Knowledge (XXG)

Power diagram

Source 📝

84: 234: 20: 304:
A planar power diagram may also be interpreted as a planar cross-section of an unweighted three-dimensional Voronoi diagram. In this interpretation, the set of circle centers in the cross-section plane are the perpendicular projections of the three-dimensional Voronoi sites, and the squared radius of
295:
include the additively weighted Voronoi diagram, in which each site has a weight that is added to its distance before comparing it to the distances to the other sites, and the multiplicatively weighted Voronoi diagram, in which the weight of a site is multiplied by its distance before comparing it to
409:
The power diagram may be used as part of an efficient algorithm for computing the volume of a union of spheres. Intersecting each sphere with its power diagram cell gives its contribution to the total union, from which the volume may be computed in time proportional to the complexity of the power
417:
for testing whether a point belongs to a union of disks, algorithms for constructing the boundary of a union of disks, and algorithms for finding the closest two balls in a set of balls. It is also used for solving the semi-discrete
453:
point light sources. Power diagrams have appeared in the literature under other names including the "Laguerre–Voronoi diagram", "Dirichlet cell complex", "radical Voronoi tesselation" and "sectional Dirichlet tesselation".
300:
before comparing it to other squared distances. In the case that all the circle radii are equal, this subtraction makes no difference to the comparison, and the power diagram coincides with the Voronoi diagram.
296:
the distances to the other sites. In contrast, in the power diagram, we may view each circle center as a site, and each circle's squared radius as a weight that is subtracted from the
404: 237:
The radical axis of two intersecting circles. The power diagram of the two circles is the partition of the plane into two halfplanes formed by this line.
851: 291:
of a set of point sites, a partition of the plane into cells within which one of the sites is closer than all the other sites. Other forms of
419: 253:
or chordale of the two circles. Along the radical axis, both circles have equal power. More generally, in any power diagram, each cell
1013: 316:
Like the Voronoi diagram, the power diagram may be generalized to Euclidean spaces of any dimension. The power diagram of
83: 927: 297: 922: 529:
Imai, Hiroshi; Iri, Masao; Murota, Kazuo (1985), "Voronoĭ diagram in the Laguerre geometry and its applications",
75:, and coincides with the Voronoi diagram of the circle centers in the case that all the circles have equal radii. 588: 531: 292: 359: 422:
problem which in turn has numerous applications, such as early universe reconstruction or fluid dynamics.
28: 845: 233: 888: 632: 739: 71:
is smaller than the power distance to the other circles. The power diagram is a form of generalized
972: 804:"A fast semidiscrete optimal transport algorithm for a unique reconstruction of the early Universe" 653: 639:, EATCS Monographs on Theoretical Computer Science, vol. 10, Springer-Verlag, pp. 327–328 473: 279:
of the diagram, which are the radical centers of the three circles whose cells meet at the vertex.
144: 952: 904: 878: 866: 815: 784: 735: 678: 498: 163:
may be extended to all points in the plane, regardless of whether they are inside or outside of
348:). More generally, because of the equivalence with higher-dimensional halfspace intersections, 1018: 833: 776: 583: 276: 981: 936: 896: 825: 803: 768: 715: 662: 597: 540: 482: 108: 64: 993: 948: 674: 609: 552: 494: 989: 944: 670: 605: 548: 490: 434: 288: 72: 52: 309:
minus the squared distance of the corresponding site from the cross-section plane, where
892: 438: 433:
traces the definition of the power distance to the work of 19th-century mathematicians
414: 263: 867:"Partial optimal transport for a constant-volume Lagrangian mesh with free boundaries" 340:
Two-dimensional power diagrams may be constructed by an algorithm that runs in time O(
1007: 956: 908: 682: 502: 700: 788: 250: 970:
Aurenhammer, F.; Imai, H. (1988), "Geometric relations among Voronoĭ diagrams",
651:
Ash, Peter F.; Bolker, Ethan D. (1986), "Generalized Dirichlet tessellations",
900: 756: 696: 837: 829: 780: 445:
defined power diagrams and used them to show that the boundary of a union of
471:
Linhart, J. (1981), "Dirichletsche Zellenkomplexe mit maximaler Eckenzahl",
246: 266:, the intersection of the halfspaces bounded by the radical axes of circle 19: 324:
dimensions is combinatorially equivalent to the intersection of a set of
356: > 2) may be constructed by an algorithm that runs in time 985: 940: 772: 720: 666: 486: 56: 802:
Levy, Bruno; Mohayaee, Roya; von Hausegger, Sebastian (2021-07-13).
601: 544: 883: 820: 586:(1987), "Power diagrams: properties, algorithms and applications", 232: 82: 59:
cells defined from a set of circles. The cell for a given circle
738:; Zhang, Li (1998), "Euclidean proximity and power diagrams", 755:
Aurenhammer, F.; Hoffmann, F.; Aronov, B. (January 1998).
313:
is chosen large enough to make all these radii positive.
139:
from the center of the circle, and the circle has radius
287:
The power diagram may be seen as a weighted form of the
449:
circular disks can always be illuminated from at most 2
757:"Minkowski-Type Theorems and Least-Squares Clustering" 362: 119:is the square of the length of a line segment from 741:10th Canadian Conference on Computational Geometry 398: 245: = 2, the power diagram consists of two 928:Acta Mathematica Academiae Scientiarum Hungaricae 808:Monthly Notices of the Royal Astronomical Society 275:with each other circle. Triples of cells meet at 699:; Bhattacharya, Binay K.; Imai, Hiroshi (1988), 701:"Computing the volume of the union of spheres" 413:Other applications of power diagrams include 8: 388: 374: 430: 332: + 1 dimensions, and vice versa. 442: 882: 819: 719: 380: 373: 361: 63:consists of all the points for which the 925:(1977), "Illumination of convex discs", 399:{\displaystyle O(n^{\lceil d/2\rceil })} 18: 524: 522: 520: 518: 516: 514: 512: 463: 843: 226:is the circle minimizing the power of 627: 625: 623: 621: 619: 578: 576: 574: 572: 570: 568: 566: 564: 562: 7: 637:Algorithms in Combinatorial Geometry 171:have zero power, and points inside 850:: CS1 maint: unflagged free DOI ( 204:(called cells), such that a point 14: 352:-dimensional power diagrams (for 249:, separated by a line called the 191:is a partition of the plane into 871:Journal of Computational Physics 16:Partition of the Euclidean plane 635:(1987), "13.6 Power Diagrams", 49:sectional Dirichlet tesselation 23:A power diagram of four circles 393: 366: 178:The power diagram of a set of 1: 865:Lévy, Bruno (February 2022). 328:upward-facing halfspaces in 336:Algorithms and applications 45:radical Voronoi tesselation 1035: 305:each circle is a constant 298:squared Euclidean distance 901:10.1016/j.jcp.2021.110838 589:SIAM Journal on Computing 532:SIAM Journal on Computing 91:outside of a given circle 293:weighted Voronoi diagram 51:, is a partition of the 37:Laguerre–Voronoi diagram 1014:Computational geometry 830:10.1093/mnras/stab1676 420:optimal transportation 400: 238: 92: 41:Dirichlet cell complex 29:computational geometry 24: 633:Edelsbrunner, Herbert 401: 283:Related constructions 236: 175:have negative power. 87:The power of a point 86: 22: 360: 973:Geometriae Dedicata 893:2022JCoPh.45110838L 708:The Visual Computer 654:Geometriae Dedicata 474:Geometriae Dedicata 159: −  155:. The same formula 151: −  145:Pythagorean theorem 131:. Equivalently, if 103:is a point outside 986:10.1007/BF00181613 941:10.1007/BF01895856 773:10.1007/PL00009187 721:10.1007/BF01901190 667:10.1007/BF00164401 487:10.1007/BF00149360 431:Aurenhammer (1987) 396: 239: 93: 25: 443:Fejes Tóth (1977) 127:of tangency with 1026: 998: 996: 967: 961: 959: 935:(3–4): 355–360, 919: 913: 912: 886: 862: 856: 855: 849: 841: 823: 814:(1): 1165–1185. 799: 793: 792: 752: 746: 744: 736:Guibas, Leonidas 732: 726: 724: 723: 705: 693: 687: 685: 648: 642: 640: 629: 614: 612: 580: 557: 555: 526: 507: 505: 468: 405: 403: 402: 397: 392: 391: 384: 217:whenever circle 115:with respect to 99:is a circle and 35:, also called a 1034: 1033: 1029: 1028: 1027: 1025: 1024: 1023: 1004: 1003: 1002: 1001: 969: 968: 964: 921: 920: 916: 864: 863: 859: 842: 801: 800: 796: 754: 753: 749: 734: 733: 729: 703: 695: 694: 690: 650: 649: 645: 631: 630: 617: 602:10.1137/0216006 584:Aurenhammer, F. 582: 581: 560: 545:10.1137/0214006 528: 527: 510: 470: 469: 465: 460: 435:Edmond Laguerre 428: 415:data structures 369: 358: 357: 344: log  338: 289:Voronoi diagram 285: 274: 261: 225: 216: 203: 190: 147:) the power is 143:, then (by the 81: 73:Voronoi diagram 53:Euclidean plane 17: 12: 11: 5: 1032: 1030: 1022: 1021: 1016: 1006: 1005: 1000: 999: 962: 923:Fejes Tóth, L. 914: 857: 794: 747: 727: 714:(6): 323–328, 688: 661:(2): 209–243, 643: 615: 558: 508: 481:(3): 363–367, 462: 461: 459: 456: 439:Georgy Voronoy 427: 424: 395: 390: 387: 383: 379: 376: 372: 368: 365: 337: 334: 284: 281: 270: 264:convex polygon 257: 221: 212: 199: 186: 80: 77: 65:power distance 15: 13: 10: 9: 6: 4: 3: 2: 1031: 1020: 1017: 1015: 1012: 1011: 1009: 995: 991: 987: 983: 979: 975: 974: 966: 963: 958: 954: 950: 946: 942: 938: 934: 930: 929: 924: 918: 915: 910: 906: 902: 898: 894: 890: 885: 880: 876: 872: 868: 861: 858: 853: 847: 839: 835: 831: 827: 822: 817: 813: 809: 805: 798: 795: 790: 786: 782: 778: 774: 770: 766: 762: 758: 751: 748: 743: 742: 737: 731: 728: 722: 717: 713: 709: 702: 698: 692: 689: 684: 680: 676: 672: 668: 664: 660: 656: 655: 647: 644: 638: 634: 628: 626: 624: 622: 620: 616: 611: 607: 603: 599: 595: 591: 590: 585: 579: 577: 575: 573: 571: 569: 567: 565: 563: 559: 554: 550: 546: 542: 539:(1): 93–105, 538: 534: 533: 525: 523: 521: 519: 517: 515: 513: 509: 504: 500: 496: 492: 488: 484: 480: 476: 475: 467: 464: 457: 455: 452: 448: 444: 440: 436: 432: 425: 423: 421: 416: 411: 407: 385: 381: 377: 370: 363: 355: 351: 347: 343: 335: 333: 331: 327: 323: 319: 314: 312: 308: 302: 299: 294: 290: 282: 280: 278: 273: 269: 265: 260: 256: 252: 248: 244: 235: 231: 229: 224: 220: 215: 211: 207: 202: 198: 194: 189: 185: 181: 176: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 135:has distance 134: 130: 126: 122: 118: 114: 110: 106: 102: 98: 90: 85: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 33:power diagram 30: 21: 980:(1): 65–75, 977: 971: 965: 932: 926: 917: 874: 870: 860: 846:cite journal 811: 807: 797: 767:(1): 61–76. 764: 761:Algorithmica 760: 750: 740: 730: 711: 707: 691: 658: 652: 646: 636: 596:(1): 78–96, 593: 587: 536: 530: 478: 472: 466: 450: 446: 429: 412: 408: 353: 349: 345: 341: 339: 329: 325: 321: 317: 315: 310: 306: 303: 286: 271: 267: 258: 254: 251:radical axis 242: 241:In the case 240: 227: 222: 218: 213: 209: 205: 200: 196: 192: 187: 183: 179: 177: 172: 168: 167:: points on 164: 160: 156: 152: 148: 140: 136: 132: 128: 124: 120: 116: 112: 104: 100: 96: 94: 88: 68: 60: 48: 44: 40: 36: 32: 26: 697:Avis, David 320:spheres in 208:belongs to 123:to a point 107:, then the 1008:Categories 884:2106.03936 877:: 110838. 821:2012.09074 458:References 247:halfplanes 79:Definition 957:122510545 909:235406800 838:0035-8711 781:0178-4617 683:120383767 503:120072781 410:diagram. 389:⌉ 375:⌈ 57:polygonal 1019:Diagrams 277:vertices 195:regions 182:circles 994:0950323 949:0464065 889:Bibcode 789:5409198 675:0833848 610:0873251 553:0774929 495:0627538 426:History 992:  955:  947:  907:  836:  787:  779:  681:  673:  608:  551:  501:  493:  953:S2CID 905:S2CID 879:arXiv 816:arXiv 785:S2CID 704:(PDF) 679:S2CID 499:S2CID 262:is a 109:power 55:into 47:or a 852:link 834:ISSN 777:ISSN 437:and 31:, a 982:doi 937:doi 897:doi 875:451 826:doi 812:506 769:doi 716:doi 663:doi 598:doi 541:doi 483:doi 111:of 95:If 67:to 27:In 1010:: 990:MR 988:, 978:27 976:, 951:, 945:MR 943:, 933:29 931:, 903:. 895:. 887:. 873:. 869:. 848:}} 844:{{ 832:. 824:. 810:. 806:. 783:. 775:. 765:20 763:. 759:. 710:, 706:, 677:, 671:MR 669:, 659:20 657:, 618:^ 606:MR 604:, 594:16 592:, 561:^ 549:MR 547:, 537:14 535:, 511:^ 497:, 491:MR 489:, 479:11 477:, 441:. 406:. 230:. 43:, 39:, 997:. 984:: 960:. 939:: 911:. 899:: 891:: 881:: 854:) 840:. 828:: 818:: 791:. 771:: 745:. 725:. 718:: 712:3 686:. 665:: 641:. 613:. 600:: 556:. 543:: 506:. 485:: 451:n 447:n 394:) 386:2 382:/ 378:d 371:n 367:( 364:O 354:d 350:d 346:n 342:n 330:d 326:n 322:d 318:n 311:K 307:K 272:i 268:C 259:i 255:R 243:n 228:P 223:i 219:C 214:i 210:R 206:P 201:i 197:R 193:n 188:i 184:C 180:n 173:C 169:C 165:C 161:r 157:d 153:r 149:d 141:r 137:d 133:P 129:C 125:T 121:P 117:C 113:P 105:C 101:P 97:C 89:P 69:C 61:C

Index


computational geometry
Euclidean plane
polygonal
power distance
Voronoi diagram

power
Pythagorean theorem

halfplanes
radical axis
convex polygon
vertices
Voronoi diagram
weighted Voronoi diagram
squared Euclidean distance
data structures
optimal transportation
Aurenhammer (1987)
Edmond Laguerre
Georgy Voronoy
Fejes Tóth (1977)
Geometriae Dedicata
doi
10.1007/BF00149360
MR
0627538
S2CID
120072781

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.