Knowledge (XXG)

Positive form

Source đź“ť

422: 822: 148: 1175: 557: 1323: 1237: 880: 1123: 662: 1441:
L vanishing theorems for positive line bundles and adjunction theory, Lecture Notes of a CIME course on "Transcendental Methods of Algebraic Geometry" (Cetraro, Italy, July 1994)
1051: 982: 952: 724: 272: 308: 494: 449: 210: 914: 612: 328: 168: 1265: 1005: 685: 580: 333: 757: 1505: 73: 1132: 1464: 1413: 1456: 499: 1286: 1186: 1541: 1536: 837: 1531: 1489: 1401: 1016: 1084: 617: 1243:
if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real
17: 1026: 957: 927: 690: 222: 1435: 889: 277: 1328:
Weakly positive and strongly positive forms form convex cones. On compact manifolds these cones are
457: 36: 427: 1501: 1460: 1448: 1409: 1397: 1020: 740: 192: 32: 899: 588: 313: 153: 1493: 1424: 727: 24: 1515: 1474: 1250: 987: 667: 562: 1511: 1470: 1078: 831:
is equipped with a unique connection preserving the Hermitian structure and satisfying
213: 1525: 1481: 417:{\displaystyle \omega ={\sqrt {-1}}\sum _{i}\alpha _{i}dz_{i}\wedge d{\bar {z}}_{i},} 212:
is the imaginary part of a positive semidefinite (respectively, positive definite)
739:
In algebraic geometry, positive definite (1,1)-forms arise as curvature forms of
1329: 1126: 1070: 1008: 916:
of the Chern connection is always a purely imaginary (1,1)-form. A line bundle
1497: 1428: 1420: 1440: 817:{\displaystyle {\bar {\partial }}:\;L\mapsto L\otimes \Lambda ^{0,1}(M)} 143:{\displaystyle \Lambda ^{p,p}(M)\cap \Lambda ^{2p}(M,{\mathbb {R} }).} 954:
is a positive (1,1)-form. (Note that the de Rham cohomology class of
1239:, there are two different notions of positivity. A form is called 1019:
claims that a positive line bundle is ample, and conversely, any
1170:{\displaystyle \eta ,\zeta \mapsto \int _{M}\eta \wedge \zeta } 751:
be a holomorphic Hermitian line bundle on a complex manifold,
552:{\displaystyle -{\sqrt {-1}}\omega (v,{\bar {v}})\geq 0} 186:) if any of the following equivalent conditions holds: 1486:
Hodge Theory and Complex Algebraic Geometry (2 vols.)
1289: 1253: 1189: 1135: 1087: 1029: 990: 960: 930: 902: 840: 760: 693: 670: 620: 591: 565: 502: 460: 430: 336: 316: 280: 225: 195: 156: 76: 1317: 1259: 1231: 1169: 1117: 1045: 999: 976: 946: 908: 874: 816: 718: 679: 656: 606: 574: 551: 488: 443: 416: 322: 302: 266: 204: 162: 142: 1318:{\displaystyle \int _{M}\eta \wedge \zeta \geq 0} 1232:{\displaystyle 2\leq p\leq dim_{\mathbb {C} }M-2} 875:{\displaystyle \nabla ^{0,1}={\bar {\partial }}} 451:real and non-negative (respectively, positive). 1129:, with respect to the PoincarĂ© pairing : 70:) and real, that is, lie in the intersection 8: 776: 700: 1294: 1288: 1252: 1214: 1213: 1212: 1188: 1152: 1134: 1100: 1099: 1098: 1086: 1030: 1028: 989: 961: 959: 931: 929: 901: 861: 860: 845: 839: 793: 762: 761: 759: 692: 669: 619: 590: 564: 529: 528: 506: 501: 471: 459: 435: 429: 405: 394: 393: 380: 367: 357: 343: 335: 315: 285: 279: 258: 233: 224: 194: 155: 129: 128: 127: 109: 81: 75: 1341: 1283:-forms ζ with compact support, we have 1332:with respect to the PoincarĂ© pairing. 1419:Griffiths, Phillip (3 January 2020). 1118:{\displaystyle dim_{\mathbb {C} }M=2} 827:its complex structure operator. Then 657:{\displaystyle \omega (v,I(v))\geq 0} 7: 1421:"Positivity and Vanishing Theorems" 1046:{\displaystyle {\sqrt {-1}}\Theta } 977:{\displaystyle {\sqrt {-1}}\Theta } 947:{\displaystyle {\sqrt {-1}}\Theta } 1040: 971: 941: 903: 863: 842: 790: 764: 282: 106: 78: 31:refers to several classes of real 14: 1453:Complex Geometry: An Introduction 1406:Principles of Algebraic Geometry 719:{\displaystyle I:\;TM\mapsto TM} 267:{\displaystyle dz_{1},...dz_{n}} 1023:admits a Hermitian metric with 303:{\displaystyle \Lambda ^{1,0}M} 1271:-dimensional complex manifold 1145: 866: 811: 805: 780: 767: 707: 645: 642: 636: 624: 540: 534: 519: 399: 330:can be written diagonally, as 134: 118: 99: 93: 58:)-forms on a complex manifold 16:For the linguistics term, see 1: 1279:if for all strongly positive 1065:Semi-positive (1,1)-forms on 489:{\displaystyle v\in T^{1,0}M} 454:For any (1,0)-tangent vector 62:are forms which are of type ( 585:For any real tangent vector 444:{\displaystyle \alpha _{i}} 1558: 1490:Cambridge University Press 886:This connection is called 15: 1017:Kodaira embedding theorem 1498:10.1017/CBO9780511615344 205:{\displaystyle -\omega } 909:{\displaystyle \Theta } 607:{\displaystyle v\in TM} 323:{\displaystyle \omega } 163:{\displaystyle \omega } 1319: 1261: 1233: 1171: 1119: 1047: 1001: 978: 948: 910: 876: 818: 720: 681: 658: 608: 576: 553: 490: 445: 418: 324: 304: 268: 206: 164: 144: 18:Positive (linguistics) 1320: 1262: 1260:{\displaystyle \eta } 1234: 1172: 1120: 1048: 1002: 1000:{\displaystyle 2\pi } 979: 949: 911: 877: 819: 745:positive line bundles 735:Positive line bundles 721: 682: 680:{\displaystyle >0} 659: 609: 577: 575:{\displaystyle >0} 554: 491: 446: 419: 325: 305: 269: 207: 165: 145: 1287: 1251: 1187: 1133: 1085: 1027: 988: 958: 928: 900: 838: 758: 691: 668: 618: 589: 563: 500: 458: 428: 334: 314: 278: 223: 193: 154: 74: 1542:Differential forms 1537:Algebraic geometry 1449:Huybrechts, Daniel 1315: 1257: 1229: 1167: 1115: 1043: 997: 974: 944: 906: 872: 814: 741:ample line bundles 716: 677: 654: 604: 572: 549: 486: 441: 414: 362: 320: 300: 264: 202: 160: 150:A real (1,1)-form 140: 33:differential forms 1532:Complex manifolds 1507:978-0-521-71801-1 1429:20.500.12111/7881 1366:Huybrechts (2005) 1348:Huybrechts (2005) 1241:strongly positive 1038: 1021:ample line bundle 969: 939: 869: 770: 728:complex structure 537: 514: 402: 353: 351: 184:positive definite 178:), respectively, 1549: 1518: 1477: 1432: 1385: 1382: 1376: 1373: 1367: 1364: 1358: 1355: 1349: 1346: 1324: 1322: 1321: 1316: 1299: 1298: 1266: 1264: 1263: 1258: 1238: 1236: 1235: 1230: 1219: 1218: 1217: 1176: 1174: 1173: 1168: 1157: 1156: 1124: 1122: 1121: 1116: 1105: 1104: 1103: 1052: 1050: 1049: 1044: 1039: 1031: 1007:times the first 1006: 1004: 1003: 998: 983: 981: 980: 975: 970: 962: 953: 951: 950: 945: 940: 932: 915: 913: 912: 907: 890:Chern connection 881: 879: 878: 873: 871: 870: 862: 856: 855: 823: 821: 820: 815: 804: 803: 772: 771: 763: 725: 723: 722: 717: 686: 684: 683: 678: 663: 661: 660: 655: 613: 611: 610: 605: 581: 579: 578: 573: 558: 556: 555: 550: 539: 538: 530: 515: 507: 495: 493: 492: 487: 482: 481: 450: 448: 447: 442: 440: 439: 423: 421: 420: 415: 410: 409: 404: 403: 395: 385: 384: 372: 371: 361: 352: 344: 329: 327: 326: 321: 310:of (1,0)-forms, 309: 307: 306: 301: 296: 295: 273: 271: 270: 265: 263: 262: 238: 237: 211: 209: 208: 203: 174:(sometimes just 169: 167: 166: 161: 149: 147: 146: 141: 133: 132: 117: 116: 92: 91: 25:complex geometry 1557: 1556: 1552: 1551: 1550: 1548: 1547: 1546: 1522: 1521: 1508: 1480: 1467: 1447: 1418: 1394: 1389: 1388: 1384:Demailly (1994) 1383: 1379: 1375:Demailly (1994) 1374: 1370: 1365: 1361: 1357:Demailly (1994) 1356: 1352: 1347: 1343: 1338: 1290: 1285: 1284: 1277:weakly positive 1249: 1248: 1208: 1185: 1184: 1148: 1131: 1130: 1125:, this cone is 1094: 1083: 1082: 1079:complex surface 1063: 1057:Positivity for 1025: 1024: 986: 985: 956: 955: 926: 925: 898: 897: 841: 836: 835: 789: 756: 755: 743:(also known as 737: 689: 688: 666: 665: 664:(respectively, 616: 615: 587: 586: 561: 560: 559:(respectively, 498: 497: 467: 456: 455: 431: 426: 425: 392: 376: 363: 332: 331: 312: 311: 281: 276: 275: 254: 229: 221: 220: 219:For some basis 191: 190: 152: 151: 105: 77: 72: 71: 48: 21: 12: 11: 5: 1555: 1553: 1545: 1544: 1539: 1534: 1524: 1523: 1520: 1519: 1506: 1482:Voisin, Claire 1478: 1465: 1445: 1436:J.-P. Demailly 1433: 1416: 1393: 1390: 1387: 1386: 1377: 1368: 1359: 1350: 1340: 1339: 1337: 1334: 1314: 1311: 1308: 1305: 1302: 1297: 1293: 1256: 1228: 1225: 1222: 1216: 1211: 1207: 1204: 1201: 1198: 1195: 1192: 1183:-forms, where 1166: 1163: 1160: 1155: 1151: 1147: 1144: 1141: 1138: 1114: 1111: 1108: 1102: 1097: 1093: 1090: 1062: 1055: 1042: 1037: 1034: 996: 993: 973: 968: 965: 943: 938: 935: 905: 896:The curvature 884: 883: 868: 865: 859: 854: 851: 848: 844: 825: 824: 813: 810: 807: 802: 799: 796: 792: 788: 785: 782: 779: 775: 769: 766: 736: 733: 732: 731: 715: 712: 709: 706: 703: 699: 696: 676: 673: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 603: 600: 597: 594: 583: 571: 568: 548: 545: 542: 536: 533: 527: 524: 521: 518: 513: 510: 505: 485: 480: 477: 474: 470: 466: 463: 452: 438: 434: 413: 408: 401: 398: 391: 388: 383: 379: 375: 370: 366: 360: 356: 350: 347: 342: 339: 319: 299: 294: 291: 288: 284: 261: 257: 253: 250: 247: 244: 241: 236: 232: 228: 217: 214:Hermitian form 201: 198: 159: 139: 136: 131: 126: 123: 120: 115: 112: 108: 104: 101: 98: 95: 90: 87: 84: 80: 47: 44: 13: 10: 9: 6: 4: 3: 2: 1554: 1543: 1540: 1538: 1535: 1533: 1530: 1529: 1527: 1517: 1513: 1509: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1476: 1472: 1468: 1466:3-540-21290-6 1462: 1458: 1454: 1450: 1446: 1443: 1442: 1437: 1434: 1430: 1426: 1422: 1417: 1415: 1414:0-471-32792-1 1411: 1407: 1403: 1399: 1396: 1395: 1391: 1381: 1378: 1372: 1369: 1363: 1360: 1354: 1351: 1345: 1342: 1335: 1333: 1331: 1326: 1312: 1309: 1306: 1303: 1300: 1295: 1291: 1282: 1278: 1274: 1270: 1254: 1246: 1242: 1226: 1223: 1220: 1209: 1205: 1202: 1199: 1196: 1193: 1190: 1182: 1177: 1164: 1161: 1158: 1153: 1149: 1142: 1139: 1136: 1128: 1112: 1109: 1106: 1095: 1091: 1088: 1080: 1077:is a compact 1076: 1072: 1068: 1060: 1056: 1054: 1035: 1032: 1022: 1018: 1014: 1010: 994: 991: 966: 963: 936: 933: 923: 919: 894: 892: 891: 857: 852: 849: 846: 834: 833: 832: 830: 808: 800: 797: 794: 786: 783: 777: 773: 754: 753: 752: 750: 746: 742: 734: 729: 713: 710: 704: 701: 697: 694: 674: 671: 651: 648: 639: 633: 630: 627: 621: 601: 598: 595: 592: 584: 569: 566: 546: 543: 531: 525: 522: 516: 511: 508: 503: 483: 478: 475: 472: 468: 464: 461: 453: 436: 432: 411: 406: 396: 389: 386: 381: 377: 373: 368: 364: 358: 354: 348: 345: 340: 337: 317: 297: 292: 289: 286: 274:in the space 259: 255: 251: 248: 245: 242: 239: 234: 230: 226: 218: 215: 199: 196: 189: 188: 187: 185: 181: 177: 173: 172:semi-positive 157: 137: 124: 121: 113: 110: 102: 96: 88: 85: 82: 69: 65: 61: 57: 53: 45: 43: 41: 38: 34: 30: 29:positive form 26: 19: 1485: 1452: 1439: 1405: 1398:P. Griffiths 1380: 1371: 1362: 1353: 1344: 1327: 1280: 1276: 1272: 1268: 1244: 1240: 1180: 1178: 1074: 1066: 1064: 1058: 1012: 921: 917: 895: 887: 885: 828: 826: 748: 744: 738: 183: 179: 175: 171: 67: 63: 59: 55: 51: 49: 39: 28: 22: 1071:convex cone 1009:Chern class 46:(1,1)-forms 27:, the term 1526:Categories 1392:References 1281:(n-p, n-p) 1275:is called 1053:positive. 920:is called 170:is called 37:Hodge type 1484:(2007) , 1408:, Wiley. 1402:J. Harris 1310:≥ 1307:ζ 1304:∧ 1301:η 1292:∫ 1255:η 1224:− 1200:≤ 1194:≤ 1165:ζ 1162:∧ 1159:η 1150:∫ 1146:↦ 1143:ζ 1137:η 1127:self-dual 1041:Θ 1033:− 995:π 972:Θ 964:− 942:Θ 934:− 904:Θ 867:¯ 864:∂ 843:∇ 791:Λ 787:⊗ 781:↦ 768:¯ 765:∂ 730:operator. 708:↦ 687:), where 649:≥ 622:ω 596:∈ 544:≥ 535:¯ 517:ω 509:− 504:− 465:∈ 433:α 400:¯ 387:∧ 365:α 355:∑ 346:− 338:ω 318:ω 283:Λ 200:ω 197:− 158:ω 107:Λ 103:∩ 79:Λ 1457:Springer 1451:(2005), 1404:(1978), 922:positive 180:positive 176:positive 1516:1967689 1475:2093043 1073:. When 1069:form a 1015:.) The 747:). Let 726:is the 1514:  1504:  1473:  1463:  1412:  1267:on an 1247:-form 1245:(p, p) 1181:(p, p) 1061:-forms 1059:(p, p) 50:Real ( 40:(p, p) 1336:Notes 424:with 1502:ISBN 1461:ISBN 1410:ISBN 1400:and 1330:dual 1179:For 888:the 672:> 567:> 182:(or 1494:doi 1425:hdl 1011:of 984:is 924:if 35:of 23:In 1528:: 1512:MR 1510:, 1500:, 1492:, 1488:, 1471:MR 1469:, 1459:, 1455:, 1438:, 1423:. 1325:. 1081:, 893:. 614:, 582:). 496:, 42:. 1496:: 1444:. 1431:. 1427:: 1313:0 1296:M 1273:M 1269:n 1227:2 1221:M 1215:C 1210:m 1206:i 1203:d 1197:p 1191:2 1154:M 1140:, 1113:2 1110:= 1107:M 1101:C 1096:m 1092:i 1089:d 1075:M 1067:M 1036:1 1013:L 992:2 967:1 937:1 918:L 882:. 858:= 853:1 850:, 847:0 829:L 812:) 809:M 806:( 801:1 798:, 795:0 784:L 778:L 774:: 749:L 714:M 711:T 705:M 702:T 698:: 695:I 675:0 652:0 646:) 643:) 640:v 637:( 634:I 631:, 628:v 625:( 602:M 599:T 593:v 570:0 547:0 541:) 532:v 526:, 523:v 520:( 512:1 484:M 479:0 476:, 473:1 469:T 462:v 437:i 412:, 407:i 397:z 390:d 382:i 378:z 374:d 369:i 359:i 349:1 341:= 298:M 293:0 290:, 287:1 260:n 256:z 252:d 249:. 246:. 243:. 240:, 235:1 231:z 227:d 216:. 138:. 135:) 130:R 125:, 122:M 119:( 114:p 111:2 100:) 97:M 94:( 89:p 86:, 83:p 68:p 66:, 64:p 60:M 56:p 54:, 52:p 20:.

Index

Positive (linguistics)
complex geometry
differential forms
Hodge type
Hermitian form
complex structure
ample line bundles
Chern connection
Chern class
Kodaira embedding theorem
ample line bundle
convex cone
complex surface
self-dual
dual
P. Griffiths
J. Harris
ISBN
0-471-32792-1
"Positivity and Vanishing Theorems"
hdl
20.500.12111/7881
J.-P. Demailly
L vanishing theorems for positive line bundles and adjunction theory, Lecture Notes of a CIME course on "Transcendental Methods of Algebraic Geometry" (Cetraro, Italy, July 1994)
Huybrechts, Daniel
Springer
ISBN
3-540-21290-6
MR
2093043

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑