Knowledge

Poncelet's closure theorem

Source 📝

24: 149:, so this special case of Poncelet's porism can be expressed more concisely by saying that every bicentric polygon is part of an infinite family of bicentric polygons with respect to the same two circles. 63:
another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics. It is named after French engineer and mathematician
617:
Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain
486: 459: 380: 324: 420: 767: 633: 346:′) with the same first coordinate. Any involution of an elliptic curve with a fixed point, when expressed in the group law, has the form 584: 78:, whose points represent a combination of a line tangent to one conic and a crossing point of that line with the other conic. 68: 794: 546: 166: 789: 67:, who wrote about it in 1822; however, the triangular case was discovered significantly earlier, in 1746 by 615: 181: 64: 541: 180:
meet transversely (meaning that each intersection point of the two is a simple crossing). Then by
468: 441: 536: 730:
by Michael Borcherds showing Poncelet's Porism for a general Ellipse and a Parabola made using
698: 146: 365: 309: 145:, the polygons that are inscribed in one circle and circumscribed about the other are called 642: 596: 530: 52: 760:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 6) made using
750:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 5) made using
740:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 3) made using
654: 405: 650: 551: 488:
has a fixed point, that power must be the identity. Translated back into the language of
631:
Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I",
716: = 3, 4, 5, 6, 7, 8 (including the convex cases for 75: 783: 678: 56: 31: = 3, a triangle that is inscribed in one circle and circumscribes another. 773: 571: 60: 570:
Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource.
646: 23: 192:
of the two curves consists of four complex points. For an arbitrary point
36: 123: 107: 48: 757: 747: 737: 727: 709: 620:(in French) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317. 130:), then it is possible to find infinitely many of them. Each point of 770:
showing the exterior case for n = 3 at National Tsing Hua University.
142: 600: 95: 22: 681:; Kers, C.; Oort, F.; Raven, D. W. "Poncelet's closure theorem". 512:-gon), then so does every point. The degenerate cases in which 705:
Mathematical Omnibus: Thirty Lectures on Classic Mathematics
138:
is a vertex or tangency (respectively) of one such polygon.
761: 751: 741: 731: 721: 390:
is a degree 2 morphism ramified over the contact points on
508:) gives rise to an orbit that closes up (i.e., gives an 74:
Poncelet's porism can be proved by an argument using an
471: 444: 408: 368: 312: 480: 453: 414: 374: 318: 302:is an elliptic curve (once we fix a base point on 572:http://mathworld.wolfram.com/PonceletsPorism.html 520:are not transverse follow from a limit argument. 298:as a degree 2 cover ramified above 4 points, so 8: 382:has this form. Similarly, the projection 98:. If it is possible to find, for a given 470: 443: 407: 367: 311: 114:(meaning that all of its vertices lie on 670:, Dover Publications, 2007 (orig. 1960). 712:by Michael Borcherds showing the cases 585:"Three problems in search of a measure" 563: 282:and 2 otherwise. Thus the projection 27:Illustration of Poncelet's porism for 634:Archive for History of Exact Sciences 7: 110:that is simultaneously inscribed in 720: = 7, 8) made using 402:, and the corresponding involution 122:(meaning that all of its edges are 394:of the four lines tangent to both 14: 699:David Speyer on Poncelet's Porism 614:Poncelet, Jean-Victor (1865) . 504:(equipped with a corresponding 496:, this means that if one point 172:. For simplicity, assume that 1: 774:Article on Poncelet's Porism 688:(1987), no. 4, 289–364. 481:{\displaystyle \tau \sigma } 454:{\displaystyle \tau \sigma } 668:Advanced Euclidean Geometry 118:) and circumscribed around 811: 703:D. Fuchs, S. Tabachnikov, 583:King, Jonathan L. (1994). 41:Poncelet's closure theorem 683:Expositiones Mathematicae 647:10.1007/s00407-015-0163-y 47:, states that whenever a 547:Tangent lines to circles 438:. Thus the composition 167:complex projective plane 375:{\displaystyle \sigma } 319:{\displaystyle \sigma } 209:be the tangent line to 102: > 2, one 482: 455: 416: 376: 338:) to the other point ( 320: 32: 18:Theorem of 2D geometry 483: 456: 417: 415:{\displaystyle \tau } 377: 326:be the involution of 321: 221:be the subvariety of 26: 469: 461:is a translation on 442: 406: 366: 310: 65:Jean-Victor Poncelet 666:Johnson, Roger A., 589:Amer. Math. Monthly 330:sending a general ( 184:, the intersection 758:Interactive applet 748:Interactive applet 738:Interactive applet 728:Interactive applet 710:Interactive applet 537:Hartshorne ellipse 478: 451: 412: 372: 316: 147:bicentric polygons 141:If the conics are 33: 465:. If a power of 165:as curves in the 45:Poncelet's porism 802: 671: 664: 658: 657: 628: 622: 621: 611: 605: 604: 580: 574: 568: 542:Steiner's porism 531:Finding Ellipses 487: 485: 484: 479: 460: 458: 457: 452: 421: 419: 418: 413: 381: 379: 378: 373: 325: 323: 322: 317: 254:, the number of 182:Bézout's theorem 43:, also known as 810: 809: 805: 804: 803: 801: 800: 799: 795:Elliptic curves 780: 779: 695: 675: 674: 665: 661: 630: 629: 625: 613: 612: 608: 601:10.2307/2974690 582: 581: 577: 569: 565: 560: 552:Egan conjecture 526: 467: 466: 440: 439: 404: 403: 364: 363: 308: 307: 246:passes through 245: 229:consisting of ( 208: 155: 84: 69:William Chapple 19: 12: 11: 5: 808: 806: 798: 797: 792: 790:Conic sections 782: 781: 778: 777: 771: 765: 755: 745: 735: 725: 707: 701: 694: 693:External links 691: 690: 689: 673: 672: 659: 623: 606: 575: 562: 561: 559: 556: 555: 554: 549: 544: 539: 534: 525: 522: 477: 474: 450: 447: 411: 371: 315: 241: 204: 154: 151: 83: 80: 76:elliptic curve 17: 13: 10: 9: 6: 4: 3: 2: 807: 796: 793: 791: 788: 787: 785: 776:at Mathworld. 775: 772: 769: 766: 763: 759: 756: 753: 749: 746: 743: 739: 736: 733: 729: 726: 723: 719: 715: 711: 708: 706: 702: 700: 697: 696: 692: 687: 684: 680: 679:Bos, H. J. M. 677: 676: 669: 663: 660: 656: 652: 648: 644: 640: 636: 635: 627: 624: 619: 618: 610: 607: 602: 598: 594: 590: 586: 579: 576: 573: 567: 564: 557: 553: 550: 548: 545: 543: 540: 538: 535: 533: 532: 528: 527: 523: 521: 519: 515: 511: 507: 503: 499: 495: 491: 475: 472: 464: 448: 445: 437: 433: 429: 425: 422:has the form 409: 401: 397: 393: 389: 385: 369: 361: 357: 353: 349: 345: 341: 337: 333: 329: 313: 305: 301: 297: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 253: 249: 244: 240: 236: 232: 228: 224: 220: 216: 212: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 168: 164: 160: 152: 150: 148: 144: 139: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 94:be two plane 93: 89: 81: 79: 77: 72: 70: 66: 62: 61:circumscribes 58: 57:conic section 54: 50: 46: 42: 38: 30: 25: 21: 16: 717: 713: 704: 685: 682: 667: 662: 641:(1): 1–122, 638: 632: 626: 616: 609: 592: 588: 578: 566: 529: 517: 513: 509: 505: 501: 497: 493: 489: 462: 435: 431: 427: 423: 399: 395: 391: 387: 383: 359: 355: 351: 347: 343: 339: 335: 331: 327: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 242: 238: 237:) such that 234: 230: 226: 222: 218: 214: 210: 205: 201: 197: 193: 189: 185: 177: 173: 169: 162: 158: 156: 153:Proof sketch 140: 135: 131: 127: 119: 115: 111: 103: 99: 91: 87: 85: 73: 44: 40: 34: 28: 20: 15: 768:Java applet 595:: 609–628. 784:Categories 558:References 476:σ 473:τ 449:σ 446:τ 434:for some 410:τ 370:σ 358:for some 314:σ 294:presents 250:. Given 82:Statement 53:inscribed 762:GeoGebra 752:GeoGebra 742:GeoGebra 732:GeoGebra 722:GeoGebra 524:See also 306:). Let 270:is 1 if 37:geometry 655:3437893 217:. Let 143:circles 124:tangent 108:polygon 106:-sided 55:in one 49:polygon 653:  258:with ( 200:, let 96:conics 362:, so 157:View 516:and 492:and 398:and 266:) ∈ 176:and 161:and 90:and 86:Let 59:and 643:doi 597:doi 593:101 213:at 196:in 134:or 126:to 51:is 35:In 786:: 651:MR 649:, 639:70 637:, 591:. 587:. 500:∈ 430:− 426:→ 386:→ 354:− 350:→ 290:≃ 286:→ 278:∩ 274:∈ 225:× 188:∩ 71:. 39:, 764:. 754:. 744:. 734:. 724:. 718:n 714:n 686:5 645:: 603:. 599:: 518:D 514:C 510:n 506:d 502:C 498:c 494:D 490:C 463:X 436:q 432:x 428:q 424:x 400:D 396:C 392:D 388:D 384:X 360:p 356:x 352:p 348:x 344:d 342:, 340:c 336:d 334:, 332:c 328:X 304:X 300:X 296:X 292:P 288:C 284:X 280:D 276:C 272:c 268:X 264:d 262:, 260:c 256:d 252:c 248:c 243:d 239:ℓ 235:d 233:, 231:c 227:D 223:C 219:X 215:d 211:D 206:d 202:ℓ 198:D 194:d 190:D 186:C 178:D 174:C 170:P 163:D 159:C 136:D 132:C 128:D 120:D 116:C 112:C 104:n 100:n 92:D 88:C 29:n

Index


geometry
polygon
inscribed
conic section
circumscribes
Jean-Victor Poncelet
William Chapple
elliptic curve
conics
polygon
tangent
circles
bicentric polygons
complex projective plane
Bézout's theorem
Finding Ellipses
Hartshorne ellipse
Steiner's porism
Tangent lines to circles
Egan conjecture
http://mathworld.wolfram.com/PonceletsPorism.html
"Three problems in search of a measure"
doi
10.2307/2974690
Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain
Archive for History of Exact Sciences
doi
10.1007/s00407-015-0163-y
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.