Knowledge (XXG)

Predictive genomics

Source 📝

760:(T2D), an extremely common metabolic disorder, has demonstrated interplay between many environmental and genetic risk factors leading to disease onset. A number of risk assessment models incorporating a number of demographic, environmental and clinical risk factors are already shown to elicit reasonable discrimination in case-control studies; it has been proposed that identifying genetic variants that contribute to T2D as for standalone prediction or in conjunction with current risk models can improve prediction of T2D risk, if current models lack sufficient coverage of the full effect of an individual's genotype. Approximately 20 associated SNPs have been replicated in T2D; however, their effect sizes do not seem to be substantial: OR 1.37 for SNPs in the 120:, complex diseases and traits are affected by a number of gene loci and genetic variants with varying risk. A precursor to the development of preventative, prognostic and diagnostic tools in these diseases requires mapping genetic loci in disease etiology and discovering causal mutations. Creating a ‘genomic profile’ of individuals with the number of variants at the genome-wide level facilitates not only the prediction of disease prior to onset, but also serves as a primer to increasing the knowledge of causal variants. 2215: 791:(T2D)). With particular attention to T2D, Evans et al. were able to discern a marginal increase in AUC (+0.04) based on genome-wide information with respect to known susceptible variants. However, non-genetic based tests such as the Cambridge and Framingham offspring risk scores have been purported to perform better than genetic-risk models with 20 loci. Moreover, the addition of genetic risk with these phenotypical models did not produce statistically significant AUC results. 100: 863:
the number of observations may be used before modelling disease risk. Hayes et al. states that population size must be >100,000 in order to achieve high accuracy under their model assumptions; the exception is the case where there is a small effective population size. Furthermore, ethnic specific GWA studies show that each group has varied detectability of variants in terms of: frequency,
806:(HLA) genes are strongly implicated in CD development and HLA testing is undertaken in clinical practice. However, although there are serological and histological tests available for CD, these clinical screenings have been found to generate false positives. In 2014, Abraham et al. used a genomic risk score (GRS) generated over 6 cohorts with an AUC of 0.86 to 0.90. 850:
theoretical genetic heritability. It has been demonstrated by Goudey et al. that both 2-way and 3-way interactions between SNPs are able to explain trait variance relative to single SNPs. Goudey et al. also states that the barrier to expansion of higher order interactions has been limited by the intractability of exhaustive search techniques (see
819:(Area Under the ROC) is the de facto metric in comparing and evaluating the performance of predictive models, there is no consensus as to what kind of score is sufficient for clinical use. Jakobsdottir et al. states that 0.75 AUC is sufficient for discriminating between clear cases and controls; however, this is still arbitrary. The 1394:
Manolio, T. A.; Collins, F. S.; Cox, N. J.; Goldstein, D. B.; Hindorff, L. A.; Hunter, D. J.; McCarthy, M. I.; Ramos, E. M.; Cardon, L. R.; Chakravarti, A.; Cho, J. H.; Guttmacher, A. E.; Kong, A.; Kruglyak, L.; Mardis, E.; Rotimi, C. N.; Slatkin, M.; Valle, D.; Whittemore, A. S.; Boehnke, M.; Clark,
849:
Currently, the prevailing standard of risk models focus on univariate analysis rather than focusing upon interactions of higher order. Therefore, although typical GWA studies are able to detect a number of statistically significant loci, they have not been sufficient to fully explain the estimates of
875:
Predictive genomics has not been constrained to prediction of complex diseases. For instance, Hayes et al. uses genomic prediction for livestock, crop and forage species selection, where predicted results are currently in use. Furthermore, Kambouris et al. discusses the use of ‘genomic profiles’ for
862:
The issues surrounding sample size and number of variants become exacerbated particularly when GWA studies consider variants of volume in the order of millions. Therefore, due to the current constraints in the curse of dimensionality, prior screening methods that decrease the number of loci to below
123:
The foremost difficulty in achieving this goal is to understand the functionality of these variants with respect to areas of physiological and molecular importance in conjunction with phenotype. If associated variants are mapped to sequences with unknown function, then this restricts the ability for
880:
in forensics as a beneficiary of the genomic revolution. Functionally validating novel genetic findings is crucial in rare disease. However, the analysis of individual genetic variants often requires several years of work. Variants that are most likely to occur and present as disease-causing can be
840:
stratified across different ethnicities demonstrating better, although marginal, improvement of CNVs over SNPs for prediction. Furthermore, a comparison of over 10 complex disorders in prediction with respect to family history and SNPs for prediction did not suggest better discrimination with SNPs.
1617:
Fritsche, L. G.; Chen, W.; Schu, M.; Yaspan, B. L.; Yu, Y.; Thorleifsson, G.; Zack, D. J.; Arakawa, S.; Cipriani, V.; Ripke, S.; Igo, R. P.; Buitendijk, G. L. H. S.; Sim, X.; Weeks, D. E.; Guymer, R. H.; Merriam, J. E.; Francis, P. J.; Hannum, G.; Agarwal, A.; Armbrecht, A. M.; Audo, I.; Aung, T.;
709:
In the applications of predictive genomics below, these complex diseases either lack or are lacking reliable diagnostics for disease. Given the medical consequences of these diseases, the economic impact is also significant. However, none of the use cases below has been translated into the clinic.
831:
SNPs identified in GWA studies are considered to give better predictive performance if they have high effect sizes of Odds Ratios (OR). A case study involving 5 use cases of genomic prediction demonstrate that SNPs with extremely small p-values, and by implication extreme OR do not give extreme
1288:
Swanton, C.; Larkin, J. M.; Gerlinger, M.; Eklund, A. C.; Howell, M.; Stamp, G.; Downward, J.; Gore, M.; Futreal, P. A.; Escudier, B.; Andre, F.; Albiges, L.; Beuselinck, B.; Oudard, S.; Hoffmann, J.; Gyorffy, B. Z.; Torrance, C. J.; Boehme, K. A.; Volkmer, H.; Toschi, L.; Nicke, B.; Beck, M.;
136:
The identification of causal variants, genes and pathways leads to opportunities that bridge the divide between research and clinical usage. If successful, the subsequent discovery of therapeutic targets within implicated biological pathways have consequences for both treatment and prevention.
149:
The significance of translation from research to clinical usage relates to use of the complete knowledge of an individual to develop personalised approaches to disease management. The caveat with this is that there have been difficulties in both prediction and inference for complex diseases.
83:
A number of short- and long-term goals exist for predictive genomics. The identification of associated variants underpin all other downstream endeavors that point toward better data-cum-knowledge outcomes. In particular, those outcomes that facilitate clinical improvement and individualised
729:(OR) have been reported (greater than 2.0 per allele in some cases). In 2013, a comprehensive case-control GWA study with approximately 77,000 observations involving 18 international research groups from the International AMD Genetics Consortium implicated 19 gene loci and 9 745:- according to Jakobsdottir et al., 0.75 AUC is sufficient to distinguish between extreme cases and controls. In particular, of the 19 associated gene loci, there were 7 newly discovered loci, which the authors point to as additional entry points into AMD etiology and 814:
For predictive genomics to address their objectives, there must be an improvement in the accuracy of prediction through added methods or improvements to current techniques and to demonstrate that there is bonafide improvement in patient outcomes. Currently, although
725:) gene in 2005 motivating the search for more genetic variants in the disease. Over the past decade, a number of models have been proposed to assess individual risk to AMD. The genetic predisposition of AMD risk varies from 45% to 71% where highly effectual 70:
has progressively improved the fidelity of sequence determination, the overbearing complexity of the genome hinders the identification of associated or ultimately causal variants. In particular, there are likely to be a large number of implicated
721:(AMD) is one of the flagship complex diseases from the genomic revolution with over 19 associated genetic loci replicated in GWA studies. In particular, the first significant genetic risk variant was identified in the complement factor H( 1244:
McCarthy, M. I.; Abecasis, G. A. R.; Cardon, L. R.; Goldstein, D. B.; Little, J.; Ioannidis, J. P. A.; Hirschhorn, J. N. (2008). "Genome-wide association studies for complex traits: Consensus, uncertainty and challenges".
137:
Furthermore, the downstream effect of identifying disease-relevant biomarkers allow for improvements to monitoring disease progression and response-to-treatment, where the implementation of these results into
881:
predicted; distinct from and supplementary to pathogenicity prediction. This application guides research to test the effect of top candidate variants in preparation for novel disease cases.
154:, there is a limit to the predictive accuracy of their ‘genomic profiles’. However, preliminary examples of predictive genomics for personalising healthcare include: using an individual's 124:
specific targeting in areas of interest. Therefore, the ability for predictive genomics to succeed also depends upon other related areas such as the functional annotation of the genome (
141:(CDSS) facilitate personalised medicine and outcomes. Even if only marginally effectual, the repeated replication of associated variants can offer significant translational value. 1867:
Meigs, J. B.; Shrader, P.; Sullivan, L. M.; McAteer, J. B.; Fox, C. S.; Dupuis, J. E.; Manning, A. K.; Florez, J. C.; Wilson, P. W. F.; d'Agostino, R. B.; Cupples, L. A. (2008).
307: 220: 876:
the performance of elite athletes noting individualised and personalised training regimens for both dietary and physical aspects. Additionally, Kayser et al. point to
832:
differences in discrimination. They point out that use of significantly associated genetic variants does not necessarily lead to better classification. Alternatively,
2170:"Genetic Architecture of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in Holstein Cattle as Contrasting Model Traits" 334: 246: 274: 188: 2014:
Peterson, R. E.; Maes, H. H.; Lin, P.; Kramer, J. R.; Hesselbrock, V. M.; Bauer, L. O.; Nurnberger, J. I.; Edenberg, H. J.; Dick, D. M.; Webb, B. T. (2014).
158:
data to monitor progress to treatment, or using the genomic profile of the P450 drug metabolising system of individuals to assist dosage and selection.
43:
in humans. To date, the success of predictive genomics has been dependent on the genetic framework underlying these applications, typically explored in
2352:
Lawless, D; Lango Allen, H; Thaventhiran, J; NIHR BioResource–Rare Diseases Consortium; Hodel, F; Anwar, R; Fellay, J; Walter, J; Savic, S (2019).
820: 1684: 1342:"A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine" 2116:
Thornton-Wells, T. A.; Moore, J. H.; Haines, J. L. (2004). "Genetics, statistics and human disease: Analytical retooling for complexity".
170:(SNP) based models reflecting known genetic factors for a European population (subject to change as more associations are discovered). 166:
In the table below is a performance comparison of diseases selected on disease frequency and known heritability estimates, with use of
2065:
Goudey, B.; Rawlinson, D.; Wang, Q.; Shi, F.; Ferra, H.; Campbell, R. M.; Stern, L.; Inouye, M. T.; Ong, C. S.; Kowalczyk, A. (2013).
1921:"Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk" 925: 816: 1818:
Talmud, P. J.; Hingorani, A. D.; Cooper, J. A.; Marmot, M. G.; Brunner, E. J.; Kumari, M.; Kivimaki, M.; Humphries, S. E. (2010).
900: 138: 1715:"Interpretation of Genetic Association Studies: Markers with Replicated Highly Significant Odds Ratios May Be Poor Classifiers" 940: 167: 48: 2309:
Kayser, M.; De Knijff, P. (2011). "Improving human forensics through advances in genetics, genomics and molecular biology".
1618:
Barile, G. R.; Benchaboune, M.; Bird, A. C.; Bishop, P. N.; Branham, K. E.; Brooks, M.; Brucker, A. J.; et al. (2013).
44: 1820:"Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study" 2274:
Kambouris, M; Ntalouka, F; Ziogas, G; Maffulli, N (2012). "Predictive genomics DNA profiling for athletic performance".
950: 28: 2016:"On the association of common and rare genetic variation influencing body mass index: A combined SNP and CNV analysis" 1070:
Janssens, A. C. J. W.; Van Duijn, C. M. (2008). "Genome-based prediction of common diseases: Advances and prospects".
1764:
Lyssenko, V.; Almgren, P.; Anevski, D.; Orho-Melander, M.; Sjögren, M.; Saloranta, C.; Tuomi, T.; Groop, L. (2005).
1291:"Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets" 1108:
Hindorff, L. A.; Sethupathy, P.; Junkins, H. A.; Ramos, E. M.; Mehta, J. P.; Collins, F. S.; Manolio, T. A. (2009).
1027:
Hirschhorn, J. N.; Daly, M. J. (2005). "Genome-wide association studies for common diseases and complex traits".
1667:
Grassmann, F.; Heid, I. M.; Weber, B. H. F. (2014). "Genetic Risk Models in Age-Related Macular Degeneration".
1110:"Potential etiologic and functional implications of genome-wide association loci for human diseases and traits" 788: 784: 757: 564: 356: 52: 1395:
A. G.; Eichler, E. E.; Gibson, G.; Haines, J. L.; MacKay, T. F. C.; McCarroll, S. A.; Visscher, P. M. (2009).
802:(CD) is a complex immune disorder that has been found to have strong genetic links in disease. In particular, 1454:"Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro" 51:(variation of a DNA sequence in a population) underpin GWA studies in complex diseases that have ranged from 803: 340: 113: 2214: 1206:
Ginsburg, G. S.; Willard, H. F. (2009). "Genomic and personalized medicine: Foundations and applications".
2125: 864: 580: 420: 945: 833: 93: 767:
In 2009, a study was conducted on the WTCCC (GWA study involving 7 cohorts with 7 diseases: including
1465: 1408: 1121: 910: 780: 742: 718: 500: 67: 56: 2130: 935: 890: 372: 20: 99: 2334: 2256: 2228: 2165: 1540: 1270: 1168: 1052: 973: 836:(copy number variants) have been proposed to usurp SNPs as better candidates for prediction with 730: 644: 532: 772: 692: 60: 2067:"GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS" 280: 193: 2408: 2385: 2326: 2291: 2248: 2203: 2143: 2098: 2047: 1996: 1942: 1898: 1849: 1797: 1746: 1690: 1680: 1649: 1594: 1532: 1493: 1434: 1373: 1322: 1262: 1223: 1188: 1149: 1087: 1044: 1009: 905: 867: – the co-inheritance of SNPs through generations – and the actual loci themselves. 746: 596: 484: 85: 24: 2375: 2365: 2318: 2283: 2240: 2231:(2008). "Genomic selection: Prediction of accuracy and maximisation of long term response". 2193: 2183: 2135: 2088: 2078: 2037: 2027: 1986: 1976: 1932: 1888: 1880: 1839: 1831: 1787: 1777: 1736: 1726: 1672: 1639: 1631: 1584: 1574: 1524: 1483: 1473: 1424: 1416: 1363: 1353: 1312: 1302: 1254: 1215: 1180: 1139: 1129: 1079: 1036: 999: 991: 920: 895: 768: 741:
activity. The predictive performance of the full model including all 19 loci exhibited 0.74
734: 468: 72: 1963:
Abraham, G.; Tye-Din, J. A.; Bhalala, O. G.; Kowalczyk, A.; Zobel, J.; Inouye, M. (2014).
982: 837: 676: 404: 155: 117: 313: 225: 1469: 1412: 1125: 112:
Whilst the single-gene, single-disease hypothesis holds for Mendelian disorders such as
2380: 2353: 2198: 2169: 2093: 2066: 2042: 2015: 1991: 1964: 1893: 1868: 1844: 1819: 1792: 1765: 1741: 1714: 1644: 1619: 1589: 1562: 1429: 1396: 1368: 1341: 1317: 1290: 1144: 1109: 1004: 978:"Prediction of individual genetic risk to disease from genome-wide association studies" 977: 799: 628: 612: 516: 259: 173: 1488: 1453: 1171:; Visscher, P. M. (2008). "Prediction of individual genetic risk of complex disease". 2402: 2174: 1965:"Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning" 1869:"Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes" 877: 660: 436: 1713:
Jakobsdottir, J.; Gorin, M. B.; Conley, Y. P.; Ferrell, R. E.; Weeks, D. E. (2009).
1544: 1274: 2338: 2260: 1056: 776: 738: 1671:. Advances in Experimental Medicine and Biology. Vol. 801. pp. 291–300. 2188: 1981: 1782: 1731: 1676: 1579: 2083: 851: 452: 2370: 2287: 1219: 2244: 2139: 1563:"Comparison of Family History and SNPs for Predicting Risk of Complex Disease" 1184: 930: 915: 726: 150:
Therefore, unless individuals have an overwhelming high or low number of risk
36: 32: 2032: 1452:
Gunther, E. C.; Stone, D. J.; Gerwien, R. W.; Bento, P; Heyes, M. P. (2003).
1478: 1134: 89: 2389: 2330: 2295: 2252: 2207: 2147: 2102: 2051: 2000: 1946: 1902: 1853: 1801: 1750: 1694: 1653: 1598: 1536: 1497: 1438: 1377: 1358: 1326: 1266: 1227: 1192: 1153: 1091: 1048: 1013: 823:(PPV) must be high enough to avoid a higher prevalence of false-positives. 1884: 1937: 1920: 1083: 548: 1420: 1528: 995: 151: 40: 1835: 1340:
Kawamoto, K.; Lobach, D. F.; Willard, H. F.; Ginsburg, G. S. (2009).
388: 125: 2322: 1635: 1258: 1040: 1511:
De Leon, J; Susce, M. T.; Murray-Carmichael, E (2006). "The Ampli
1307: 98: 1620:"Seven new loci associated with age-related macular degeneration" 2164:
Hayes, B. J.; Pryce, J.; Chamberlain, A. J.; Bowman, P. J.;
1561:
Do, C. B.; Hinds, D. A.; Francke, U.; Eriksson, N. (2012).
1515:
CYP450 genotyping test: Integrating a new clinical tool".
31:. Specifically, predictive genomics deals with the future 2354:"Predicting the Occurrence of Variants in RAG1 and RAG2" 1397:"Finding the missing heritability of complex diseases" 316: 283: 262: 228: 196: 176: 1919:Evans, D. M.; Visscher, P. M.; Wray, N. R. (2009). 328: 301: 268: 240: 214: 182: 103:Objectives as a hierarchy for predictive genomics. 84:healthcare further lead to actionable measures in 47:(GWA) studies. The identification of associated 19:is at the intersection of multiple disciplines: 1458:Proceedings of the National Academy of Sciences 1114:Proceedings of the National Academy of Sciences 1766:"Genetic Prediction of Future Type 2 Diabetes" 1173:Current Opinion in Genetics & Development 827:Variants in prediction: SNPs and alternatives 764:gene purported to give highest genetic risk. 8: 1239: 1237: 1103: 1101: 1958: 1956: 1813: 1811: 1346:BMC Medical Informatics and Decision Making 845:Interacting variants: higher order analysis 2276:Recent Patents on DNA & Gene Sequences 1914: 1912: 1556: 1554: 1389: 1387: 967: 965: 250: 2379: 2369: 2197: 2187: 2129: 2092: 2082: 2041: 2031: 1990: 1980: 1936: 1892: 1843: 1791: 1781: 1740: 1730: 1643: 1612: 1610: 1608: 1588: 1578: 1487: 1477: 1428: 1367: 1357: 1316: 1306: 1143: 1133: 1003: 315: 293: 288: 282: 261: 227: 206: 201: 195: 175: 733:including the regulation of complement, 39:in areas such as complex multifactorial 1708: 1706: 1704: 961: 108:Identify associated variants to disease 2159: 2157: 162:Applications in complex human diseases 75:which exhibit small marginal effects. 7: 222:denotes heritability of liability, 248:denotes area under the ROC curve. 14: 1517:Molecular Diagnosis & Therapy 926:Receiver operating characteristic 139:clinical decision support systems 132:Translation: research to clinical 2213: 901:Clinical decision support system 719:Age-related macular degeneration 714:Age-related macular degeneration 501:Age-related macular degeneration 57:Age-related macular degeneration 1873:New England Journal of Medicine 49:single-nucleotide polymorphisms 2358:Journal of Clinical Immunology 941:Single-nucleotide polymorphism 190:denotes lifetime morbid risk, 168:single-nucleotide polymorphism 1: 1669:Retinal Degenerative Diseases 2189:10.1371/journal.pgen.1001139 1982:10.1371/journal.pgen.1004137 1783:10.1371/journal.pmed.0020345 1732:10.1371/journal.pgen.1000337 1677:10.1007/978-1-4614-3209-8_37 1580:10.1371/journal.pgen.1002973 951:Translational bioinformatics 29:translational bioinformatics 2084:10.1186/1471-2164-14-S3-S10 2425: 2371:10.1007/s10875-019-00670-z 2288:10.2174/187221512802717321 1220:10.1016/j.trsl.2009.09.005 976:; Visscher, P. M. (2007). 858:Population: size and scope 145:Individualising healthcare 2245:10.1007/s10709-008-9308-0 2140:10.1016/j.tig.2004.09.007 1185:10.1016/j.gde.2008.07.006 821:positive predictive value 302:{\displaystyle h_{L}^{2}} 215:{\displaystyle h_{L}^{2}} 2033:10.1186/1471-2164-15-368 1925:Human Molecular Genetics 1072:Human Molecular Genetics 2311:Nature Reviews Genetics 1479:10.1073/pnas.1632587100 1247:Nature Reviews Genetics 1135:10.1073/pnas.0903103106 1029:Nature Reviews Genetics 804:human leukocyte antigen 341:Coronary artery disease 45:genome-wide association 1359:10.1186/1472-6947-9-17 1208:Translational Research 865:linkage disequilibrium 330: 303: 270: 242: 216: 184: 104: 1885:10.1056/NEJMoa0804742 1630:(4): 433–9, 439e1–2. 1289:Szallasi, Z. (2010). 946:Copy-number variation 331: 304: 271: 243: 217: 185: 102: 911:Human Genome Project 781:rheumatoid arthritis 314: 281: 260: 226: 194: 174: 114:Huntington's disease 68:Human Genome Project 1470:2003PNAS..100.9608G 1421:10.1038/nature08494 1413:2009Natur.461..747M 1126:2009PNAS..106.9362H 936:Logistic regression 891:Predictive medicine 731:biological pathways 373:Atrial fibrillation 329:{\displaystyle AUC} 298: 241:{\displaystyle AUC} 211: 21:predictive medicine 17:Predictive genomics 2118:Trends in Genetics 1938:10.1093/hmg/ddp295 1529:10.1007/bf03256453 1084:10.1093/hmg/ddn250 996:10.1101/gr.6665407 871:Other applications 645:Ulcerative colitis 533:Multiple sclerosis 326: 299: 284: 266: 238: 212: 197: 180: 105: 1836:10.1136/bmj.b4838 1686:978-1-4614-3208-1 1407:(7265): 747–753. 906:Personal genomics 707: 706: 597:Pancreatic cancer 581:Parkinson disease 485:Colorectal cancer 421:Alzheimer disease 269:{\displaystyle K} 183:{\displaystyle K} 25:personal genomics 2416: 2394: 2393: 2383: 2373: 2349: 2343: 2342: 2306: 2300: 2299: 2271: 2265: 2264: 2225: 2219: 2218: 2217: 2211: 2201: 2191: 2161: 2152: 2151: 2133: 2113: 2107: 2106: 2096: 2086: 2077:(Suppl 3): S10. 2062: 2056: 2055: 2045: 2035: 2011: 2005: 2004: 1994: 1984: 1960: 1951: 1950: 1940: 1916: 1907: 1906: 1896: 1864: 1858: 1857: 1847: 1815: 1806: 1805: 1795: 1785: 1761: 1755: 1754: 1744: 1734: 1710: 1699: 1698: 1664: 1658: 1657: 1647: 1614: 1603: 1602: 1592: 1582: 1573:(10): e1002973. 1558: 1549: 1548: 1508: 1502: 1501: 1491: 1481: 1449: 1443: 1442: 1432: 1391: 1382: 1381: 1371: 1361: 1337: 1331: 1330: 1320: 1310: 1285: 1279: 1278: 1241: 1232: 1231: 1203: 1197: 1196: 1164: 1158: 1157: 1147: 1137: 1105: 1096: 1095: 1067: 1061: 1060: 1024: 1018: 1017: 1007: 969: 921:Machine learning 896:Pharmacogenomics 789:Type II Diabetes 769:bipolar disorder 735:lipid metabolism 469:Bipolar disorder 335: 333: 332: 327: 308: 306: 305: 300: 297: 292: 275: 273: 272: 267: 251: 247: 245: 244: 239: 221: 219: 218: 213: 210: 205: 189: 187: 186: 181: 2424: 2423: 2419: 2418: 2417: 2415: 2414: 2413: 2399: 2398: 2397: 2351: 2350: 2346: 2323:10.1038/nrg2952 2308: 2307: 2303: 2273: 2272: 2268: 2227: 2226: 2222: 2212: 2182:(9): e1001139. 2163: 2162: 2155: 2131:10.1.1.325.3919 2115: 2114: 2110: 2064: 2063: 2059: 2013: 2012: 2008: 1975:(2): e1004137. 1962: 1961: 1954: 1931:(18): 3525–31. 1918: 1917: 1910: 1879:(21): 2208–19. 1866: 1865: 1861: 1817: 1816: 1809: 1763: 1762: 1758: 1725:(2): e1000337. 1712: 1711: 1702: 1687: 1666: 1665: 1661: 1636:10.1038/ng.2578 1624:Nature Genetics 1616: 1615: 1606: 1560: 1559: 1552: 1510: 1509: 1505: 1464:(16): 9608–13. 1451: 1450: 1446: 1393: 1392: 1385: 1339: 1338: 1334: 1295:Genome Medicine 1287: 1286: 1282: 1259:10.1038/nrg2344 1243: 1242: 1235: 1205: 1204: 1200: 1166: 1165: 1161: 1107: 1106: 1099: 1078:(R2): R166–73. 1069: 1068: 1064: 1041:10.1038/nrg1521 1026: 1025: 1021: 983:Genome Research 971: 970: 963: 959: 887: 873: 860: 847: 829: 812: 797: 785:Type I Diabetes 773:Crohn's disease 758:Type 2 diabetes 755: 753:Type 2 diabetes 716: 693:Crohn's disease 565:Type 1 diabetes 405:Prostate cancer 357:Type 2 diabetes 312: 311: 279: 278: 258: 257: 224: 223: 192: 191: 172: 171: 164: 156:gene expression 147: 134: 118:cystic fibrosis 110: 81: 61:Crohn's disease 53:Type 2 Diabetes 12: 11: 5: 2422: 2420: 2412: 2411: 2401: 2400: 2396: 2395: 2364:(7): 688–701. 2344: 2301: 2266: 2220: 2166:Goddard, M. E. 2153: 2108: 2057: 2006: 1952: 1908: 1859: 1807: 1756: 1700: 1685: 1659: 1604: 1550: 1503: 1444: 1383: 1332: 1280: 1233: 1198: 1179:(3): 257–263. 1169:Goddard, M. E. 1159: 1120:(23): 9362–7. 1097: 1062: 1019: 990:(10): 1520–8. 974:Goddard, M. E. 960: 958: 955: 954: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 886: 883: 872: 869: 859: 856: 846: 843: 828: 825: 811: 808: 800:Celiac disease 796: 795:Celiac disease 793: 754: 751: 715: 712: 705: 704: 701: 698: 695: 689: 688: 685: 682: 679: 677:Celiac disease 673: 672: 669: 666: 663: 657: 656: 653: 650: 647: 641: 640: 637: 634: 631: 629:Thyroid cancer 625: 624: 621: 618: 615: 613:Ovarian cancer 609: 608: 605: 602: 599: 593: 592: 589: 586: 583: 577: 576: 573: 570: 567: 561: 560: 557: 554: 551: 545: 544: 541: 538: 535: 529: 528: 525: 522: 519: 517:Bladder cancer 513: 512: 509: 506: 503: 497: 496: 493: 490: 487: 481: 480: 477: 474: 471: 465: 464: 461: 458: 455: 449: 448: 445: 442: 439: 433: 432: 429: 426: 423: 417: 416: 413: 410: 407: 401: 400: 397: 394: 391: 385: 384: 381: 378: 375: 369: 368: 365: 362: 359: 353: 352: 349: 346: 343: 337: 336: 325: 322: 319: 309: 296: 291: 287: 276: 265: 255: 237: 234: 231: 209: 204: 200: 179: 163: 160: 146: 143: 133: 130: 109: 106: 80: 77: 13: 10: 9: 6: 4: 3: 2: 2421: 2410: 2407: 2406: 2404: 2391: 2387: 2382: 2377: 2372: 2367: 2363: 2359: 2355: 2348: 2345: 2340: 2336: 2332: 2328: 2324: 2320: 2317:(3): 179–92. 2316: 2312: 2305: 2302: 2297: 2293: 2289: 2285: 2282:(3): 229–39. 2281: 2277: 2270: 2267: 2262: 2258: 2254: 2250: 2246: 2242: 2239:(2): 245–57. 2238: 2234: 2230: 2224: 2221: 2216: 2209: 2205: 2200: 2195: 2190: 2185: 2181: 2177: 2176: 2175:PLOS Genetics 2171: 2167: 2160: 2158: 2154: 2149: 2145: 2141: 2137: 2132: 2127: 2124:(12): 640–7. 2123: 2119: 2112: 2109: 2104: 2100: 2095: 2090: 2085: 2080: 2076: 2072: 2068: 2061: 2058: 2053: 2049: 2044: 2039: 2034: 2029: 2025: 2021: 2017: 2010: 2007: 2002: 1998: 1993: 1988: 1983: 1978: 1974: 1970: 1969:PLOS Genetics 1966: 1959: 1957: 1953: 1948: 1944: 1939: 1934: 1930: 1926: 1922: 1915: 1913: 1909: 1904: 1900: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1814: 1812: 1808: 1803: 1799: 1794: 1789: 1784: 1779: 1775: 1771: 1770:PLOS Medicine 1767: 1760: 1757: 1752: 1748: 1743: 1738: 1733: 1728: 1724: 1720: 1719:PLOS Genetics 1716: 1709: 1707: 1705: 1701: 1696: 1692: 1688: 1682: 1678: 1674: 1670: 1663: 1660: 1655: 1651: 1646: 1641: 1637: 1633: 1629: 1625: 1621: 1613: 1611: 1609: 1605: 1600: 1596: 1591: 1586: 1581: 1576: 1572: 1568: 1567:PLOS Genetics 1564: 1557: 1555: 1551: 1546: 1542: 1538: 1534: 1530: 1526: 1523:(3): 135–51. 1522: 1518: 1514: 1507: 1504: 1499: 1495: 1490: 1485: 1480: 1475: 1471: 1467: 1463: 1459: 1455: 1448: 1445: 1440: 1436: 1431: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1390: 1388: 1384: 1379: 1375: 1370: 1365: 1360: 1355: 1351: 1347: 1343: 1336: 1333: 1328: 1324: 1319: 1314: 1309: 1308:10.1186/gm174 1304: 1300: 1296: 1292: 1284: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1253:(5): 356–69. 1252: 1248: 1240: 1238: 1234: 1229: 1225: 1221: 1217: 1214:(6): 277–87. 1213: 1209: 1202: 1199: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1167:Wray, N. R.; 1163: 1160: 1155: 1151: 1146: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1102: 1098: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1063: 1058: 1054: 1050: 1046: 1042: 1038: 1035:(2): 95–108. 1034: 1030: 1023: 1020: 1015: 1011: 1006: 1001: 997: 993: 989: 985: 984: 979: 975: 972:Wray, N. R.; 968: 966: 962: 956: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 888: 884: 882: 879: 878:DNA profiling 870: 868: 866: 857: 855: 853: 844: 842: 839: 835: 826: 824: 822: 818: 809: 807: 805: 801: 794: 792: 790: 786: 782: 778: 774: 770: 765: 763: 759: 752: 750: 748: 744: 740: 736: 732: 728: 724: 720: 713: 711: 702: 699: 696: 694: 691: 690: 686: 683: 680: 678: 675: 674: 670: 667: 664: 662: 661:Schizophrenia 659: 658: 654: 651: 648: 646: 643: 642: 638: 635: 632: 630: 627: 626: 622: 619: 616: 614: 611: 610: 606: 603: 600: 598: 595: 594: 590: 587: 584: 582: 579: 578: 574: 571: 568: 566: 563: 562: 558: 555: 552: 550: 547: 546: 542: 539: 536: 534: 531: 530: 526: 523: 520: 518: 515: 514: 510: 507: 504: 502: 499: 498: 494: 491: 488: 486: 483: 482: 478: 475: 472: 470: 467: 466: 462: 459: 456: 454: 451: 450: 446: 443: 440: 438: 437:Breast cancer 435: 434: 430: 427: 424: 422: 419: 418: 414: 411: 408: 406: 403: 402: 398: 395: 392: 390: 387: 386: 382: 379: 376: 374: 371: 370: 366: 363: 360: 358: 355: 354: 350: 347: 344: 342: 339: 338: 323: 320: 317: 310: 294: 289: 285: 277: 263: 256: 253: 252: 249: 235: 232: 229: 207: 202: 198: 177: 169: 161: 159: 157: 153: 144: 142: 140: 131: 129: 127: 121: 119: 115: 107: 101: 97: 95: 91: 87: 78: 76: 74: 69: 66:Although the 64: 62: 58: 54: 50: 46: 42: 38: 35:outcomes via 34: 30: 26: 22: 18: 2361: 2357: 2347: 2314: 2310: 2304: 2279: 2275: 2269: 2236: 2232: 2223: 2179: 2173: 2121: 2117: 2111: 2074: 2071:BMC Genomics 2070: 2060: 2023: 2020:BMC Genomics 2019: 2009: 1972: 1968: 1928: 1924: 1876: 1872: 1862: 1827: 1823: 1776:(12): e345. 1773: 1769: 1759: 1722: 1718: 1668: 1662: 1627: 1623: 1570: 1566: 1520: 1516: 1512: 1506: 1461: 1457: 1447: 1404: 1400: 1349: 1345: 1335: 1298: 1294: 1283: 1250: 1246: 1211: 1207: 1201: 1176: 1172: 1162: 1117: 1113: 1075: 1071: 1065: 1032: 1028: 1022: 987: 981: 874: 861: 848: 830: 813: 798: 777:hypertension 766: 761: 756: 747:drug targets 722: 717: 708: 165: 148: 135: 122: 111: 82: 73:genetic loci 65: 16: 15: 2229:Goddard, M. 852:NP-complete 810:Limitations 727:odds ratios 453:Lung cancer 2026:(1): 368. 957:References 931:Odds ratio 916:Statistics 787:(T1D) and 739:angiogenic 94:prevention 79:Objectives 59:(AMD) and 37:prediction 33:phenotypic 2126:CiteSeerX 1830:: b4838. 1301:(8): 53. 90:prognosis 86:diagnosis 2409:Genomics 2403:Category 2390:31388879 2331:21331090 2296:22827597 2253:18704696 2233:Genetica 2208:20927186 2168:(2010). 2148:15522460 2103:23819779 2052:24884913 2001:24550740 1947:19553258 1903:19020323 1854:20075150 1802:17570749 1751:19197355 1695:24664710 1654:23455636 1599:23071447 1545:27626247 1537:16771600 1498:12869696 1439:19812666 1378:19309514 1327:20701793 1275:15032294 1267:18398418 1228:19931193 1193:18682292 1154:19474294 1092:18852206 1049:15716906 1014:17785532 885:See also 549:Melanoma 41:diseases 2381:6754361 2339:6448781 2261:1780250 2199:2944788 2094:3665501 2043:4035084 1992:3923679 1894:2746946 1845:2806945 1793:1274281 1742:2629574 1645:3739472 1590:3469463 1466:Bibcode 1430:2831613 1409:Bibcode 1369:2666673 1318:2945010 1145:2687147 1122:Bibcode 1057:2813666 1005:1987352 254:Disease 152:alleles 55:(T2D), 2388:  2378:  2337:  2329:  2294:  2259:  2251:  2206:  2196:  2146:  2128:  2101:  2091:  2050:  2040:  1999:  1989:  1945:  1901:  1891:  1852:  1842:  1800:  1790:  1749:  1739:  1693:  1683:  1652:  1642:  1597:  1587:  1543:  1535:  1496:  1489:170965 1486:  1437:  1427:  1401:Nature 1376:  1366:  1352:: 17. 1325:  1315:  1273:  1265:  1226:  1191:  1152:  1142:  1090:  1055:  1047:  1012:  1002:  762:TCF7L2 703:0.717 687:0.733 671:0.540 655:0.666 639:0.614 623:0.548 607:0.557 591:0.592 575:0.638 559:0.640 543:0.622 527:0.577 511:0.758 495:0.564 479:0.550 463:0.525 447:0.586 431:0.648 415:0.614 399:0.528 389:Stroke 383:0.593 367:0.592 351:0.584 126:ENCODE 2335:S2CID 2257:S2CID 1541:S2CID 1271:S2CID 1053:S2CID 697:0.005 681:0.007 665:0.007 649:0.009 633:0.010 617:0.014 601:0.015 585:0.016 569:0.018 553:0.020 537:0.020 521:0.024 505:0.047 489:0.051 473:0.051 457:0.069 441:0.123 425:0.132 409:0.165 393:0.190 377:0.245 361:0.339 345:0.402 2386:PMID 2327:PMID 2292:PMID 2249:PMID 2204:PMID 2144:PMID 2099:PMID 2048:PMID 1997:PMID 1943:PMID 1899:PMID 1850:PMID 1798:PMID 1747:PMID 1691:PMID 1681:ISBN 1650:PMID 1595:PMID 1533:PMID 1513:Chip 1494:PMID 1435:PMID 1374:PMID 1323:PMID 1263:PMID 1224:PMID 1189:PMID 1150:PMID 1088:PMID 1045:PMID 1010:PMID 737:and 700:0.56 684:0.75 668:0.66 652:0.53 636:0.53 620:0.22 604:0.36 588:0.27 572:0.87 556:0.21 540:0.51 524:0.08 508:0.71 492:0.13 476:0.60 460:0.08 444:0.25 428:0.79 412:0.42 396:0.17 380:0.62 364:0.30 348:0.49 116:and 92:and 27:and 2376:PMC 2366:doi 2319:doi 2284:doi 2241:doi 2237:136 2194:PMC 2184:doi 2136:doi 2089:PMC 2079:doi 2038:PMC 2028:doi 1987:PMC 1977:doi 1933:doi 1889:PMC 1881:doi 1877:359 1840:PMC 1832:doi 1828:340 1824:BMJ 1788:PMC 1778:doi 1737:PMC 1727:doi 1673:doi 1640:PMC 1632:doi 1585:PMC 1575:doi 1525:doi 1484:PMC 1474:doi 1462:100 1425:PMC 1417:doi 1405:461 1364:PMC 1354:doi 1313:PMC 1303:doi 1255:doi 1216:doi 1212:154 1181:doi 1140:PMC 1130:doi 1118:106 1080:doi 1037:doi 1000:PMC 992:doi 854:). 838:BMI 834:CNV 817:AUC 743:AUC 723:CFH 128:). 2405:: 2384:. 2374:. 2362:39 2360:. 2356:. 2333:. 2325:. 2315:12 2313:. 2290:. 2278:. 2255:. 2247:. 2235:. 2202:. 2192:. 2178:. 2172:. 2156:^ 2142:. 2134:. 2122:20 2120:. 2097:. 2087:. 2075:14 2073:. 2069:. 2046:. 2036:. 2024:15 2022:. 2018:. 1995:. 1985:. 1973:10 1971:. 1967:. 1955:^ 1941:. 1929:18 1927:. 1923:. 1911:^ 1897:. 1887:. 1875:. 1871:. 1848:. 1838:. 1826:. 1822:. 1810:^ 1796:. 1786:. 1772:. 1768:. 1745:. 1735:. 1721:. 1717:. 1703:^ 1689:. 1679:. 1648:. 1638:. 1628:45 1626:. 1622:. 1607:^ 1593:. 1583:. 1569:. 1565:. 1553:^ 1539:. 1531:. 1521:10 1519:. 1492:. 1482:. 1472:. 1460:. 1456:. 1433:. 1423:. 1415:. 1403:. 1399:. 1386:^ 1372:. 1362:. 1348:. 1344:. 1321:. 1311:. 1297:. 1293:. 1269:. 1261:. 1249:. 1236:^ 1222:. 1210:. 1187:. 1177:18 1175:. 1148:. 1138:. 1128:. 1116:. 1112:. 1100:^ 1086:. 1076:17 1074:. 1051:. 1043:. 1031:. 1008:. 998:. 988:17 986:. 980:. 964:^ 783:, 779:, 775:, 771:, 749:. 96:. 88:, 63:. 23:, 2392:. 2368:: 2341:. 2321:: 2298:. 2286:: 2280:6 2263:. 2243:: 2210:. 2186:: 2180:6 2150:. 2138:: 2105:. 2081:: 2054:. 2030:: 2003:. 1979:: 1949:. 1935:: 1905:. 1883:: 1856:. 1834:: 1804:. 1780:: 1774:2 1753:. 1729:: 1723:5 1697:. 1675:: 1656:. 1634:: 1601:. 1577:: 1571:8 1547:. 1527:: 1500:. 1476:: 1468:: 1441:. 1419:: 1411:: 1380:. 1356:: 1350:9 1329:. 1305:: 1299:2 1277:. 1257:: 1251:9 1230:. 1218:: 1195:. 1183:: 1156:. 1132:: 1124:: 1094:. 1082:: 1059:. 1039:: 1033:6 1016:. 994:: 324:C 321:U 318:A 295:2 290:L 286:h 264:K 236:C 233:U 230:A 208:2 203:L 199:h 178:K

Index

predictive medicine
personal genomics
translational bioinformatics
phenotypic
prediction
diseases
genome-wide association
single-nucleotide polymorphisms
Type 2 Diabetes
Age-related macular degeneration
Crohn's disease
Human Genome Project
genetic loci
diagnosis
prognosis
prevention

Huntington's disease
cystic fibrosis
ENCODE
clinical decision support systems
alleles
gene expression
single-nucleotide polymorphism
Coronary artery disease
Type 2 diabetes
Atrial fibrillation
Stroke
Prostate cancer
Alzheimer disease

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.