues" 3424:
Danckwardt S, Hentze MW, Kulozik AE (February 2008).
755:
Poly(A)polymerase was first identified in 1960 as an
561:. This polyadenylation is done in the nucleus by the 1928:
Venkataraman K, Brown KM, Gilmartin GM (June 2005).
696:, which is the enzyme that completes the 3β€² ends of 6410: 6317: 6264: 6185: 6124: 6033: 5998: 5972: 5963: 5921: 5895: 5869: 5860: 5798: 4681:Anantharaman V, Koonin EV, Aravind L (April 2002). 4584:Slomovic S, Laufer D, Geiger D, Schuster G (2006). 3158:
Biochemical and Biophysical Research Communications
1351:"Early evolution of histone mRNA 3β€² end processing" 16:
Addition of adenylic acids to 3' end of mature mRNA
5545:"Mechanism and regulation of mRNA polyadenylation" 1178: 454:, and can involve other RNA-binding proteins like 224: β€“ a poly(A) tail is part of the mature RNA. 4586:"Polyadenylation of ribosomal RNA in human cells" 846:"Regulation of mRNA stability in mammalian cells" 5066:RNA Turnover in Bacteria, Archaea and Organelles 3478:"Alternative polyadenylation of mRNA precursors" 1435:"Genomic analysis of human microRNA transcripts" 794:"Integrating mRNA processing with transcription" 792:Proudfoot NJ, Furger A, Dye MJ (February 2002). 5640:Proceedings of the National Academy of Sciences 5385:Proceedings of the National Academy of Sciences 4676: 4674: 4672: 4530: 4528: 2515:Coller JM, Gray NK, Wickens MP (October 1998). 1591:Bienroth S, Keller W, Wahle E (February 1993). 1208:"Trading translation with RNA-binding proteins" 5634:; Vaughan, M. H.; Nakazato, H. (1 June 1971). 4350:Marini F, Scherzinger D, Danckwardt S (2021). 3533:Zhang, Haibo; Lee, Ju Youn; Tian, Bin (2005). 2893:"MicroRNAs direct rapid deadenylation of mRNA" 2562: 2560: 1177:Lehninger AL, Nelson DL, Cox MM, eds. (1993). 346:The poly(A) tail acts as the binding site for 40:(mRNA). The poly(A) tail consists of multiple 6163: 5776: 4917:Walter M, Kilian J, Kudla J (December 2002). 4728: 4726: 3812:Tili E, Michaille JJ, Calin GA (April 2008). 1820:Yang Q, Gilmartin GM, DoubliΓ© S (June 2010). 1349:DΓ‘vila LΓ³pez M, Samuelsson T (January 2008). 949:"Emerging features of mRNA decay in bacteria" 743:, inhibit the cell's poly-A binding protein ( 241:: cleavage/polyadenylation specificity factor 67:The process of polyadenylation begins as the 25:Typical structure of a mature eukaryotic mRNA 8: 2788: 2786: 1725: 1723: 715:Polyadenylate tails are observed in several 712:, never evolved a polyadenylate polymerase. 672:. This enzyme is part of both the bacterial 589:, which contains two RNA-degrading enzymes: 5582: 5580: 4537:"RNA-specific ribonucleotidyl transferases" 3107:Jung MY, Lorenz L, Richter JD (June 2006). 1586: 1584: 1582: 1580: 787: 785: 668:The most ancient polyadenylating enzyme is 6270: 6191: 6170: 6156: 6148: 5969: 5931:Precursor mRNA (pre-mRNA / hnRNA) 5866: 5783: 5769: 5761: 1344: 1342: 904:Microbiology and Molecular Biology Reviews 5723: 5669: 5659: 5560: 5527: 5465: 5455: 5414: 5404: 5355: 5345: 5296: 5286: 5171: 5130: 5040: 4991: 4942: 4858: 4809: 4706: 4609: 4560: 4500: 4459: 4375: 4326: 4277: 4236: 4187: 4138: 4081: 4023: 3979: 3886: 3837: 3818:International Journal of Medical Sciences 3788: 3731: 3682: 3649:Lee, Ju Youn; Ji, Zhe; Tian, Bin (2008). 3625: 3568: 3550: 3509: 3449: 3400: 3351: 3341: 3292: 3216: 3132: 3032: 2975: 2926: 2916: 2867: 2818: 2766: 2717: 2668: 2584: 2540: 2431:Nature Structural & Molecular Biology 2405: 2356: 2315: 2266: 2217: 2108: 2089:Nature Structural & Molecular Biology 2059: 2005: 1953: 1904: 1855: 1845: 1796: 1755: 1668: 1616: 1517: 1468: 1458: 1374: 1322: 1312: 1268: 1231: 1072: 972: 923: 893: 891: 889: 869: 839: 837: 809: 216:RNAs that, for example, includes the RNA 2029: 2027: 2025: 1779:Brown KM, Gilmartin GM (December 2003). 1102: 1100: 576: 464: 122: 20: 3954:Tian B, Pan Z, Lee JY (February 2007). 3375:Tian B, Hu J, Zhang H, Lutz CS (2005). 1975: 1973: 1290: 1288: 781: 5543:Colgan DF, Manley JL (November 1997). 5229: 5227: 3482:Nature Reviews. Molecular Cell Biology 2891:Wu L, Fan J, Belasco JG (March 2006). 1638: 1636: 608:In as different groups as animals and 5951:Histone acetylation and deacetylation 4776:Chang, Jeong Ho; Tong, Liang (2012). 4401:Current Opinion in Structural Biology 4001: 3999: 3471: 3469: 3066:Nature Reviews Molecular Cell Biology 1255:Mattick JS, Makunin IV (April 2006). 844:Guhaniyogi J, Brewer G (March 2001). 533:Tagging for degradation in eukaryotes 7: 6016:Ribosome-nascent chain complex (RNC) 4535:Martin G, Keller W (November 2007). 3476:Tian, Bin; Manley, James L. (2017). 3209:10.1016/j.theriogenology.2007.09.032 2842:Lehner B, Sanderson CM (July 2004). 5154:Portnoy V, Schuster G (June 2008). 4012:The Journal of Biological Chemistry 2573:The Journal of Biological Chemistry 2345:The Journal of Biological Chemistry 2241:Balbo PB, Bohm A (September 2007). 1156:10.1146/annurev.bi.32.070163.000311 212: β€“ a seemingly large group of 4735:Critical Reviews in Plant Sciences 1609:10.1002/j.1460-2075.1993.tb05690.x 403:and human cells, most notably the 390:In animals, poly(A) ribonuclease ( 313:builds the poly(A) tail by adding 36:to an RNA transcript, typically a 14: 6179:Post-transcriptional modification 2692:Meaux S, Van Hoof A (July 2006). 1206:Abaza I, Gebauer F (March 2008). 1185:(2nd ed.). New York: Worth. 256:: polyadenylate binding protein 2 5748: 5510:; Abrams, Richard (April 1960). 5173:10.1111/j.1574-6968.2008.01157.x 1263:. 15 Spec No 1 (90001): R17-29. 1121:10.1146/annurev.biochem.66.1.173 358:-4G, which in turn recruits the 285:. Here, a multi-protein complex 6021:Post-translational modification 5516:Journal of Biological Chemistry 5288:10.1128/JVI.73.4.3473-3476.1999 2610:Current Opinion in Cell Biology 659:and the salt-tolerant archaean 4966:Portnoy V, Schuster G (2006). 3242:Trends in Biochemical Sciences 3113:Molecular and Cellular Biology 916:10.1128/MMBR.63.2.446-456.1999 650:last universal common ancestor 1: 5600:10.1016/S0079-6603(02)71046-5 5529:10.1016/S0021-9258(18)69494-3 5074:10.1016/S0076-6879(08)02224-6 2163:10.1126/science.274.5292.1517 1798:10.1016/S1097-2765(03)00453-2 1412:10.1016/S0888-7543(02)96850-3 1144:Annual Review of Biochemistry 1109:Annual Review of Biochemistry 862:10.1016/S0378-1119(01)00350-X 811:10.1016/S0092-8674(02)00617-7 573:In prokaryotes and organelles 287:(see components on the right) 246:: cleavage stimulation factor 171:). The rest of the mRNA, the 5347:10.1371/journal.pone.0070548 5248:10.1016/j.bbagrm.2007.12.004 4896:10.1016/j.bbagrm.2008.02.001 4794:10.1016/j.bbagrm.2011.10.012 4279:10.1016/j.molcel.2010.12.032 3925:10.1016/0092-8674(80)90615-7 3610:10.1016/j.celrep.2012.01.001 670:polynucleotide phosphorylase 622:polynucleotide phosphorylase 591:polynucleotide phosphorylase 2968:10.1534/genetics.107.084558 1047:Anderson JT (August 2005). 507:cleavage stimulatory factor 474:Alternative polyadenylation 411:Cytoplasmic polyadenylation 88:alternative polyadenylation 6501: 4502:10.1016/j.cell.2005.04.029 4452:10.1016/j.cell.2011.05.010 4074:10.1038/s41467-018-07580-5 3294:10.1016/j.cell.2007.12.038 3254:10.1016/j.tibs.2007.04.004 3170:10.1016/j.bbrc.2005.08.250 1181:Principles of biochemistry 251:: polyadenylate polymerase 112: 6273: 6194: 5444:Frontiers in Microbiology 5160:FEMS Microbiology Letters 4755:10.1080/07352680500391337 4413:10.1016/j.sbi.2007.03.012 3724:10.1007/s00424-016-1828-3 3552:10.1186/gb-2005-6-12-r100 2622:10.1016/j.ceb.2004.03.013 2339:Wahle E (February 1995). 2259:10.1016/j.str.2007.07.010 1897:10.1016/j.str.2010.12.021 1555:10.1007/s00335-008-9136-7 1074:10.1016/j.cub.2005.08.002 965:10.1017/S1355838200001023 947:Steege DA (August 2000). 648:of life implies that the 334:, a complex that removes 321:to the RNA, cleaving off 222:X chromosome inactivation 6082:sequestration (P-bodies) 5716:10.1038/sj.emboj.7601932 5457:10.3389/fmicb.2018.02250 5123:10.1038/sj.embor.7400571 4229:10.1038/sj.emboj.7601699 3442:10.1038/sj.emboj.7601932 3191:Taft RA (January 2008). 2661:10.1093/emboj/19.17.4723 1998:10.1038/sj.emboj.7601331 1261:Human Molecular Genetics 898:Richter JD (June 1999). 735:. Some viruses, such as 665:lack this modification. 656:Mycoplasma gallisepticum 311:Polyadenylate polymerase 42:adenosine monophosphates 6246:Poly(A)-binding protein 6060:Gene regulatory network 5549:Genes & Development 4839:Journal of Bacteriology 4307:Genes & Development 3781:10.1126/science.1155390 3017:10.1126/science.abe6523 2918:10.1073/pnas.0510928103 2521:Genes & Development 2474:Mayo Clinic Proceedings 1934:Genes & Development 1847:10.1073/pnas.1000848107 1498:Genes & Development 1460:10.1073/pnas.0703890104 1314:10.1186/1471-2164-9-220 348:poly(A)-binding protein 315:adenosine monophosphate 179:Nuclear polyadenylation 6065:cis-regulatory element 5661:10.1073/pnas.68.6.1336 5562:10.1101/gad.11.21.2755 5406:10.1073/pnas.251542798 4972:Nucleic Acids Research 4687:Nucleic Acids Research 4590:Nucleic Acids Research 4356:Nucleic Acids Research 4025:10.1074/jbc.M508848200 3867:Nucleic Acids Research 3655:Nucleic Acids Research 3381:Nucleic Acids Research 2799:Nucleic Acids Research 2747:Nucleic Acids Research 2586:10.1074/jbc.M701256200 2533:10.1101/gad.12.20.3226 2358:10.1074/jbc.270.6.2800 2296:Nucleic Acids Research 2040:Nucleic Acids Research 1649:Nucleic Acids Research 689:nucleotides in them). 582: 470: 441:long-term potentiation 377:3β€² untranslated region 319:adenosine triphosphate 295:polyadenylation signal 151:). RNAs are produced ( 128: 26: 4699:10.1093/nar/30.7.1427 4054:Nature Communications 580: 509:(CstF), increases in 468: 439:could play a role in 266:: cleavage factor II 126: 113:Further information: 32:is the addition of a 24: 6309:Alternative splicing 6087:alternative splicing 6077:Post-transcriptional 5903:Transcription factor 5757:at Wikimedia Commons 5494:viralzone.expasy.org 4935:10.1093/emboj/cdf686 3494:10.1038/nrm.2016.116 3125:10.1128/MCB.02470-05 2398:10.1093/emboj/cdf390 1748:10.1101/gr.10.7.1001 1694:ACS Chemical Biology 998:Journal of Phycology 729:Alfalfa mosaic virus 173:untranslated regions 92:alternative splicing 6011:Transfer RNA (tRNA) 5652:1971PNAS...68.1336E 5397:2001PNAS...9814286N 5391:(25): 14286–14291. 5338:2013PLoSO...870548W 5275:Journal of Virology 4851:10.1128/JB.00327-07 4747:2006CRvPS..25...65S 4368:10.1093/nar/gkaa722 4131:10.1038/nature07488 4123:2008Natur.456..464L 4066:2018NatCo...9.5331O 3773:2008Sci...320.1643S 2909:2006PNAS..103.4034W 2155:1996Sci...274.1517S 1946:10.1101/gad.1298605 1838:2010PNAS..10710062Y 1510:10.1101/gad.1352605 1451:2007PNAS..10417719S 1065:2005CBio...15.R635A 1010:2013JPcgy..49..570Z 599:secondary structure 515:lipopolysaccharides 261:: cleavage factor I 210:long noncoding RNAs 6420:5β€² cap methylation 6125:Influential people 6104:Post-translational 5923:Post-transcription 5033:10.1105/tpc.013326 4984:10.1093/nar/gkl763 4602:10.1093/nar/gkl357 4553:10.1261/rna.652807 4362:(D1): D:243–D253. 4319:10.1101/gad.473408 4180:10.1261/rna.577707 3972:10.1101/gr.5532707 3879:10.1093/nar/gkn624 3667:10.1093/nar/gkn540 3393:10.1093/nar/gki158 3343:10.1242/dev.021444 3011:(6529): eabe6523. 2860:10.1101/gr.2122004 2811:10.1093/nar/gkm830 2759:10.1093/nar/gkx152 2308:10.1093/nar/gkn080 2052:10.1093/nar/gkn158 1661:10.1093/nar/gkl919 1367:10.1261/rna.782308 1270:10.1093/hmg/ddl046 1224:10.1261/rna.848208 757:enzymatic activity 662:Haloferax volcanii 583: 471: 394:) can bind to the 381:immature egg cells 342:Downstream effects 235:Proteins involved: 129: 27: 6465: 6464: 6406: 6405: 6402: 6401: 6319:pre-mRNA factors 6145: 6144: 6029: 6028: 5959: 5958: 5835:Special transfers 5753:Media related to 5609:978-0-12-540071-8 5210:10.1021/bi8012214 5083:978-0-12-374377-0 4788:(9–10): 992–997. 3830:10.7150/ijms.5.73 3661:(17): 5581–5590. 2753:(10): 6074–6086. 2710:10.1261/rna.46306 2149:(5292): 1517–20. 1706:10.1021/cb800138w 1192:978-0-87901-500-8 1018:10.1111/jpy.12068 694:CCA-adding enzyme 676:and the archaeal 356:initiation factor 279:RNA polymerase II 271: 270: 220:, which mediates 109:Background on RNA 6490: 6271: 6204:5β€² cap formation 6192: 6172: 6165: 6158: 6149: 5970: 5867: 5785: 5778: 5771: 5762: 5752: 5737: 5727: 5704:The EMBO Journal 5684: 5683: 5673: 5663: 5646:(6): 1336–1340. 5628: 5622: 5621: 5584: 5575: 5574: 5564: 5540: 5534: 5533: 5531: 5522:(4): 1142–1149. 5504: 5498: 5497: 5486: 5480: 5479: 5469: 5459: 5435: 5429: 5428: 5418: 5408: 5376: 5370: 5369: 5359: 5349: 5317: 5311: 5310: 5300: 5290: 5281:(4): 3473–3476. 5266: 5260: 5259: 5231: 5222: 5221: 5204:(50): 13158–68. 5192: 5186: 5185: 5175: 5151: 5145: 5144: 5134: 5102: 5096: 5095: 5061: 5055: 5054: 5044: 5012: 5006: 5005: 4995: 4963: 4957: 4956: 4946: 4923:The EMBO Journal 4914: 4908: 4907: 4879: 4873: 4872: 4862: 4830: 4824: 4823: 4813: 4773: 4767: 4766: 4730: 4721: 4720: 4710: 4678: 4667: 4666: 4630: 4624: 4623: 4613: 4581: 4575: 4574: 4564: 4532: 4523: 4522: 4504: 4480: 4474: 4473: 4463: 4431: 4425: 4424: 4396: 4390: 4389: 4379: 4347: 4341: 4340: 4330: 4298: 4292: 4291: 4281: 4257: 4251: 4250: 4240: 4217:The EMBO Journal 4208: 4202: 4201: 4191: 4159: 4153: 4152: 4142: 4102: 4096: 4095: 4085: 4044: 4038: 4037: 4027: 4018:(48): 39950–61. 4003: 3994: 3993: 3983: 3951: 3945: 3944: 3907: 3901: 3900: 3890: 3858: 3852: 3851: 3841: 3809: 3803: 3802: 3792: 3767:(5883): 1643–7. 3752: 3746: 3745: 3735: 3703: 3697: 3696: 3686: 3646: 3640: 3639: 3629: 3589: 3583: 3582: 3572: 3554: 3530: 3524: 3523: 3513: 3473: 3464: 3463: 3453: 3430:The EMBO Journal 3421: 3415: 3414: 3404: 3372: 3366: 3365: 3355: 3345: 3321: 3315: 3314: 3296: 3272: 3266: 3265: 3237: 3231: 3230: 3220: 3188: 3182: 3181: 3153: 3147: 3146: 3136: 3104: 3098: 3097: 3078:10.1038/35067025 3061: 3055: 3054: 3036: 2996: 2990: 2989: 2979: 2947: 2941: 2940: 2930: 2920: 2888: 2882: 2881: 2871: 2839: 2833: 2832: 2822: 2790: 2781: 2780: 2770: 2738: 2732: 2731: 2721: 2689: 2683: 2682: 2672: 2649:The EMBO Journal 2640: 2634: 2633: 2605: 2599: 2598: 2588: 2579:(34): 25067–75. 2564: 2555: 2554: 2544: 2512: 2506: 2505: 2486:10.4065/77.8.785 2469: 2463: 2462: 2443:10.1038/nsmb1253 2426: 2420: 2419: 2409: 2386:The EMBO Journal 2377: 2371: 2370: 2360: 2336: 2330: 2329: 2319: 2287: 2281: 2280: 2270: 2238: 2232: 2231: 2221: 2210:10.1101/gr.62002 2189: 2183: 2182: 2138: 2132: 2129: 2123: 2122: 2112: 2101:10.1038/nsmb1352 2080: 2074: 2073: 2063: 2031: 2020: 2019: 2009: 1986:The EMBO Journal 1977: 1968: 1967: 1957: 1925: 1919: 1918: 1908: 1876: 1870: 1869: 1859: 1849: 1817: 1811: 1810: 1800: 1776: 1770: 1769: 1759: 1727: 1718: 1717: 1689: 1683: 1682: 1672: 1640: 1631: 1630: 1620: 1597:The EMBO Journal 1588: 1575: 1574: 1543:Mammalian Genome 1538: 1532: 1531: 1521: 1489: 1483: 1482: 1472: 1462: 1445:(45): 17719–24. 1430: 1424: 1423: 1395: 1389: 1388: 1378: 1346: 1337: 1336: 1326: 1316: 1292: 1283: 1282: 1272: 1257:"Non-coding RNA" 1252: 1246: 1245: 1235: 1203: 1197: 1196: 1184: 1174: 1168: 1167: 1139: 1133: 1132: 1104: 1095: 1094: 1076: 1044: 1038: 1037: 993: 987: 986: 976: 944: 938: 937: 927: 895: 884: 883: 873: 841: 832: 831: 813: 789: 733:Duck Hepatitis A 232: 231: 208:. But, for many 6500: 6499: 6493: 6492: 6491: 6489: 6488: 6487: 6478:Gene expression 6468: 6467: 6466: 6461: 6398: 6313: 6260: 6256:Polyuridylation 6209:Polyadenylation 6181: 6176: 6146: 6141: 6120: 6055:Transcriptional 6025: 5994: 5955: 5946:Polyadenylation 5917: 5891: 5856: 5850:Proteinβ†’Protein 5801: 5794: 5792:Gene expression 5789: 5755:Polyadenylation 5745: 5740: 5697: 5693: 5691:Further reading 5688: 5687: 5630: 5629: 5625: 5610: 5586: 5585: 5578: 5555:(21): 2755–66. 5542: 5541: 5537: 5506: 5505: 5501: 5488: 5487: 5483: 5437: 5436: 5432: 5378: 5377: 5373: 5319: 5318: 5314: 5268: 5267: 5263: 5233: 5232: 5225: 5194: 5193: 5189: 5153: 5152: 5148: 5117:(12): 1188–93. 5104: 5103: 5099: 5084: 5063: 5062: 5058: 5014: 5013: 5009: 4978:(20): 5923–31. 4965: 4964: 4960: 4929:(24): 6905–14. 4916: 4915: 4911: 4881: 4880: 4876: 4832: 4831: 4827: 4775: 4774: 4770: 4732: 4731: 4724: 4680: 4679: 4670: 4632: 4631: 4627: 4596:(10): 2966–75. 4583: 4582: 4578: 4547:(11): 1834–49. 4534: 4533: 4526: 4482: 4481: 4477: 4433: 4432: 4428: 4398: 4397: 4393: 4349: 4348: 4344: 4300: 4299: 4295: 4259: 4258: 4254: 4223:(11): 2658–69. 4210: 4209: 4205: 4161: 4160: 4156: 4117:(7221): 464–9. 4104: 4103: 4099: 4046: 4045: 4041: 4005: 4004: 3997: 3960:Genome Research 3953: 3952: 3948: 3909: 3908: 3904: 3873:(19): 6318–32. 3860: 3859: 3855: 3811: 3810: 3806: 3754: 3753: 3749: 3718:(6): 993–1012. 3712:PflΓΌgers Archiv 3705: 3704: 3700: 3648: 3647: 3643: 3591: 3590: 3586: 3532: 3531: 3527: 3475: 3474: 3467: 3423: 3422: 3418: 3374: 3373: 3369: 3336:(11): 1969–79. 3323: 3322: 3318: 3274: 3273: 3269: 3239: 3238: 3234: 3190: 3189: 3185: 3155: 3154: 3150: 3119:(11): 4277–87. 3106: 3105: 3101: 3063: 3062: 3058: 2998: 2997: 2993: 2949: 2948: 2944: 2890: 2889: 2885: 2848:Genome Research 2841: 2840: 2836: 2792: 2791: 2784: 2740: 2739: 2735: 2691: 2690: 2686: 2655:(17): 4723–33. 2642: 2641: 2637: 2607: 2606: 2602: 2566: 2565: 2558: 2527:(20): 3226–35. 2514: 2513: 2509: 2471: 2470: 2466: 2428: 2427: 2423: 2392:(15): 4125–35. 2379: 2378: 2374: 2338: 2337: 2333: 2289: 2288: 2284: 2240: 2239: 2235: 2198:Genome Research 2191: 2190: 2186: 2140: 2139: 2135: 2130: 2126: 2082: 2081: 2077: 2033: 2032: 2023: 1992:(20): 4854–64. 1979: 1978: 1971: 1940:(11): 1315–27. 1927: 1926: 1922: 1878: 1877: 1873: 1832:(22): 10062–7. 1819: 1818: 1814: 1778: 1777: 1773: 1736:Genome Research 1729: 1728: 1721: 1691: 1690: 1686: 1642: 1641: 1634: 1590: 1589: 1578: 1549:(7–8): 454–92. 1540: 1539: 1535: 1504:(18): 2164–75. 1491: 1490: 1486: 1432: 1431: 1427: 1397: 1396: 1392: 1348: 1347: 1340: 1294: 1293: 1286: 1254: 1253: 1249: 1205: 1204: 1200: 1193: 1176: 1175: 1171: 1141: 1140: 1136: 1106: 1105: 1098: 1053:Current Biology 1046: 1045: 1041: 995: 994: 990: 946: 945: 941: 897: 896: 887: 843: 842: 835: 791: 790: 783: 778: 766: 753: 642: 575: 539:non-coding RNAs 535: 527:DNA methylation 513:in response to 505:, a subunit of 484:Ribo-sequencing 476: 419:, during early 413: 379:of an mRNA. In 369: 344: 262: 257: 252: 247: 242: 236: 230: 186: 181: 121: 111: 100:non-coding RNAs 84:set of proteins 62:gene expression 30:Polyadenylation 17: 12: 11: 5: 6498: 6497: 6494: 6486: 6485: 6480: 6470: 6469: 6463: 6462: 6460: 6459: 6458: 6457: 6452: 6447: 6442: 6437: 6432: 6425:mRNA decapping 6422: 6416: 6414: 6408: 6407: 6404: 6403: 6400: 6399: 6397: 6396: 6395: 6394: 6389: 6384: 6379: 6374: 6369: 6364: 6359: 6354: 6349: 6344: 6339: 6334: 6323: 6321: 6315: 6314: 6312: 6311: 6306: 6305: 6304: 6299: 6289: 6284: 6274: 6268: 6262: 6261: 6259: 6258: 6253: 6248: 6243: 6242: 6241: 6236: 6231: 6226: 6221: 6216: 6206: 6201: 6199:Precursor mRNA 6195: 6189: 6183: 6182: 6177: 6175: 6174: 6167: 6160: 6152: 6143: 6142: 6140: 6139: 6134: 6132:FranΓ§ois Jacob 6128: 6126: 6122: 6121: 6119: 6118: 6117: 6116: 6111: 6101: 6096: 6095: 6094: 6089: 6084: 6074: 6069: 6068: 6067: 6062: 6052: 6051: 6050: 6039: 6037: 6031: 6030: 6027: 6026: 6024: 6023: 6018: 6013: 6008: 6002: 6000: 5996: 5995: 5993: 5992: 5987: 5982: 5976: 5974: 5967: 5961: 5960: 5957: 5956: 5954: 5953: 5948: 5943: 5938: 5933: 5927: 5925: 5919: 5918: 5916: 5915: 5910: 5908:RNA polymerase 5905: 5899: 5897: 5893: 5892: 5890: 5889: 5884: 5879: 5873: 5871: 5864: 5858: 5857: 5855: 5854: 5853: 5852: 5847: 5842: 5832: 5831: 5830: 5812: 5806: 5804: 5796: 5795: 5790: 5788: 5787: 5780: 5773: 5765: 5759: 5758: 5744: 5743:External links 5741: 5739: 5738: 5694: 5692: 5689: 5686: 5685: 5623: 5608: 5576: 5535: 5499: 5481: 5430: 5371: 5312: 5261: 5223: 5187: 5146: 5097: 5082: 5056: 5027:(9): 2003–19. 5021:The Plant Cell 5007: 4958: 4909: 4874: 4825: 4768: 4722: 4693:(7): 1427–64. 4668: 4625: 4576: 4524: 4475: 4446:(6): 890–901. 4426: 4391: 4342: 4293: 4272:(3): 298–310. 4266:Molecular Cell 4252: 4203: 4174:(7): 1103–15. 4154: 4097: 4039: 3995: 3946: 3919:(2): 293–301. 3902: 3853: 3804: 3747: 3698: 3641: 3604:(3): 277–289. 3584: 3539:Genome Biology 3525: 3465: 3416: 3367: 3316: 3267: 3232: 3197:Theriogenology 3183: 3148: 3099: 3056: 2991: 2962:(4): 2017–29. 2942: 2903:(11): 4034–9. 2883: 2854:(7): 1315–23. 2834: 2782: 2733: 2704:(7): 1323–37. 2684: 2635: 2600: 2556: 2507: 2480:(8): 785–808. 2464: 2421: 2372: 2331: 2302:(7): 2418–33. 2282: 2253:(9): 1117–31. 2233: 2204:(7): 1068–74. 2184: 2133: 2124: 2075: 2046:(9): 3150–61. 2021: 1969: 1920: 1871: 1812: 1791:(6): 1467–76. 1785:Molecular Cell 1771: 1742:(7): 1001–10. 1719: 1700:(10): 609–17. 1684: 1632: 1576: 1533: 1484: 1425: 1390: 1338: 1284: 1247: 1198: 1191: 1169: 1134: 1096: 1059:(16): R635-8. 1039: 988: 959:(8): 1079–90. 939: 885: 856:(1–2): 11–23. 833: 780: 779: 777: 774: 773: 772: 765: 762: 752: 749: 641: 638: 574: 571: 534: 531: 475: 472: 412: 409: 385:egg activation 371:In eukaryotic 368: 365: 343: 340: 283:precursor mRNA 269: 268: 229: 226: 185: 182: 180: 177: 110: 107: 90:), similar to 15: 13: 10: 9: 6: 4: 3: 2: 6496: 6495: 6484: 6483:Messenger RNA 6481: 6479: 6476: 6475: 6473: 6456: 6453: 6451: 6448: 6446: 6443: 6441: 6438: 6436: 6433: 6431: 6428: 6427: 6426: 6423: 6421: 6418: 6417: 6415: 6413: 6409: 6393: 6390: 6388: 6385: 6383: 6380: 6378: 6375: 6373: 6370: 6368: 6365: 6363: 6360: 6358: 6355: 6353: 6350: 6348: 6345: 6343: 6340: 6338: 6335: 6333: 6330: 6329: 6328: 6325: 6324: 6322: 6320: 6316: 6310: 6307: 6303: 6300: 6298: 6295: 6294: 6293: 6290: 6288: 6285: 6283: 6279: 6276: 6275: 6272: 6269: 6267: 6263: 6257: 6254: 6252: 6249: 6247: 6244: 6240: 6237: 6235: 6232: 6230: 6227: 6225: 6222: 6220: 6217: 6215: 6212: 6211: 6210: 6207: 6205: 6202: 6200: 6197: 6196: 6193: 6190: 6188: 6184: 6180: 6173: 6168: 6166: 6161: 6159: 6154: 6153: 6150: 6138: 6137:Jacques Monod 6135: 6133: 6130: 6129: 6127: 6123: 6115: 6112: 6110: 6107: 6106: 6105: 6102: 6100: 6099:Translational 6097: 6093: 6090: 6088: 6085: 6083: 6080: 6079: 6078: 6075: 6073: 6070: 6066: 6063: 6061: 6058: 6057: 6056: 6053: 6049: 6046: 6045: 6044: 6041: 6040: 6038: 6036: 6032: 6022: 6019: 6017: 6014: 6012: 6009: 6007: 6004: 6003: 6001: 5997: 5991: 5988: 5986: 5983: 5981: 5978: 5977: 5975: 5971: 5968: 5966: 5962: 5952: 5949: 5947: 5944: 5942: 5939: 5937: 5934: 5932: 5929: 5928: 5926: 5924: 5920: 5914: 5911: 5909: 5906: 5904: 5901: 5900: 5898: 5894: 5888: 5885: 5883: 5880: 5878: 5875: 5874: 5872: 5868: 5865: 5863: 5862:Transcription 5859: 5851: 5848: 5846: 5843: 5841: 5838: 5837: 5836: 5833: 5829: 5825: 5821: 5818: 5817: 5816: 5815:Central dogma 5813: 5811: 5808: 5807: 5805: 5803: 5797: 5793: 5786: 5781: 5779: 5774: 5772: 5767: 5766: 5763: 5756: 5751: 5747: 5746: 5742: 5735: 5731: 5726: 5721: 5717: 5713: 5710:(3): 482–98. 5709: 5705: 5701: 5696: 5695: 5690: 5681: 5677: 5672: 5667: 5662: 5657: 5653: 5649: 5645: 5641: 5637: 5633: 5627: 5624: 5619: 5615: 5611: 5605: 5601: 5597: 5593: 5589: 5583: 5581: 5577: 5572: 5568: 5563: 5558: 5554: 5550: 5546: 5539: 5536: 5530: 5525: 5521: 5517: 5513: 5509: 5508:Edmonds, Mary 5503: 5500: 5495: 5491: 5485: 5482: 5477: 5473: 5468: 5463: 5458: 5453: 5449: 5445: 5441: 5434: 5431: 5426: 5422: 5417: 5412: 5407: 5402: 5398: 5394: 5390: 5386: 5382: 5375: 5372: 5367: 5363: 5358: 5353: 5348: 5343: 5339: 5335: 5332:(7): e70548. 5331: 5327: 5323: 5316: 5313: 5308: 5304: 5299: 5294: 5289: 5284: 5280: 5276: 5272: 5265: 5262: 5257: 5253: 5249: 5245: 5242:(4): 247–55. 5241: 5237: 5230: 5228: 5224: 5219: 5215: 5211: 5207: 5203: 5199: 5191: 5188: 5183: 5179: 5174: 5169: 5166:(1): 97–103. 5165: 5161: 5157: 5150: 5147: 5142: 5138: 5133: 5128: 5124: 5120: 5116: 5112: 5108: 5101: 5098: 5093: 5089: 5085: 5079: 5075: 5071: 5067: 5060: 5057: 5052: 5048: 5043: 5038: 5034: 5030: 5026: 5022: 5018: 5011: 5008: 5003: 4999: 4994: 4989: 4985: 4981: 4977: 4973: 4969: 4962: 4959: 4954: 4950: 4945: 4940: 4936: 4932: 4928: 4924: 4920: 4913: 4910: 4905: 4901: 4897: 4893: 4889: 4885: 4878: 4875: 4870: 4866: 4861: 4856: 4852: 4848: 4845:(1): 98–106. 4844: 4840: 4836: 4829: 4826: 4821: 4817: 4812: 4807: 4803: 4799: 4795: 4791: 4787: 4783: 4779: 4772: 4769: 4764: 4760: 4756: 4752: 4748: 4744: 4740: 4736: 4729: 4727: 4723: 4718: 4714: 4709: 4704: 4700: 4696: 4692: 4688: 4684: 4677: 4675: 4673: 4669: 4664: 4660: 4656: 4652: 4648: 4644: 4641:(3): 235–44. 4640: 4636: 4629: 4626: 4621: 4617: 4612: 4607: 4603: 4599: 4595: 4591: 4587: 4580: 4577: 4572: 4568: 4563: 4558: 4554: 4550: 4546: 4542: 4538: 4531: 4529: 4525: 4520: 4516: 4512: 4508: 4503: 4498: 4495:(5): 713–24. 4494: 4490: 4486: 4479: 4476: 4471: 4467: 4462: 4457: 4453: 4449: 4445: 4441: 4437: 4430: 4427: 4422: 4418: 4414: 4410: 4407:(2): 209–14. 4406: 4402: 4395: 4392: 4387: 4383: 4378: 4373: 4369: 4365: 4361: 4357: 4353: 4346: 4343: 4338: 4334: 4329: 4324: 4320: 4316: 4313:(9): 1141–6. 4312: 4308: 4304: 4297: 4294: 4289: 4285: 4280: 4275: 4271: 4267: 4263: 4256: 4253: 4248: 4244: 4239: 4234: 4230: 4226: 4222: 4218: 4214: 4207: 4204: 4199: 4195: 4190: 4185: 4181: 4177: 4173: 4169: 4165: 4158: 4155: 4150: 4146: 4141: 4136: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4101: 4098: 4093: 4089: 4084: 4079: 4075: 4071: 4067: 4063: 4059: 4055: 4051: 4043: 4040: 4035: 4031: 4026: 4021: 4017: 4013: 4009: 4002: 4000: 3996: 3991: 3987: 3982: 3977: 3973: 3969: 3966:(2): 156–65. 3965: 3961: 3957: 3950: 3947: 3942: 3938: 3934: 3930: 3926: 3922: 3918: 3914: 3906: 3903: 3898: 3894: 3889: 3884: 3880: 3876: 3872: 3868: 3864: 3857: 3854: 3849: 3845: 3840: 3835: 3831: 3827: 3823: 3819: 3815: 3808: 3805: 3800: 3796: 3791: 3786: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3751: 3748: 3743: 3739: 3734: 3729: 3725: 3721: 3717: 3713: 3709: 3702: 3699: 3694: 3690: 3685: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3652: 3645: 3642: 3637: 3633: 3628: 3623: 3619: 3615: 3611: 3607: 3603: 3599: 3595: 3588: 3585: 3580: 3576: 3571: 3566: 3562: 3558: 3553: 3548: 3544: 3540: 3536: 3529: 3526: 3521: 3517: 3512: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3472: 3470: 3466: 3461: 3457: 3452: 3447: 3443: 3439: 3436:(3): 482–98. 3435: 3431: 3427: 3420: 3417: 3412: 3408: 3403: 3398: 3394: 3390: 3387:(1): 201–12. 3386: 3382: 3378: 3371: 3368: 3363: 3359: 3354: 3349: 3344: 3339: 3335: 3331: 3327: 3320: 3317: 3312: 3308: 3304: 3300: 3295: 3290: 3287:(3): 434–48. 3286: 3282: 3278: 3271: 3268: 3263: 3259: 3255: 3251: 3248:(6): 279–85. 3247: 3243: 3236: 3233: 3228: 3224: 3219: 3214: 3210: 3206: 3202: 3198: 3194: 3187: 3184: 3179: 3175: 3171: 3167: 3164:(4): 1181–9. 3163: 3159: 3152: 3149: 3144: 3140: 3135: 3130: 3126: 3122: 3118: 3114: 3110: 3103: 3100: 3095: 3091: 3087: 3083: 3079: 3075: 3072:(4): 237–46. 3071: 3067: 3060: 3057: 3052: 3048: 3044: 3040: 3035: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2995: 2992: 2987: 2983: 2978: 2973: 2969: 2965: 2961: 2957: 2953: 2946: 2943: 2938: 2934: 2929: 2924: 2919: 2914: 2910: 2906: 2902: 2898: 2894: 2887: 2884: 2879: 2875: 2870: 2865: 2861: 2857: 2853: 2849: 2845: 2838: 2835: 2830: 2826: 2821: 2816: 2812: 2808: 2804: 2800: 2796: 2789: 2787: 2783: 2778: 2774: 2769: 2764: 2760: 2756: 2752: 2748: 2744: 2737: 2734: 2729: 2725: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2688: 2685: 2680: 2676: 2671: 2666: 2662: 2658: 2654: 2650: 2646: 2639: 2636: 2631: 2627: 2623: 2619: 2616:(3): 285–92. 2615: 2611: 2604: 2601: 2596: 2592: 2587: 2582: 2578: 2574: 2570: 2563: 2561: 2557: 2552: 2548: 2543: 2538: 2534: 2530: 2526: 2522: 2518: 2511: 2508: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2468: 2465: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2425: 2422: 2417: 2413: 2408: 2403: 2399: 2395: 2391: 2387: 2383: 2376: 2373: 2368: 2364: 2359: 2354: 2351:(6): 2800–8. 2350: 2346: 2342: 2335: 2332: 2327: 2323: 2318: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2283: 2278: 2274: 2269: 2264: 2260: 2256: 2252: 2248: 2244: 2237: 2234: 2229: 2225: 2220: 2215: 2211: 2207: 2203: 2199: 2195: 2188: 2185: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2134: 2128: 2125: 2120: 2116: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2076: 2071: 2067: 2062: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2028: 2026: 2022: 2017: 2013: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1974: 1970: 1965: 1961: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1921: 1916: 1912: 1907: 1902: 1898: 1894: 1891:(3): 368–77. 1890: 1886: 1882: 1875: 1872: 1867: 1863: 1858: 1853: 1848: 1843: 1839: 1835: 1831: 1827: 1823: 1816: 1813: 1808: 1804: 1799: 1794: 1790: 1786: 1782: 1775: 1772: 1767: 1763: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1724: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1688: 1685: 1680: 1676: 1671: 1666: 1662: 1658: 1655:(1): 234–46. 1654: 1650: 1646: 1639: 1637: 1633: 1628: 1624: 1619: 1614: 1610: 1606: 1603:(2): 585–94. 1602: 1598: 1594: 1587: 1585: 1583: 1581: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1534: 1529: 1525: 1520: 1515: 1511: 1507: 1503: 1499: 1495: 1488: 1485: 1480: 1476: 1471: 1466: 1461: 1456: 1452: 1448: 1444: 1440: 1436: 1429: 1426: 1421: 1417: 1413: 1409: 1406:(5): 487–98. 1405: 1401: 1394: 1391: 1386: 1382: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1345: 1343: 1339: 1334: 1330: 1325: 1320: 1315: 1310: 1306: 1302: 1298: 1291: 1289: 1285: 1280: 1276: 1271: 1266: 1262: 1258: 1251: 1248: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1202: 1199: 1194: 1188: 1183: 1182: 1173: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1138: 1135: 1130: 1126: 1122: 1118: 1115:(1): 173–97. 1114: 1110: 1103: 1101: 1097: 1092: 1088: 1084: 1080: 1075: 1070: 1066: 1062: 1058: 1054: 1050: 1043: 1040: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 992: 989: 984: 980: 975: 970: 966: 962: 958: 954: 950: 943: 940: 935: 931: 926: 921: 917: 913: 910:(2): 446–56. 909: 905: 901: 894: 892: 890: 886: 881: 877: 872: 867: 863: 859: 855: 851: 847: 840: 838: 834: 829: 825: 821: 817: 812: 807: 804:(4): 501–12. 803: 799: 795: 788: 786: 782: 775: 771: 768: 767: 763: 761: 758: 750: 748: 746: 742: 738: 734: 730: 726: 722: 718: 713: 711: 710:cyanobacteria 707: 703: 699: 695: 690: 687: 683: 679: 675: 671: 666: 664: 663: 658: 657: 651: 647: 639: 637: 635: 632:that have an 631: 627: 623: 618: 615: 611: 606: 604: 600: 596: 592: 588: 579: 572: 570: 568: 564: 563:TRAMP complex 560: 556: 552: 548: 544: 540: 532: 530: 528: 524: 520: 516: 512: 508: 504: 499: 496: 492: 487: 485: 481: 473: 467: 463: 461: 457: 453: 449: 444: 442: 436: 434: 430: 426: 422: 421:embryogenesis 418: 410: 408: 406: 402: 401:budding yeast 397: 393: 388: 386: 382: 378: 374: 373:somatic cells 367:Deadenylation 366: 364: 361: 357: 353: 349: 341: 339: 337: 333: 328: 324: 323:pyrophosphate 320: 316: 312: 307: 303: 300: 296: 292: 288: 284: 280: 276: 267: 265: 260: 255: 250: 245: 240: 234: 233: 227: 225: 223: 219: 215: 211: 207: 201: 199: 195: 191: 183: 178: 176: 174: 170: 169: 163: 160: 156: 155: 150: 146: 142: 138: 134: 125: 120: 119:Messenger RNA 116: 108: 106: 103: 101: 95: 93: 89: 85: 81: 77: 74: 70: 69:transcription 65: 63: 59: 55: 51: 47: 43: 39: 38:messenger RNA 35: 31: 23: 19: 6280: / 6266:RNA splicing 6208: 6114:irreversible 5999:Key elements 5945: 5896:Key elements 5810:Genetic code 5800:Introduction 5707: 5703: 5643: 5639: 5626: 5591: 5552: 5548: 5538: 5519: 5515: 5502: 5493: 5484: 5447: 5443: 5433: 5388: 5384: 5374: 5329: 5325: 5315: 5278: 5274: 5264: 5239: 5235: 5201: 5198:Biochemistry 5197: 5190: 5163: 5159: 5149: 5114: 5111:EMBO Reports 5110: 5100: 5065: 5059: 5024: 5020: 5010: 4975: 4971: 4961: 4926: 4922: 4912: 4890:(4): 266–9. 4887: 4883: 4877: 4842: 4838: 4828: 4785: 4781: 4771: 4741:(1): 65–77. 4738: 4734: 4690: 4686: 4638: 4634: 4628: 4593: 4589: 4579: 4544: 4540: 4492: 4488: 4478: 4443: 4439: 4429: 4404: 4400: 4394: 4359: 4355: 4345: 4310: 4306: 4296: 4269: 4265: 4255: 4220: 4216: 4206: 4171: 4167: 4157: 4114: 4110: 4100: 4057: 4053: 4042: 4015: 4011: 3963: 3959: 3949: 3916: 3912: 3905: 3870: 3866: 3856: 3821: 3817: 3807: 3764: 3760: 3750: 3715: 3711: 3701: 3658: 3654: 3644: 3601: 3598:Cell Reports 3597: 3587: 3545:(12): R100. 3542: 3538: 3528: 3488:(1): 18–30. 3485: 3481: 3433: 3429: 3419: 3384: 3380: 3370: 3333: 3329: 3319: 3284: 3280: 3270: 3245: 3241: 3235: 3200: 3196: 3186: 3161: 3157: 3151: 3116: 3112: 3102: 3069: 3065: 3059: 3008: 3004: 2994: 2959: 2955: 2945: 2900: 2896: 2886: 2851: 2847: 2837: 2805:(19): e132. 2802: 2798: 2750: 2746: 2736: 2701: 2697: 2687: 2652: 2648: 2638: 2613: 2609: 2603: 2576: 2572: 2524: 2520: 2510: 2477: 2473: 2467: 2437:(7): 662–9. 2434: 2430: 2424: 2389: 2385: 2375: 2348: 2344: 2334: 2299: 2295: 2285: 2250: 2246: 2236: 2201: 2197: 2187: 2146: 2142: 2136: 2127: 2092: 2088: 2078: 2043: 2039: 1989: 1985: 1937: 1933: 1923: 1888: 1884: 1874: 1829: 1825: 1815: 1788: 1784: 1774: 1739: 1735: 1697: 1693: 1687: 1652: 1648: 1600: 1596: 1546: 1542: 1536: 1501: 1497: 1487: 1442: 1438: 1428: 1403: 1399: 1393: 1358: 1354: 1304: 1301:BMC Genomics 1300: 1260: 1250: 1218:(3): 404–9. 1215: 1211: 1201: 1180: 1172: 1147: 1143: 1137: 1112: 1108: 1056: 1052: 1042: 1004:(3): 570–9. 1001: 997: 991: 956: 952: 942: 907: 903: 853: 849: 801: 797: 754: 719:, including 714: 691: 667: 660: 654: 643: 619: 614:mitochondria 610:trypanosomes 607: 602: 594: 590: 584: 541:, including 536: 500: 488: 477: 445: 437: 423:and in post- 414: 389: 370: 345: 308: 304: 294: 286: 272: 237: 202: 187: 172: 167: 164: 153: 133:poly(A) tail 132: 130: 104: 96: 87: 66: 34:poly(A) tail 33: 29: 28: 18: 6292:Spliceosome 6251:RNA editing 5965:Translation 5802:to genetics 5632:Edmonds, M. 4060:(1): 5331. 3824:(2): 73–9. 3330:Development 3203:(1): 10–6. 2095:(1): 71–8. 1361:(1): 1–10. 725:Coronavirus 721:Influenza A 717:RNA viruses 702:polymerases 674:degradosome 603:degradosome 587:degradosome 511:macrophages 429:nerve cells 338:from RNAs. 332:spliceosome 327:nucleotides 317:units from 168:translation 154:transcribed 54:translation 6472:Categories 6109:reversible 6072:lac operon 6048:imprinting 6043:Epigenetic 6035:Regulation 5990:Eukaryotic 5936:5' capping 5887:Eukaryotic 5588:Edmonds, M 776:References 741:Poliovirus 653:bacterium 433:translated 281:, such as 275:processive 214:regulatory 147:and U for 76:terminates 56:. In many 50:eukaryotes 48:bases. In 6412:Cytosolic 5980:Bacterial 5877:Bacterial 4802:0006-3002 4635:BioEssays 3675:1362-4962 3618:2211-1247 3561:1474-760X 3502:1471-0080 3051:231195473 3025:0036-8075 2247:Structure 1885:Structure 1571:206956408 1150:: 15–42. 640:Evolution 537:For many 495:microRNAs 427:sites of 407:complex. 228:Mechanism 206:microRNAs 198:stem-loop 190:cytoplasm 157:) from a 6092:microRNA 6006:Ribosome 5985:Archaeal 5941:Splicing 5913:Promoter 5882:Archaeal 5826: β†’ 5822: β†’ 5734:18256699 5618:12102557 5590:(2002). 5476:30319572 5450:: 2250. 5425:11717411 5366:23923003 5326:PLOS ONE 5307:10074205 5256:18177749 5218:19053279 5182:18399989 5141:16282984 5092:19161858 5051:12953107 5002:17065466 4953:12486011 4904:18312863 4869:17965156 4820:22172994 4763:86607431 4717:11917006 4663:26109164 4655:10684583 4620:16738135 4571:17872511 4519:14898055 4511:15935758 4470:21663793 4421:17395456 4386:32976578 4337:18451104 4288:21292162 4247:17464285 4198:17507659 4149:18978773 4092:30552333 4034:16207706 3990:17210931 3897:18835850 3848:18392144 3799:18566288 3742:27220521 3693:18757892 3636:22685694 3579:16356263 3520:27677860 3460:18256699 3411:15647503 3362:18434412 3311:16092673 3303:18267074 3262:17481902 3227:18023855 3178:16169522 3143:16705177 3086:11283721 3043:33414189 2986:18430932 2956:Genetics 2937:16495412 2878:15231747 2829:17933768 2777:28334977 2728:16714281 2679:10970864 2630:15145353 2595:17595167 2494:12173714 2451:17572685 2416:12145212 2326:18304944 2277:17850751 2228:12097343 2179:34840144 2119:18157150 2070:18411206 2016:17024186 1964:15937220 1915:21295486 1866:20479262 1807:14690600 1766:10899149 1714:18817380 1679:17158511 1563:18839252 1528:16131612 1479:17965236 1420:12408966 1400:Genomics 1385:17998288 1333:18479511 1279:16651366 1242:18212021 1164:14140701 1091:19003617 1083:16111937 1034:19863143 1026:27007045 983:10943888 934:10357857 880:11255003 820:11909521 764:See also 626:plastids 519:lysozyme 425:synaptic 417:germline 405:CCR4-Not 184:Function 143:, G for 141:cytosine 139:, C for 58:bacteria 6392:PRPF40B 6387:PRPF40A 6377:PRPF38B 6372:PRPF38A 6187:Nuclear 5845:RNAβ†’DNA 5840:RNAβ†’RNA 5828:Protein 5725:2241648 5680:5288383 5648:Bibcode 5571:9353246 5467:6167517 5393:Bibcode 5357:3726627 5334:Bibcode 5132:1369208 4993:1635327 4860:2223728 4811:3307840 4743:Bibcode 4611:1474067 4562:2040100 4461:3115544 4377:7778938 4328:2335310 4238:1888663 4189:1894925 4140:2597294 4119:Bibcode 4083:6294251 4062:Bibcode 3981:1781347 3941:7448467 3933:6771018 3888:2577349 3839:2288788 3790:2587246 3769:Bibcode 3761:Science 3733:4893057 3684:2553571 3627:3368434 3570:1414089 3511:5483950 3451:2241648 3353:9154023 3218:2239213 3134:1489097 3094:9734550 3034:9491362 3005:Science 2977:2323793 2928:1449641 2905:Bibcode 2820:2095794 2768:5449641 2719:1484436 2551:9784497 2502:2237085 2459:5777074 2367:7852352 2317:2367721 2268:2032019 2171:8929410 2151:Bibcode 2143:Science 2110:2836588 2061:2396415 2007:1618107 1955:1142555 1906:3056899 1857:2890493 1834:Bibcode 1670:1802579 1627:8440247 1519:1221887 1470:2077053 1447:Bibcode 1376:2151031 1324:2391170 1307:: 220. 1233:2248257 1129:9242905 1061:Bibcode 1006:Bibcode 974:1369983 871:3340483 751:History 706:archaea 678:exosome 646:domains 634:exosome 630:archaea 595:RNase E 567:exosome 503:CstF-64 456:Pumilio 352:exosome 336:introns 194:histone 145:guanine 137:adenine 80:3β€²-most 46:adenine 6382:PRPF39 6367:PRPF31 6362:PRPF19 6357:PRPF18 6342:PRPF4B 6278:Intron 5732:  5722:  5678:  5671:389184 5668:  5616:  5606:  5569:  5474:  5464:  5423:  5413:  5364:  5354:  5305:  5298:104115 5295:  5254:  5216:  5180:  5139:  5129:  5090:  5080:  5049:  5042:181327 5039:  5000:  4990:  4951:  4944:139106 4941:  4902:  4867:  4857:  4818:  4808:  4800:  4761:  4715:  4708:101826 4705:  4661:  4653:  4618:  4608:  4569:  4559:  4517:  4509:  4468:  4458:  4419:  4384:  4374:  4335:  4325:  4286:  4245:  4235:  4196:  4186:  4147:  4137:  4111:Nature 4090:  4080:  4032:  3988:  3978:  3939:  3931:  3895:  3885:  3846:  3836:  3797:  3787:  3740:  3730:  3691:  3681:  3673:  3634:  3624:  3616:  3577:  3567:  3559:  3518:  3508:  3500:  3458:  3448:  3409:  3402:546146 3399:  3360:  3350:  3309:  3301:  3260:  3225:  3215:  3176:  3141:  3131:  3092:  3084:  3049:  3041:  3031:  3023:  2984:  2974:  2935:  2925:  2876:  2869:442147 2866:  2827:  2817:  2775:  2765:  2726:  2716:  2677:  2670:302064 2667:  2628:  2593:  2549:  2542:317214 2539:  2500:  2492:  2457:  2449:  2414:  2407:126137 2404:  2365:  2324:  2314:  2275:  2265:  2226:  2219:186619 2216:  2177:  2169:  2117:  2107:  2068:  2058:  2014:  2004:  1962:  1952:  1913:  1903:  1864:  1854:  1805:  1764:  1757:310884 1754:  1712:  1677:  1667:  1625:  1618:413241 1615:  1569:  1561:  1526:  1516:  1477:  1467:  1418:  1383:  1373:  1331:  1321:  1277:  1240:  1230:  1189:  1162:  1127:  1089:  1081:  1032:  1024:  981:  971:  932:  922:  878:  868:  828:478260 826:  818:  745:PABPC1 731:, and 612:, the 555:snoRNA 553:, and 491:3' UTR 480:3β€² end 396:5β€² cap 149:uracil 78:. The 6435:DCP1B 6430:DCP1A 6352:PRPF8 6347:PRPF6 6337:PRPF4 6332:PRPF3 6327:PLRG1 6297:minor 6287:snRNP 5973:Types 5870:Types 5416:64674 4759:S2CID 4659:S2CID 4515:S2CID 3937:S2CID 3307:S2CID 3090:S2CID 3047:S2CID 2498:S2CID 2455:S2CID 2175:S2CID 1567:S2CID 1087:S2CID 1030:S2CID 925:98972 824:S2CID 737:HIV-1 698:tRNAs 559:yeast 551:snRNA 523:TNF-Ξ± 460:GLD-2 254:PABII 71:of a 6455:EDC4 6450:EDC3 6445:DCPS 6440:DCP2 6282:Exon 6239:CFII 6229:PAB2 6219:CstF 6214:CPSF 5730:PMID 5676:PMID 5614:PMID 5604:ISBN 5567:PMID 5472:PMID 5421:PMID 5362:PMID 5303:PMID 5252:PMID 5240:1779 5214:PMID 5178:PMID 5137:PMID 5088:PMID 5078:ISBN 5047:PMID 4998:PMID 4949:PMID 4900:PMID 4888:1779 4865:PMID 4816:PMID 4798:ISSN 4786:1819 4713:PMID 4651:PMID 4616:PMID 4567:PMID 4507:PMID 4489:Cell 4466:PMID 4440:Cell 4417:PMID 4382:PMID 4333:PMID 4284:PMID 4243:PMID 4194:PMID 4145:PMID 4088:PMID 4030:PMID 3986:PMID 3929:PMID 3913:Cell 3893:PMID 3844:PMID 3795:PMID 3738:PMID 3689:PMID 3671:ISSN 3632:PMID 3614:ISSN 3575:PMID 3557:ISSN 3516:PMID 3498:ISSN 3456:PMID 3407:PMID 3358:PMID 3299:PMID 3281:Cell 3258:PMID 3223:PMID 3174:PMID 3139:PMID 3082:PMID 3039:PMID 3021:ISSN 2982:PMID 2933:PMID 2874:PMID 2825:PMID 2773:PMID 2724:PMID 2675:PMID 2626:PMID 2591:PMID 2547:PMID 2490:PMID 2447:PMID 2412:PMID 2363:PMID 2322:PMID 2273:PMID 2224:PMID 2167:PMID 2115:PMID 2066:PMID 2012:PMID 1960:PMID 1911:PMID 1862:PMID 1803:PMID 1762:PMID 1710:PMID 1675:PMID 1623:PMID 1559:PMID 1524:PMID 1475:PMID 1416:PMID 1381:PMID 1329:PMID 1275:PMID 1238:PMID 1187:ISBN 1160:PMID 1125:PMID 1079:PMID 1022:PMID 979:PMID 930:PMID 876:PMID 850:Gene 816:PMID 798:Cell 770:SV40 739:and 708:and 593:and 547:rRNA 543:tRNA 521:and 452:CPEB 450:and 448:CPSF 392:PARN 299:CPSF 291:CPSF 273:The 264:CFII 244:CstF 239:CPSF 218:Xist 117:and 73:gene 6234:CFI 6224:PAP 5824:RNA 5820:DNA 5720:PMC 5712:doi 5666:PMC 5656:doi 5596:doi 5557:doi 5524:doi 5520:235 5462:PMC 5452:doi 5411:PMC 5401:doi 5352:PMC 5342:doi 5293:PMC 5283:doi 5244:doi 5206:doi 5168:doi 5164:283 5127:PMC 5119:doi 5070:doi 5037:PMC 5029:doi 4988:PMC 4980:doi 4939:PMC 4931:doi 4892:doi 4855:PMC 4847:doi 4843:190 4806:PMC 4790:doi 4751:doi 4703:PMC 4695:doi 4643:doi 4606:PMC 4598:doi 4557:PMC 4549:doi 4541:RNA 4497:doi 4493:121 4456:PMC 4448:doi 4444:145 4409:doi 4372:PMC 4364:doi 4323:PMC 4315:doi 4274:doi 4233:PMC 4225:doi 4184:PMC 4176:doi 4168:RNA 4135:PMC 4127:doi 4115:456 4078:PMC 4070:doi 4020:doi 4016:280 3976:PMC 3968:doi 3921:doi 3883:PMC 3875:doi 3834:PMC 3826:doi 3785:PMC 3777:doi 3765:320 3728:PMC 3720:doi 3716:468 3679:PMC 3663:doi 3622:PMC 3606:doi 3565:PMC 3547:doi 3506:PMC 3490:doi 3446:PMC 3438:doi 3397:PMC 3389:doi 3348:PMC 3338:doi 3334:135 3289:doi 3285:132 3250:doi 3213:PMC 3205:doi 3166:doi 3162:336 3129:PMC 3121:doi 3074:doi 3029:PMC 3013:doi 3009:371 2972:PMC 2964:doi 2960:178 2923:PMC 2913:doi 2901:103 2864:PMC 2856:doi 2815:PMC 2807:doi 2763:PMC 2755:doi 2714:PMC 2706:doi 2698:RNA 2665:PMC 2657:doi 2618:doi 2581:doi 2577:282 2537:PMC 2529:doi 2482:doi 2439:doi 2402:PMC 2394:doi 2353:doi 2349:270 2312:PMC 2304:doi 2263:PMC 2255:doi 2214:PMC 2206:doi 2159:doi 2147:274 2105:PMC 2097:doi 2056:PMC 2048:doi 2002:PMC 1994:doi 1950:PMC 1942:doi 1901:PMC 1893:doi 1852:PMC 1842:doi 1830:107 1793:doi 1752:PMC 1744:doi 1702:doi 1665:PMC 1657:doi 1613:PMC 1605:doi 1551:doi 1514:PMC 1506:doi 1465:PMC 1455:doi 1443:104 1408:doi 1371:PMC 1363:doi 1355:RNA 1319:PMC 1309:doi 1265:doi 1228:PMC 1220:doi 1212:RNA 1152:doi 1117:doi 1069:doi 1014:doi 969:PMC 961:doi 953:RNA 920:PMC 912:doi 866:PMC 858:doi 854:265 806:doi 802:108 686:ATP 682:ADP 360:40S 259:CFI 249:PAP 159:DNA 115:RNA 6474:: 6302:U1 5728:. 5718:. 5708:27 5706:. 5702:. 5674:. 5664:. 5654:. 5644:68 5642:. 5638:. 5612:. 5602:. 5579:^ 5565:. 5553:11 5551:. 5547:. 5518:. 5514:. 5492:. 5470:. 5460:. 5446:. 5442:. 5419:. 5409:. 5399:. 5389:98 5387:. 5383:. 5360:. 5350:. 5340:. 5328:. 5324:. 5301:. 5291:. 5279:73 5277:. 5273:. 5250:. 5238:. 5226:^ 5212:. 5202:47 5200:. 5176:. 5162:. 5158:. 5135:. 5125:. 5113:. 5109:. 5086:. 5076:. 5045:. 5035:. 5025:15 5023:. 5019:. 4996:. 4986:. 4976:34 4974:. 4970:. 4947:. 4937:. 4927:21 4925:. 4921:. 4898:. 4886:. 4863:. 4853:. 4841:. 4837:. 4814:. 4804:. 4796:. 4784:. 4780:. 4757:. 4749:. 4739:25 4737:. 4725:^ 4711:. 4701:. 4691:30 4689:. 4685:. 4671:^ 4657:. 4649:. 4639:22 4637:. 4614:. 4604:. 4594:34 4592:. 4588:. 4565:. 4555:. 4545:13 4543:. 4539:. 4527:^ 4513:. 4505:. 4491:. 4487:. 4464:. 4454:. 4442:. 4438:. 4415:. 4405:17 4403:. 4380:. 4370:. 4360:49 4358:. 4354:. 4331:. 4321:. 4311:22 4309:. 4305:. 4282:. 4270:41 4268:. 4264:. 4241:. 4231:. 4221:26 4219:. 4215:. 4192:. 4182:. 4172:13 4170:. 4166:. 4143:. 4133:. 4125:. 4113:. 4109:. 4086:. 4076:. 4068:. 4056:. 4052:. 4028:. 4014:. 4010:. 3998:^ 3984:. 3974:. 3964:17 3962:. 3958:. 3935:. 3927:. 3917:20 3915:. 3891:. 3881:. 3871:36 3869:. 3865:. 3842:. 3832:. 3820:. 3816:. 3793:. 3783:. 3775:. 3763:. 3759:. 3736:. 3726:. 3714:. 3710:. 3687:. 3677:. 3669:. 3659:36 3657:. 3653:. 3630:. 3620:. 3612:. 3600:. 3596:. 3573:. 3563:. 3555:. 3541:. 3537:. 3514:. 3504:. 3496:. 3486:18 3484:. 3480:. 3468:^ 3454:. 3444:. 3434:27 3432:. 3428:. 3405:. 3395:. 3385:33 3383:. 3379:. 3356:. 3346:. 3332:. 3328:. 3305:. 3297:. 3283:. 3279:. 3256:. 3246:32 3244:. 3221:. 3211:. 3201:69 3199:. 3195:. 3172:. 3160:. 3137:. 3127:. 3117:26 3115:. 3111:. 3088:. 3080:. 3068:. 3045:. 3037:. 3027:. 3019:. 3007:. 3003:. 2980:. 2970:. 2958:. 2954:. 2931:. 2921:. 2911:. 2899:. 2895:. 2872:. 2862:. 2852:14 2850:. 2846:. 2823:. 2813:. 2803:35 2801:. 2797:. 2785:^ 2771:. 2761:. 2751:45 2749:. 2745:. 2722:. 2712:. 2702:12 2700:. 2696:. 2673:. 2663:. 2653:19 2651:. 2647:. 2624:. 2614:16 2612:. 2589:. 2575:. 2571:. 2559:^ 2545:. 2535:. 2525:12 2523:. 2519:. 2496:. 2488:. 2478:77 2476:. 2453:. 2445:. 2435:14 2433:. 2410:. 2400:. 2390:21 2388:. 2384:. 2361:. 2347:. 2343:. 2320:. 2310:. 2300:36 2298:. 2294:. 2271:. 2261:. 2251:15 2249:. 2245:. 2222:. 2212:. 2202:12 2200:. 2196:. 2173:. 2165:. 2157:. 2145:. 2113:. 2103:. 2093:15 2091:. 2087:. 2064:. 2054:. 2044:36 2042:. 2038:. 2024:^ 2010:. 2000:. 1990:25 1988:. 1984:. 1972:^ 1958:. 1948:. 1938:19 1936:. 1932:. 1909:. 1899:. 1889:19 1887:. 1883:. 1860:. 1850:. 1840:. 1828:. 1824:. 1801:. 1789:12 1787:. 1783:. 1760:. 1750:. 1740:10 1738:. 1734:. 1722:^ 1708:. 1696:. 1673:. 1663:. 1653:35 1651:. 1647:. 1635:^ 1621:. 1611:. 1601:12 1599:. 1595:. 1579:^ 1565:. 1557:. 1547:19 1545:. 1522:. 1512:. 1502:19 1500:. 1496:. 1473:. 1463:. 1453:. 1441:. 1437:. 1414:. 1404:80 1402:. 1379:. 1369:. 1359:14 1357:. 1353:. 1341:^ 1327:. 1317:. 1303:. 1299:. 1287:^ 1273:. 1259:. 1236:. 1226:. 1216:14 1214:. 1210:. 1158:. 1148:32 1146:. 1123:. 1113:66 1111:. 1099:^ 1085:. 1077:. 1067:. 1057:15 1055:. 1051:. 1028:. 1020:. 1012:. 1002:49 1000:. 977:. 967:. 955:. 951:. 928:. 918:. 908:63 906:. 902:. 888:^ 874:. 864:. 852:. 848:. 836:^ 822:. 814:. 800:. 796:. 784:^ 727:, 723:, 549:, 545:, 387:. 102:. 94:. 64:. 6171:e 6164:t 6157:v 5784:e 5777:t 5770:v 5736:. 5714:: 5682:. 5658:: 5650:: 5620:. 5598:: 5573:. 5559:: 5532:. 5526:: 5496:. 5478:. 5454:: 5448:9 5427:. 5403:: 5395:: 5368:. 5344:: 5336:: 5330:8 5309:. 5285:: 5258:. 5246:: 5220:. 5208:: 5184:. 5170:: 5143:. 5121:: 5115:6 5094:. 5072:: 5053:. 5031:: 5004:. 4982:: 4955:. 4933:: 4906:. 4894:: 4871:. 4849:: 4822:. 4792:: 4765:. 4753:: 4745:: 4719:. 4697:: 4665:. 4645:: 4622:. 4600:: 4573:. 4551:: 4521:. 4499:: 4472:. 4450:: 4423:. 4411:: 4388:. 4366:: 4339:. 4317:: 4290:. 4276:: 4249:. 4227:: 4200:. 4178:: 4151:. 4129:: 4121:: 4094:. 4072:: 4064:: 4058:9 4036:. 4022:: 3992:. 3970:: 3943:. 3923:: 3899:. 3877:: 3850:. 3828:: 3822:5 3801:. 3779:: 3771:: 3744:. 3722:: 3695:. 3665:: 3638:. 3608:: 3602:1 3581:. 3549:: 3543:6 3522:. 3492:: 3462:. 3440:: 3413:. 3391:: 3364:. 3340:: 3313:. 3291:: 3264:. 3252:: 3229:. 3207:: 3180:. 3168:: 3145:. 3123:: 3096:. 3076:: 3070:2 3053:. 3015:: 2988:. 2966:: 2939:. 2915:: 2907:: 2880:. 2858:: 2831:. 2809:: 2779:. 2757:: 2730:. 2708:: 2681:. 2659:: 2632:. 2620:: 2597:. 2583:: 2553:. 2531:: 2504:. 2484:: 2461:. 2441:: 2418:. 2396:: 2369:. 2355:: 2328:. 2306:: 2279:. 2257:: 2230:. 2208:: 2181:. 2161:: 2153:: 2121:. 2099:: 2072:. 2050:: 2018:. 1996:: 1966:. 1944:: 1917:. 1895:: 1868:. 1844:: 1836:: 1809:. 1795:: 1768:. 1746:: 1716:. 1704:: 1698:3 1681:. 1659:: 1629:. 1607:: 1573:. 1553:: 1530:. 1508:: 1481:. 1457:: 1449:: 1422:. 1410:: 1387:. 1365:: 1335:. 1311:: 1305:9 1281:. 1267:: 1244:. 1222:: 1195:. 1166:. 1154:: 1131:. 1119:: 1093:. 1071:: 1063:: 1036:. 1016:: 1008:: 985:. 963:: 957:6 936:. 914:: 882:. 860:: 830:. 808:: 462:.

Index


messenger RNA
adenosine monophosphates
adenine
eukaryotes
translation
bacteria
gene expression
transcription
gene
terminates
3β€²-most
set of proteins
alternative splicing
non-coding RNAs
RNA
Messenger RNA

adenine
cytosine
guanine
uracil
transcribed
DNA
translation
cytoplasm
histone
stem-loop
microRNAs
long noncoding RNAs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑