Knowledge

Poncelet's closure theorem

Source 📝

35: 160:, so this special case of Poncelet's porism can be expressed more concisely by saying that every bicentric polygon is part of an infinite family of bicentric polygons with respect to the same two circles. 74:
another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics. It is named after French engineer and mathematician
628:
Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain
497: 470: 391: 335: 431: 778: 644: 357:′) with the same first coordinate. Any involution of an elliptic curve with a fixed point, when expressed in the group law, has the form 595: 89:, whose points represent a combination of a line tangent to one conic and a crossing point of that line with the other conic. 79: 805: 557: 177: 800: 78:, who wrote about it in 1822; however, the triangular case was discovered significantly earlier, in 1746 by 626: 192: 75: 552: 191:
meet transversely (meaning that each intersection point of the two is a simple crossing). Then by
479: 452: 547: 741:
by Michael Borcherds showing Poncelet's Porism for a general Ellipse and a Parabola made using
709: 157: 376: 320: 156:, the polygons that are inscribed in one circle and circumscribed about the other are called 653: 607: 541: 63: 771:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 6) made using
761:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 5) made using
751:
by Michael Borcherds showing Poncelet's Porism for 2 general ellipses (order 3) made using
665: 416: 661: 562: 499:
has a fixed point, that power must be the identity. Translated back into the language of
642:
Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I",
727: = 3, 4, 5, 6, 7, 8 (including the convex cases for 86: 17: 794: 689: 67: 42: = 3, a triangle that is inscribed in one circle and circumscribes another. 784: 582: 71: 581:
Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource.
657: 34: 203:
of the two curves consists of four complex points. For an arbitrary point
47: 134: 118: 59: 768: 758: 748: 738: 720: 631:(in French) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317. 141:), then it is possible to find infinitely many of them. Each point of 781:
showing the exterior case for n = 3 at National Tsing Hua University.
153: 611: 106: 33: 692:; Kers, C.; Oort, F.; Raven, D. W. "Poncelet's closure theorem". 523:-gon), then so does every point. The degenerate cases in which 716:
Mathematical Omnibus: Thirty Lectures on Classic Mathematics
149:
is a vertex or tangency (respectively) of one such polygon.
772: 762: 752: 742: 732: 401:
is a degree 2 morphism ramified over the contact points on
519:) gives rise to an orbit that closes up (i.e., gives an 85:
Poncelet's porism can be proved by an argument using an
482: 455: 419: 379: 323: 491: 464: 425: 385: 329: 313:is an elliptic curve (once we fix a base point on 583:http://mathworld.wolfram.com/PonceletsPorism.html 531:are not transverse follow from a limit argument. 309:as a degree 2 cover ramified above 4 points, so 8: 393:has this form. Similarly, the projection 109:. If it is possible to find, for a given 481: 454: 418: 378: 322: 125:(meaning that all of its vertices lie on 681:, Dover Publications, 2007 (orig. 1960). 723:by Michael Borcherds showing the cases 596:"Three problems in search of a measure" 574: 293:and 2 otherwise. Thus the projection 38:Illustration of Poncelet's porism for 645:Archive for History of Exact Sciences 7: 121:that is simultaneously inscribed in 731: = 7, 8) made using 413:, and the corresponding involution 133:(meaning that all of its edges are 405:of the four lines tangent to both 25: 710:David Speyer on Poncelet's Porism 625:Poncelet, Jean-Victor (1865) . 515:(equipped with a corresponding 507:, this means that if one point 183:. For simplicity, assume that 1: 785:Article on Poncelet's Porism 699:(1987), no. 4, 289–364. 492:{\displaystyle \tau \sigma } 465:{\displaystyle \tau \sigma } 679:Advanced Euclidean Geometry 129:) and circumscribed around 822: 714:D. Fuchs, S. Tabachnikov, 594:King, Jonathan L. (1994). 52:Poncelet's closure theorem 694:Expositiones Mathematicae 658:10.1007/s00407-015-0163-y 58:, states that whenever a 558:Tangent lines to circles 449:. Thus the composition 178:complex projective plane 386:{\displaystyle \sigma } 330:{\displaystyle \sigma } 220:be the tangent line to 113: > 2, one 493: 466: 427: 387: 349:) to the other point ( 331: 43: 29:Theorem of 2D geometry 18:Poncelet's porism 494: 467: 428: 426:{\displaystyle \tau } 388: 337:be the involution of 332: 232:be the subvariety of 37: 480: 472:is a translation on 453: 417: 377: 321: 76:Jean-Victor Poncelet 677:Johnson, Roger A., 600:Amer. Math. Monthly 341:sending a general ( 195:, the intersection 769:Interactive applet 759:Interactive applet 749:Interactive applet 739:Interactive applet 721:Interactive applet 548:Hartshorne ellipse 489: 462: 423: 383: 327: 158:bicentric polygons 152:If the conics are 44: 476:. If a power of 176:as curves in the 56:Poncelet's porism 16:(Redirected from 813: 682: 675: 669: 668: 639: 633: 632: 622: 616: 615: 591: 585: 579: 553:Steiner's porism 542:Finding Ellipses 498: 496: 495: 490: 471: 469: 468: 463: 432: 430: 429: 424: 392: 390: 389: 384: 336: 334: 333: 328: 265:, the number of 193:Bézout's theorem 54:, also known as 21: 821: 820: 816: 815: 814: 812: 811: 810: 806:Elliptic curves 791: 790: 706: 686: 685: 676: 672: 641: 640: 636: 624: 623: 619: 612:10.2307/2974690 593: 592: 588: 580: 576: 571: 563:Egan conjecture 537: 478: 477: 451: 450: 415: 414: 375: 374: 319: 318: 257:passes through 256: 240:consisting of ( 219: 166: 95: 80:William Chapple 30: 23: 22: 15: 12: 11: 5: 819: 817: 809: 808: 803: 801:Conic sections 793: 792: 789: 788: 782: 776: 766: 756: 746: 736: 718: 712: 705: 704:External links 702: 701: 700: 684: 683: 670: 634: 617: 586: 573: 572: 570: 567: 566: 565: 560: 555: 550: 545: 536: 533: 488: 485: 461: 458: 422: 382: 326: 252: 215: 165: 162: 94: 91: 87:elliptic curve 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 818: 807: 804: 802: 799: 798: 796: 787:at Mathworld. 786: 783: 780: 777: 774: 770: 767: 764: 760: 757: 754: 750: 747: 744: 740: 737: 734: 730: 726: 722: 719: 717: 713: 711: 708: 707: 703: 698: 695: 691: 690:Bos, H. J. M. 688: 687: 680: 674: 671: 667: 663: 659: 655: 651: 647: 646: 638: 635: 630: 629: 621: 618: 613: 609: 605: 601: 597: 590: 587: 584: 578: 575: 568: 564: 561: 559: 556: 554: 551: 549: 546: 544: 543: 539: 538: 534: 532: 530: 526: 522: 518: 514: 510: 506: 502: 486: 483: 475: 459: 456: 448: 444: 440: 436: 433:has the form 420: 412: 408: 404: 400: 396: 380: 372: 368: 364: 360: 356: 352: 348: 344: 340: 324: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 255: 251: 247: 243: 239: 235: 231: 227: 223: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 179: 175: 171: 163: 161: 159: 155: 150: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 105:be two plane 104: 100: 92: 90: 88: 83: 81: 77: 73: 72:circumscribes 69: 68:conic section 65: 61: 57: 53: 49: 41: 36: 32: 27: 19: 728: 724: 715: 696: 693: 678: 673: 652:(1): 1–122, 649: 643: 637: 627: 620: 603: 599: 589: 577: 540: 528: 524: 520: 516: 512: 508: 504: 500: 473: 446: 442: 438: 434: 410: 406: 402: 398: 394: 370: 366: 362: 358: 354: 350: 346: 342: 338: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 253: 249: 248:) such that 245: 241: 237: 233: 229: 225: 221: 216: 212: 208: 204: 200: 196: 188: 184: 180: 173: 169: 167: 164:Proof sketch 151: 146: 142: 138: 130: 126: 122: 114: 110: 102: 98: 96: 84: 55: 51: 45: 39: 31: 26: 779:Java applet 606:: 609–628. 795:Categories 569:References 487:σ 484:τ 460:σ 457:τ 445:for some 421:τ 381:σ 369:for some 325:σ 305:presents 261:. Given 93:Statement 64:inscribed 773:GeoGebra 763:GeoGebra 753:GeoGebra 743:GeoGebra 733:GeoGebra 535:See also 317:). Let 281:is 1 if 48:geometry 666:3437893 228:. Let 154:circles 135:tangent 119:polygon 117:-sided 66:in one 60:polygon 664:  269:with ( 211:, let 107:conics 373:, so 168:View 527:and 503:and 409:and 277:) ∈ 187:and 172:and 101:and 97:Let 70:and 654:doi 608:doi 604:101 224:at 207:in 145:or 137:to 62:is 46:In 797:: 662:MR 660:, 650:70 648:, 602:. 598:. 511:∈ 441:− 437:→ 397:→ 365:− 361:→ 301:≃ 297:→ 289:∩ 285:∈ 236:× 199:∩ 82:. 50:, 775:. 765:. 755:. 745:. 735:. 729:n 725:n 697:5 656:: 614:. 610:: 529:D 525:C 521:n 517:d 513:C 509:c 505:D 501:C 474:X 447:q 443:x 439:q 435:x 411:D 407:C 403:D 399:D 395:X 371:p 367:x 363:p 359:x 355:d 353:, 351:c 347:d 345:, 343:c 339:X 315:X 311:X 307:X 303:P 299:C 295:X 291:D 287:C 283:c 279:X 275:d 273:, 271:c 267:d 263:c 259:c 254:d 250:ℓ 246:d 244:, 242:c 238:D 234:C 230:X 226:d 222:D 217:d 213:ℓ 209:D 205:d 201:D 197:C 189:D 185:C 181:P 174:D 170:C 147:D 143:C 139:D 131:D 127:C 123:C 115:n 111:n 103:D 99:C 40:n 20:)

Index

Poncelet's porism

geometry
polygon
inscribed
conic section
circumscribes
Jean-Victor Poncelet
William Chapple
elliptic curve
conics
polygon
tangent
circles
bicentric polygons
complex projective plane
Bézout's theorem
Finding Ellipses
Hartshorne ellipse
Steiner's porism
Tangent lines to circles
Egan conjecture
http://mathworld.wolfram.com/PonceletsPorism.html
"Three problems in search of a measure"
doi
10.2307/2974690
Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain
Archive for History of Exact Sciences
doi
10.1007/s00407-015-0163-y

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.